2025-03-14T04:12:09.0348815Z Current runner version: '2.322.0' 2025-03-14T04:12:09.0354617Z Runner name: 'i-00f46405241e0bbc9' 2025-03-14T04:12:09.0355390Z Runner group name: 'Default' 2025-03-14T04:12:09.0356138Z Machine name: 'ip-10-0-63-215' 2025-03-14T04:12:09.0359363Z ##[group]GITHUB_TOKEN Permissions 2025-03-14T04:12:09.0362180Z Actions: read 2025-03-14T04:12:09.0362697Z Attestations: read 2025-03-14T04:12:09.0363175Z Checks: read 2025-03-14T04:12:09.0363639Z Contents: read 2025-03-14T04:12:09.0364058Z Deployments: read 2025-03-14T04:12:09.0364632Z Discussions: read 2025-03-14T04:12:09.0365114Z Issues: read 2025-03-14T04:12:09.0365555Z Metadata: read 2025-03-14T04:12:09.0366005Z Packages: read 2025-03-14T04:12:09.0366494Z Pages: read 2025-03-14T04:12:09.0366961Z PullRequests: read 2025-03-14T04:12:09.0367455Z RepositoryProjects: read 2025-03-14T04:12:09.0367981Z SecurityEvents: read 2025-03-14T04:12:09.0368475Z Statuses: read 2025-03-14T04:12:09.0368967Z ##[endgroup] 2025-03-14T04:12:09.0372400Z Secret source: Actions 2025-03-14T04:12:09.0373326Z Prepare workflow directory 2025-03-14T04:12:09.3714809Z Prepare all required actions 2025-03-14T04:12:09.3754265Z Getting action download info 2025-03-14T04:12:09.5634637Z Download action repository 'pytorch/test-infra@main' (SHA:de00dac6adc071cb2f9861380a0ed3947b93e5cc) 2025-03-14T04:12:10.7404170Z Download action repository 'pytorch/pytorch@main' (SHA:e5679009988279a3059f398ed2077a0477099ba6) 2025-03-14T04:12:25.2981359Z Download action repository 'aws-actions/configure-aws-credentials@v3' (SHA:50ac8dd1e1b10d09dac7b8727528b91bed831ac0) 2025-03-14T04:12:25.5064660Z Download action repository 'seemethere/upload-artifact-s3@v5' (SHA:baba72d0712b404f646cebe0730933554ebce96a) 2025-03-14T04:12:25.7563759Z Getting action download info 2025-03-14T04:12:25.8560940Z Download action repository 'actions/checkout@v4' (SHA:11bd71901bbe5b1630ceea73d27597364c9af683) 2025-03-14T04:12:26.0975898Z Getting action download info 2025-03-14T04:12:26.1935782Z Download action repository 'nick-fields/retry@v3.0.0' (SHA:7152eba30c6575329ac0576536151aca5a72780e) 2025-03-14T04:12:26.3502145Z Getting action download info 2025-03-14T04:12:26.4571840Z Download action repository 'nick-fields/retry@3e91a01664abd3c5cd539100d10d33b9c5b68482' (SHA:3e91a01664abd3c5cd539100d10d33b9c5b68482) 2025-03-14T04:12:26.6032223Z Getting action download info 2025-03-14T04:12:26.7236690Z Uses: pytorch/pytorch/.github/workflows/_linux-test.yml@refs/heads/main (aed0b7a742a2d7b7901790622829cbd2135049a4) 2025-03-14T04:12:26.7238388Z ##[group] Inputs 2025-03-14T04:12:26.7238653Z build-environment: linux-jammy-py3.9-gcc11-build 2025-03-14T04:12:26.7240325Z test-matrix: {"include": [{"config": "cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_huggingface", "shard": 1, "num_shards": 1, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "inductor_torchbench_cpu_smoketest_perf", "shard": 1, "num_shards": 1, "runner": "linux.24xl.spr-metal"}]} 2025-03-14T04:12:26.7242181Z docker-image: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:26.7242700Z sync-tag: 2025-03-14T04:12:26.7243306Z timeout-minutes: 240 2025-03-14T04:12:26.7243497Z use-gha: 2025-03-14T04:12:26.7243674Z dashboard-tag: 2025-03-14T04:12:26.7243863Z s3-bucket: gha-artifacts 2025-03-14T04:12:26.7244071Z aws-role-to-assume: 2025-03-14T04:12:26.7244702Z disable-monitor: false 2025-03-14T04:12:26.7244990Z ##[endgroup] 2025-03-14T04:12:26.7245352Z Complete job name: linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:12:26.7633426Z A job started hook has been configured by the self-hosted runner administrator 2025-03-14T04:12:26.7704011Z ##[group]Run '/home/ec2-user/runner-scripts/before_job.sh' 2025-03-14T04:12:26.7710529Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:26.7710952Z ##[endgroup] 2025-03-14T04:12:28.0269432Z Runner Type: linux.8xlarge.amx 2025-03-14T04:12:28.0269908Z Instance Type: m7i-flex.8xlarge 2025-03-14T04:12:28.0270137Z AMI Name: unknown 2025-03-14T04:12:28.0299134Z AMI ID: ami-08b5b3a93ed654d19 2025-03-14T04:12:32.2396188Z ##[group]Run pytorch/test-infra/.github/actions/setup-ssh@main 2025-03-14T04:12:32.2396519Z with: 2025-03-14T04:12:32.2397192Z github-secret: *** 2025-03-14T04:12:32.2397650Z instructions: All testing is done inside the container, to start an interactive session run: docker exec -it $(docker container ps --format '{{.ID}}') bash 2025-03-14T04:12:32.2398131Z activate-with-label: false 2025-03-14T04:12:32.2398332Z label: with-ssh 2025-03-14T04:12:32.2398514Z remove-existing-keys: true 2025-03-14T04:12:32.2398713Z fail-silently: true 2025-03-14T04:12:32.2398889Z env: 2025-03-14T04:12:32.2399054Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:32.2399244Z ##[endgroup] 2025-03-14T04:12:32.3405734Z Please see https://github.com/pytorch/pytorch/wiki/Debugging-using-with-ssh-for-Github-Actions for more info. 2025-03-14T04:12:32.3406374Z Not on pull request and ciflow reference could not be extracted, skipping adding ssh keys 2025-03-14T04:12:32.3541806Z ##[group]Run pytorch/pytorch/.github/actions/checkout-pytorch@main 2025-03-14T04:12:32.3542131Z with: 2025-03-14T04:12:32.3542318Z no-sudo: true 2025-03-14T04:12:32.3542510Z submodules: recursive 2025-03-14T04:12:32.3542721Z fetch-depth: 0 2025-03-14T04:12:32.3542896Z env: 2025-03-14T04:12:32.3543077Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:32.3543298Z ##[endgroup] 2025-03-14T04:12:32.3615176Z ##[group]Run echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT" 2025-03-14T04:12:32.3615789Z echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT" 2025-03-14T04:12:32.3623595Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:32.3623876Z env: 2025-03-14T04:12:32.3624087Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:32.3624325Z ##[endgroup] 2025-03-14T04:12:32.3702137Z ##[group]Run # Use all available CPUs for fetching 2025-03-14T04:12:32.3702470Z # Use all available CPUs for fetching 2025-03-14T04:12:32.3702710Z cd "${GITHUB_WORKSPACE}" 2025-03-14T04:12:32.3702951Z git config --global fetch.parallel 0 2025-03-14T04:12:32.3703216Z git config --global submodule.fetchJobs 0 2025-03-14T04:12:32.3703468Z  2025-03-14T04:12:32.3703717Z # Clean workspace. The default checkout action should also do this, but 2025-03-14T04:12:32.3704028Z # do it here as well just in case 2025-03-14T04:12:32.3704252Z if [[ -d .git ]]; then 2025-03-14T04:12:32.3704459Z  if [ -z "${NO_SUDO}" ]; then 2025-03-14T04:12:32.3704680Z  sudo git clean -ffdx 2025-03-14T04:12:32.3704882Z  else 2025-03-14T04:12:32.3705061Z  git clean -ffdx 2025-03-14T04:12:32.3705254Z  fi 2025-03-14T04:12:32.3705419Z fi 2025-03-14T04:12:32.3709426Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:32.3709680Z env: 2025-03-14T04:12:32.3709855Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:32.3710049Z NO_SUDO: true 2025-03-14T04:12:32.3710218Z ##[endgroup] 2025-03-14T04:12:32.8516174Z Removing .additional_ci_files/ 2025-03-14T04:12:32.8516576Z Removing benchmarks/dynamo/__pycache__/ 2025-03-14T04:12:32.8516834Z Removing build/ 2025-03-14T04:12:32.8517450Z Removing dist/ 2025-03-14T04:12:32.8517822Z Removing logs-test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38752604198.zip 2025-03-14T04:12:32.8518344Z Removing test-jsons-test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38752604198.zip 2025-03-14T04:12:32.8518875Z Removing test-reports-test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38752604198.zip 2025-03-14T04:12:32.8519269Z Removing test/test-reports/ 2025-03-14T04:12:32.8519494Z Removing tools/__pycache__/ 2025-03-14T04:12:32.8519713Z Removing tools/stats/__pycache__/ 2025-03-14T04:12:32.8519984Z Removing tools/stats/upload_utilization_stats/__pycache__/ 2025-03-14T04:12:32.8520239Z Removing torchbench/ 2025-03-14T04:12:32.8520416Z Removing usage_log.txt 2025-03-14T04:12:32.8588333Z ##[group]Run actions/checkout@v4 2025-03-14T04:12:32.8588561Z with: 2025-03-14T04:12:32.8588767Z ref: aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:12:32.8589011Z fetch-depth: 0 2025-03-14T04:12:32.8589221Z submodules: recursive 2025-03-14T04:12:32.8589408Z show-progress: false 2025-03-14T04:12:32.8589598Z repository: pytorch/pytorch 2025-03-14T04:12:32.8589857Z token: *** 2025-03-14T04:12:32.8590021Z ssh-strict: true 2025-03-14T04:12:32.8590190Z ssh-user: git 2025-03-14T04:12:32.8590364Z persist-credentials: true 2025-03-14T04:12:32.8590556Z clean: true 2025-03-14T04:12:32.8590731Z sparse-checkout-cone-mode: true 2025-03-14T04:12:32.8590936Z fetch-tags: false 2025-03-14T04:12:32.8591106Z lfs: false 2025-03-14T04:12:32.8591267Z set-safe-directory: true 2025-03-14T04:12:32.8591451Z env: 2025-03-14T04:12:32.8591825Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:32.8592017Z ##[endgroup] 2025-03-14T04:12:32.9530023Z Syncing repository: pytorch/pytorch 2025-03-14T04:12:32.9531070Z ##[group]Getting Git version info 2025-03-14T04:12:32.9531554Z Working directory is '/home/ec2-user/actions-runner/_work/pytorch/pytorch' 2025-03-14T04:12:32.9532053Z [command]/usr/bin/git version 2025-03-14T04:12:32.9532666Z git version 2.47.1 2025-03-14T04:12:32.9551779Z ##[endgroup] 2025-03-14T04:12:32.9559918Z Copying '/home/ec2-user/.gitconfig' to '/home/ec2-user/actions-runner/_work/_temp/bc4b74ab-d54f-44c6-9e7a-22a34b493e82/.gitconfig' 2025-03-14T04:12:32.9584293Z Temporarily overriding HOME='/home/ec2-user/actions-runner/_work/_temp/bc4b74ab-d54f-44c6-9e7a-22a34b493e82' before making global git config changes 2025-03-14T04:12:32.9588142Z Adding repository directory to the temporary git global config as a safe directory 2025-03-14T04:12:32.9588915Z [command]/usr/bin/git config --global --add safe.directory /home/ec2-user/actions-runner/_work/pytorch/pytorch 2025-03-14T04:12:32.9638406Z [command]/usr/bin/git config --local --get remote.origin.url 2025-03-14T04:12:32.9650557Z https://github.com/pytorch/pytorch 2025-03-14T04:12:32.9670875Z ##[group]Removing previously created refs, to avoid conflicts 2025-03-14T04:12:32.9676558Z [command]/usr/bin/git rev-parse --symbolic-full-name --verify --quiet HEAD 2025-03-14T04:12:32.9693347Z HEAD 2025-03-14T04:12:32.9724768Z ##[endgroup] 2025-03-14T04:12:32.9725011Z [command]/usr/bin/git submodule status 2025-03-14T04:12:33.0043345Z 7e1e1fe3858c63c251c637ae41a20de425dde96f android/libs/fbjni (v0.1.0-12-g7e1e1fe) 2025-03-14T04:12:33.0114174Z 4dfe081cf6bcd15db339cf2680b9281b8451eeb3 third_party/FP16 (4dfe081) 2025-03-14T04:12:33.0196219Z b408327ac2a15ec3e43352421954f5b1967701d1 third_party/FXdiv (b408327) 2025-03-14T04:12:33.0275979Z c07e3a0400713d546e0dea2d5466dd22ea389c73 third_party/NNPACK (c07e3a0) 2025-03-14T04:12:33.0294443Z e170594ac7cf1dac584da473d4ca9301087090c1 third_party/NVTX (v3.1.0) 2025-03-14T04:12:33.0357807Z a6bfc237255a6bac1513f7c1ebde6d8aed6b5191 third_party/VulkanMemoryAllocator (v2.1.0-705-ga6bfc23) 2025-03-14T04:12:33.0799891Z 51a0103656eff6fc9bfd39a4597923c4b542c883 third_party/XNNPACK (remotes/origin/ds/ndk-1243-g51a010365) 2025-03-14T04:12:33.0822730Z 0d98dba29d66e93259db7daa53a9327df767a415 third_party/benchmark (v1.6.1) 2025-03-14T04:12:33.0846283Z 8086bbe3a78d931eb96fe12fdc014082e18d18d3 third_party/composable_kernel (mock-tag-test-6-g8086bbe3a) 2025-03-14T04:12:33.0962705Z 3b6597bba913d51161383657829b7e644e59c006 third_party/cpp-httplib (v0.15.3-20-g3b6597b) 2025-03-14T04:12:33.1059936Z 1e83a2fdd3102f65c6f1fb602c1b320486218a99 third_party/cpuinfo (1e83a2f) 2025-03-14T04:12:33.1089797Z 91b7532f3386768bba4f444ee7672b497f34da8a third_party/cudnn_frontend (v0.5-44-g91b7532) 2025-03-14T04:12:33.1173042Z afa1772203677c5118fcd82537a9c8fefbcc7008 third_party/cutlass (v3.8.0) 2025-03-14T04:12:33.1751127Z 3147391d946bb4b6c68edd901f2add6ac1f31f8c third_party/eigen (3.4.0) 2025-03-14T04:12:33.2062006Z dbc3157bf256f1339b3fa1fef2be89ac4078be0e third_party/fbgemm (v0.4.1-446-gdbc3157b) 2025-03-14T04:12:33.2170388Z 979702c87a8713a8e0a5e9fee122b90d2ef13be5 third_party/flash-attention (v2.7.4) 2025-03-14T04:12:33.2190155Z 01834de25e4bf3975a9a00e816292b1ad0fe184b third_party/flatbuffers (v23.3.3) 2025-03-14T04:12:33.2566733Z 123913715afeb8a437e6388b4473fcc4753e1c9a third_party/fmt (11.1.4) 2025-03-14T04:12:33.2659837Z 3fb5c176c17c765a3492cd2f0321b0dab712f350 third_party/gemmlowp/gemmlowp (remotes/origin/revert-87-master-135-g3fb5c17) 2025-03-14T04:12:33.2753713Z 5354032ea08eadd7fc4456477f7f7c6308818509 third_party/gloo (5354032) 2025-03-14T04:12:33.2965304Z b514bdc898e2951020cbdca1304b75f5950d1f59 third_party/googletest (release-1.8.0-3484-gb514bdc8) 2025-03-14T04:12:33.3035737Z 719d8e6cd7f7a0e01b155657526d693acf97c2b3 third_party/ideep (pytorch-rls-v3.7.1) 2025-03-14T04:12:33.3086145Z 5b8a7d7422611c3a0d799fb5fc5dd4abfae35b42 third_party/ittapi (v3.23.0-14-g5b8a7d7) 2025-03-14T04:12:33.3316874Z 2859721fd9e73d3ca1c56f827dbc64e6d68f78a2 third_party/kineto (remotes/origin/sraikund/test-53-g2859721) 2025-03-14T04:12:33.3335097Z ef685a13cfbe8d418aa2ed34350e21e4938358b6 third_party/kleidiai (v1.3.0) 2025-03-14T04:12:33.3354138Z b66e3214d8a104669c2ec05ae91ebc26a8f5ab78 third_party/mimalloc (v1.8.2) 2025-03-14T04:12:33.3783048Z 87cda1d6646592ac5866dc703c8e1839046a6806 third_party/nlohmann (v3.10.1-113-g87cda1d6) 2025-03-14T04:12:33.4052776Z b8baa8446686496da4cc8fda09f2b6fe65c2a02c third_party/onnx (v1.17.0) 2025-03-14T04:12:33.4071859Z a799f4aed9c94b765dcdaabaeab7d5e7e2310878 third_party/opentelemetry-cpp (v1.14.2) 2025-03-14T04:12:33.4092820Z 9d3ab05a7fffbc71a492bc6a17be034e83e8f0fe third_party/pocketfft (release_for_eigen-11-g9d3ab05) 2025-03-14T04:12:33.4518528Z d1eca4e4b421cd2997495c4b4e65cea6be4e9b8a third_party/protobuf (v3.7.0-rc.2-1279-gd1eca4e4b) 2025-03-14T04:12:33.4544868Z 072586a71b55b7f8c584153d223e95687148a900 third_party/psimd (heads/master) 2025-03-14T04:12:33.4583856Z 4fe0e1e183925bf8cfa6aae24237e724a96479b8 third_party/pthreadpool (0.1-144-g4fe0e1e) 2025-03-14T04:12:33.4632665Z a2e59f0e7065404b44dfe92a28aca47ba1378dc4 third_party/pybind11 (v2.11.0-182-ga2e59f0e) 2025-03-14T04:12:33.4700767Z f45429b087dd7d5bc78bb40dc7cf06425c252d67 third_party/python-peachpy (remotes/origin/pre-generated) 2025-03-14T04:12:33.4805214Z 56e1f79cb140fb9326d612d0be06b5250565cade third_party/sleef (3.7-33-g56e1f79) 2025-03-14T04:12:33.4870105Z 52791a2fd214b2a9dc5759d36725909c1daa7f2e third_party/tensorpipe (remotes/origin/master) 2025-03-14T04:12:33.4884733Z ##[group]Cleaning the repository 2025-03-14T04:12:33.4888090Z [command]/usr/bin/git clean -ffdx 2025-03-14T04:12:33.5043502Z [command]/usr/bin/git reset --hard HEAD 2025-03-14T04:12:34.4882864Z HEAD is now at 2cddff7538a avoid require_contiguous on mkldnn tensor 2025-03-14T04:12:34.4929522Z ##[endgroup] 2025-03-14T04:12:34.4929907Z ##[group]Disabling automatic garbage collection 2025-03-14T04:12:34.4935038Z [command]/usr/bin/git config --local gc.auto 0 2025-03-14T04:12:34.4971621Z ##[endgroup] 2025-03-14T04:12:34.4971995Z ##[group]Setting up auth 2025-03-14T04:12:34.4977890Z [command]/usr/bin/git config --local --name-only --get-regexp core\.sshCommand 2025-03-14T04:12:34.5006746Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'core\.sshCommand' && git config --local --unset-all 'core.sshCommand' || :" 2025-03-14T04:12:34.5292621Z Entering 'android/libs/fbjni' 2025-03-14T04:12:34.5340279Z Entering 'third_party/FP16' 2025-03-14T04:12:34.5390358Z Entering 'third_party/FXdiv' 2025-03-14T04:12:34.5437656Z Entering 'third_party/NNPACK' 2025-03-14T04:12:34.5488407Z Entering 'third_party/NVTX' 2025-03-14T04:12:34.5533776Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:34.5594561Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:34.5648783Z Entering 'third_party/benchmark' 2025-03-14T04:12:34.5698389Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:34.5755419Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:34.5804345Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:34.5853053Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:34.5900930Z Entering 'third_party/cutlass' 2025-03-14T04:12:34.5952720Z Entering 'third_party/eigen' 2025-03-14T04:12:34.6003100Z Entering 'third_party/fbgemm' 2025-03-14T04:12:34.6053085Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:34.6106363Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:34.6150094Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:34.6210597Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:34.6254393Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:34.6308252Z Entering 'third_party/flash-attention' 2025-03-14T04:12:34.6357965Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:34.6409227Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:34.6468720Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:34.6515765Z Entering 'third_party/fmt' 2025-03-14T04:12:34.6560483Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:34.6609069Z Entering 'third_party/gloo' 2025-03-14T04:12:34.6653756Z Entering 'third_party/googletest' 2025-03-14T04:12:34.6708838Z Entering 'third_party/ideep' 2025-03-14T04:12:34.6756164Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:34.6812819Z Entering 'third_party/ittapi' 2025-03-14T04:12:34.6862652Z Entering 'third_party/kineto' 2025-03-14T04:12:34.6911644Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:34.6960859Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:34.7013781Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:34.7062650Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:34.7109806Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:34.7155352Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:34.7208591Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:34.7255286Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:34.7306675Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:34.7354613Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:34.7402950Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:34.7449524Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:34.7497867Z Entering 'third_party/kleidiai' 2025-03-14T04:12:34.7548703Z Entering 'third_party/mimalloc' 2025-03-14T04:12:34.7605512Z Entering 'third_party/nlohmann' 2025-03-14T04:12:34.7654539Z Entering 'third_party/onnx' 2025-03-14T04:12:34.7715926Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:34.7769153Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:34.7818747Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:34.7869964Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:34.7912349Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:34.7958598Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:34.8006903Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:34.8051745Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:34.8098389Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:34.8143625Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:34.8193405Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:34.8238484Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:34.8302772Z Entering 'third_party/pocketfft' 2025-03-14T04:12:34.8349966Z Entering 'third_party/protobuf' 2025-03-14T04:12:34.8404174Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:34.8449425Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:34.8502325Z Entering 'third_party/psimd' 2025-03-14T04:12:34.8546955Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:34.8594749Z Entering 'third_party/pybind11' 2025-03-14T04:12:34.8644264Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:34.8693866Z Entering 'third_party/sleef' 2025-03-14T04:12:34.8741141Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:34.8788496Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:34.8835586Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:34.8886272Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:34.8931818Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:34.8974062Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:34.9044046Z [command]/usr/bin/git config --local --name-only --get-regexp http\.https\:\/\/github\.com\/\.extraheader 2025-03-14T04:12:34.9075203Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'http\.https\:\/\/github\.com\/\.extraheader' && git config --local --unset-all 'http.https://github.com/.extraheader' || :" 2025-03-14T04:12:34.9352763Z Entering 'android/libs/fbjni' 2025-03-14T04:12:34.9398303Z Entering 'third_party/FP16' 2025-03-14T04:12:34.9444459Z Entering 'third_party/FXdiv' 2025-03-14T04:12:34.9491779Z Entering 'third_party/NNPACK' 2025-03-14T04:12:34.9538616Z Entering 'third_party/NVTX' 2025-03-14T04:12:34.9589781Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:34.9634545Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:34.9702759Z Entering 'third_party/benchmark' 2025-03-14T04:12:34.9752845Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:34.9805989Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:34.9869747Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:34.9920873Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:34.9971901Z Entering 'third_party/cutlass' 2025-03-14T04:12:35.0023471Z Entering 'third_party/eigen' 2025-03-14T04:12:35.0073804Z Entering 'third_party/fbgemm' 2025-03-14T04:12:35.0121200Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:35.0168411Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:35.0220528Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:35.0277273Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:35.0320982Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:35.0371852Z Entering 'third_party/flash-attention' 2025-03-14T04:12:35.0423892Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:35.0479123Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:35.0537852Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:35.0593409Z Entering 'third_party/fmt' 2025-03-14T04:12:35.0641358Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:35.0689887Z Entering 'third_party/gloo' 2025-03-14T04:12:35.0736382Z Entering 'third_party/googletest' 2025-03-14T04:12:35.0787004Z Entering 'third_party/ideep' 2025-03-14T04:12:35.0834261Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:35.0895078Z Entering 'third_party/ittapi' 2025-03-14T04:12:35.0947583Z Entering 'third_party/kineto' 2025-03-14T04:12:35.0994393Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:35.1049673Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:35.1099663Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:35.1146385Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:35.1192663Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:35.1250663Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:35.1303329Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:35.1351008Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:35.1398569Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:35.1510971Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:35.1560125Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:35.1605826Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:35.1654340Z Entering 'third_party/kleidiai' 2025-03-14T04:12:35.1706801Z Entering 'third_party/mimalloc' 2025-03-14T04:12:35.1758049Z Entering 'third_party/nlohmann' 2025-03-14T04:12:35.1806685Z Entering 'third_party/onnx' 2025-03-14T04:12:35.1877141Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:35.1935764Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:35.1990248Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:35.2037623Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:35.2094461Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:35.2153735Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:35.2203241Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:35.2251621Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:35.2298560Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:35.2346929Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:35.2393226Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:35.2445324Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:35.2511044Z Entering 'third_party/pocketfft' 2025-03-14T04:12:35.2561296Z Entering 'third_party/protobuf' 2025-03-14T04:12:35.2614993Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:35.2691955Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:35.2741856Z Entering 'third_party/psimd' 2025-03-14T04:12:35.2789057Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:35.2837165Z Entering 'third_party/pybind11' 2025-03-14T04:12:35.2887167Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:35.2934846Z Entering 'third_party/sleef' 2025-03-14T04:12:35.2990791Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:35.3034396Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:35.3080753Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:35.3126806Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:35.3174714Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:35.3221553Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:35.3292427Z [command]/usr/bin/git config --local http.https://github.com/.extraheader AUTHORIZATION: basic *** 2025-03-14T04:12:35.3346567Z ##[endgroup] 2025-03-14T04:12:35.3349001Z ##[group]Fetching the repository 2025-03-14T04:12:35.3352751Z [command]/usr/bin/git -c protocol.version=2 fetch --prune --no-recurse-submodules origin +refs/heads/*:refs/remotes/origin/* +refs/tags/*:refs/tags/* 2025-03-14T04:12:35.5580551Z From https://github.com/pytorch/pytorch 2025-03-14T04:12:35.5582045Z - [deleted] (none) -> ciflow/inductor/149162 2025-03-14T04:12:35.5840634Z - [deleted] (none) -> ciflow/trunk/149166 2025-03-14T04:12:36.7617250Z b4745db9048..e5679009988 main -> origin/main 2025-03-14T04:12:36.7626479Z + e2f3d057bea...c4b8be3d09f update_submodule_FBGEMM -> origin/update_submodule_FBGEMM (forced update) 2025-03-14T04:12:36.7627180Z 4098a229a04..49570cb4024 viable/strict -> origin/viable/strict 2025-03-14T04:12:36.7628237Z 1579a02c823..3ffd7552df1 wdvr/iss145259_alt -> origin/wdvr/iss145259_alt 2025-03-14T04:12:36.7635905Z * [new tag] ciflow/trunk/146289 -> ciflow/trunk/146289 2025-03-14T04:12:36.7636434Z * [new tag] ciflow/trunk/149064 -> ciflow/trunk/149064 2025-03-14T04:12:36.8008381Z [command]/usr/bin/git rev-parse --verify --quiet aed0b7a742a2d7b7901790622829cbd2135049a4^{object} 2025-03-14T04:12:36.8032645Z aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:12:36.8035133Z ##[endgroup] 2025-03-14T04:12:36.8035453Z ##[group]Determining the checkout info 2025-03-14T04:12:36.8035799Z ##[endgroup] 2025-03-14T04:12:36.8039855Z [command]/usr/bin/git sparse-checkout disable 2025-03-14T04:12:37.0242608Z [command]/usr/bin/git config --local --unset-all extensions.worktreeConfig 2025-03-14T04:12:37.0271962Z ##[group]Checking out the ref 2025-03-14T04:12:37.0279096Z [command]/usr/bin/git checkout --progress --force aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:12:37.1234603Z Previous HEAD position was 2cddff7538a avoid require_contiguous on mkldnn tensor 2025-03-14T04:12:37.1239900Z HEAD is now at aed0b7a742a [c10d] Add param recording for uniqueID broadcasting and allgather (#149166) 2025-03-14T04:12:37.1261781Z ##[endgroup] 2025-03-14T04:12:37.1262149Z ##[group]Setting up auth for fetching submodules 2025-03-14T04:12:37.1268151Z [command]/usr/bin/git config --global http.https://github.com/.extraheader AUTHORIZATION: basic *** 2025-03-14T04:12:37.1324698Z [command]/usr/bin/git config --global --unset-all url.https://github.com/.insteadOf 2025-03-14T04:12:37.1347032Z [command]/usr/bin/git config --global --add url.https://github.com/.insteadOf git@github.com: 2025-03-14T04:12:37.1370124Z [command]/usr/bin/git config --global --add url.https://github.com/.insteadOf org-21003710@github.com: 2025-03-14T04:12:37.1392102Z ##[endgroup] 2025-03-14T04:12:37.1392526Z ##[group]Fetching submodules 2025-03-14T04:12:37.1393485Z [command]/usr/bin/git submodule sync --recursive 2025-03-14T04:12:37.1667235Z Synchronizing submodule url for 'android/libs/fbjni' 2025-03-14T04:12:37.1688157Z Synchronizing submodule url for 'third_party/FP16' 2025-03-14T04:12:37.1704638Z Synchronizing submodule url for 'third_party/FXdiv' 2025-03-14T04:12:37.1723364Z Synchronizing submodule url for 'third_party/NNPACK' 2025-03-14T04:12:37.1738551Z Synchronizing submodule url for 'third_party/NVTX' 2025-03-14T04:12:37.1758911Z Synchronizing submodule url for 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:37.1783157Z Synchronizing submodule url for 'third_party/XNNPACK' 2025-03-14T04:12:37.1808562Z Synchronizing submodule url for 'third_party/benchmark' 2025-03-14T04:12:37.1843432Z Synchronizing submodule url for 'third_party/composable_kernel' 2025-03-14T04:12:37.1845591Z Synchronizing submodule url for 'third_party/cpp-httplib' 2025-03-14T04:12:37.1865376Z Synchronizing submodule url for 'third_party/cpuinfo' 2025-03-14T04:12:37.1885321Z Synchronizing submodule url for 'third_party/cudnn_frontend' 2025-03-14T04:12:37.1901635Z Synchronizing submodule url for 'third_party/cutlass' 2025-03-14T04:12:37.1929966Z Synchronizing submodule url for 'third_party/eigen' 2025-03-14T04:12:37.1947239Z Synchronizing submodule url for 'third_party/fbgemm' 2025-03-14T04:12:37.1965564Z Synchronizing submodule url for 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:37.1989267Z Synchronizing submodule url for 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:37.2006338Z Synchronizing submodule url for 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:37.2030655Z Synchronizing submodule url for 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:37.2043560Z Synchronizing submodule url for 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:37.2059894Z Synchronizing submodule url for 'third_party/flash-attention' 2025-03-14T04:12:37.2080630Z Synchronizing submodule url for 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:37.2100030Z Synchronizing submodule url for 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:37.2130145Z Synchronizing submodule url for 'third_party/flatbuffers' 2025-03-14T04:12:37.2169319Z Synchronizing submodule url for 'third_party/fmt' 2025-03-14T04:12:37.2169871Z Synchronizing submodule url for 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:37.2189472Z Synchronizing submodule url for 'third_party/gloo' 2025-03-14T04:12:37.2208456Z Synchronizing submodule url for 'third_party/googletest' 2025-03-14T04:12:37.2227209Z Synchronizing submodule url for 'third_party/ideep' 2025-03-14T04:12:37.2242120Z Synchronizing submodule url for 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:37.2269220Z Synchronizing submodule url for 'third_party/ittapi' 2025-03-14T04:12:37.2287587Z Synchronizing submodule url for 'third_party/kineto' 2025-03-14T04:12:37.2307079Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:37.2319169Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:37.2334549Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:37.2353935Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:37.2377714Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:37.2393338Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:37.2411055Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:37.2441870Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:37.2447345Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:37.2466100Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:37.2485812Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:37.2506338Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:37.2537785Z Synchronizing submodule url for 'third_party/kleidiai' 2025-03-14T04:12:37.2543733Z Synchronizing submodule url for 'third_party/mimalloc' 2025-03-14T04:12:37.2558203Z Synchronizing submodule url for 'third_party/nlohmann' 2025-03-14T04:12:37.2580035Z Synchronizing submodule url for 'third_party/onnx' 2025-03-14T04:12:37.2611142Z Synchronizing submodule url for 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:37.2630069Z Synchronizing submodule url for 'third_party/opentelemetry-cpp' 2025-03-14T04:12:37.2644785Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:37.2671098Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:37.2688433Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:37.2715954Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:37.2726307Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:37.2740510Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:37.2760716Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:37.2778296Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:37.2798101Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:37.2820443Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:37.2851487Z Synchronizing submodule url for 'third_party/pocketfft' 2025-03-14T04:12:37.2868713Z Synchronizing submodule url for 'third_party/protobuf' 2025-03-14T04:12:37.2888068Z Synchronizing submodule url for 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:37.2905464Z Synchronizing submodule url for 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:37.2924999Z Synchronizing submodule url for 'third_party/psimd' 2025-03-14T04:12:37.2941416Z Synchronizing submodule url for 'third_party/pthreadpool' 2025-03-14T04:12:37.2961341Z Synchronizing submodule url for 'third_party/pybind11' 2025-03-14T04:12:37.2979106Z Synchronizing submodule url for 'third_party/python-peachpy' 2025-03-14T04:12:37.2999670Z Synchronizing submodule url for 'third_party/sleef' 2025-03-14T04:12:37.3022920Z Synchronizing submodule url for 'third_party/tensorpipe' 2025-03-14T04:12:37.3035575Z Synchronizing submodule url for 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:37.3046959Z Synchronizing submodule url for 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:37.3067115Z Synchronizing submodule url for 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:37.3084890Z Synchronizing submodule url for 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:37.3099470Z Synchronizing submodule url for 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:37.3131541Z [command]/usr/bin/git -c protocol.version=2 submodule update --init --force --recursive 2025-03-14T04:12:37.3556267Z Submodule path 'android/libs/fbjni': checked out '7e1e1fe3858c63c251c637ae41a20de425dde96f' 2025-03-14T04:12:37.3653657Z Submodule path 'third_party/FP16': checked out '4dfe081cf6bcd15db339cf2680b9281b8451eeb3' 2025-03-14T04:12:37.3726264Z Submodule path 'third_party/FXdiv': checked out 'b408327ac2a15ec3e43352421954f5b1967701d1' 2025-03-14T04:12:37.3927908Z Submodule path 'third_party/NNPACK': checked out 'c07e3a0400713d546e0dea2d5466dd22ea389c73' 2025-03-14T04:12:37.4220856Z Submodule path 'third_party/NVTX': checked out 'e170594ac7cf1dac584da473d4ca9301087090c1' 2025-03-14T04:12:37.4532842Z Submodule path 'third_party/VulkanMemoryAllocator': checked out 'a6bfc237255a6bac1513f7c1ebde6d8aed6b5191' 2025-03-14T04:12:38.0608223Z Submodule path 'third_party/XNNPACK': checked out '51a0103656eff6fc9bfd39a4597923c4b542c883' 2025-03-14T04:12:38.0813333Z Submodule path 'third_party/benchmark': checked out '0d98dba29d66e93259db7daa53a9327df767a415' 2025-03-14T04:12:38.2963832Z Submodule path 'third_party/composable_kernel': checked out '8086bbe3a78d931eb96fe12fdc014082e18d18d3' 2025-03-14T04:12:38.3324980Z Submodule path 'third_party/cpp-httplib': checked out '3b6597bba913d51161383657829b7e644e59c006' 2025-03-14T04:12:38.4181882Z Submodule path 'third_party/cpuinfo': checked out '1e83a2fdd3102f65c6f1fb602c1b320486218a99' 2025-03-14T04:12:38.4488497Z Submodule path 'third_party/cudnn_frontend': checked out '91b7532f3386768bba4f444ee7672b497f34da8a' 2025-03-14T04:12:38.9805059Z Submodule path 'third_party/cutlass': checked out 'afa1772203677c5118fcd82537a9c8fefbcc7008' 2025-03-14T04:12:39.2158428Z Submodule path 'third_party/eigen': checked out '3147391d946bb4b6c68edd901f2add6ac1f31f8c' 2025-03-14T04:12:39.2730797Z Submodule path 'third_party/fbgemm': checked out 'dbc3157bf256f1339b3fa1fef2be89ac4078be0e' 2025-03-14T04:12:39.3122674Z Submodule path 'third_party/fbgemm/third_party/asmjit': checked out 'd3fbf7c9bc7c1d1365a94a45614b91c5a3706b81' 2025-03-14T04:12:39.3968477Z Submodule path 'third_party/fbgemm/third_party/cpuinfo': checked out 'ed8b86a253800bafdb7b25c5c399f91bff9cb1f3' 2025-03-14T04:12:39.7623525Z Submodule path 'third_party/fbgemm/third_party/cutlass': checked out 'fc9ebc645b63f3a6bc80aaefde5c063fb72110d6' 2025-03-14T04:12:39.8021396Z Submodule path 'third_party/fbgemm/third_party/googletest': checked out 'cbf019de22c8dd37b2108da35b2748fd702d1796' 2025-03-14T04:12:39.8128252Z Submodule path 'third_party/fbgemm/third_party/hipify_torch': checked out '23f53b025b466d8ec3c45d52290d3442f7fbe6b1' 2025-03-14T04:12:39.8812914Z Submodule path 'third_party/flash-attention': checked out '979702c87a8713a8e0a5e9fee122b90d2ef13be5' 2025-03-14T04:12:40.0931908Z Submodule path 'third_party/flash-attention/csrc/composable_kernel': checked out '888317e698e9803c62bd38568abc9e05d7709f33' 2025-03-14T04:12:40.6103293Z Submodule path 'third_party/flash-attention/csrc/cutlass': checked out 'c506e16788cb08416a4a57e11a9067beeee29420' 2025-03-14T04:12:40.7320241Z Submodule path 'third_party/flatbuffers': checked out '01834de25e4bf3975a9a00e816292b1ad0fe184b' 2025-03-14T04:12:40.7608647Z Submodule path 'third_party/fmt': checked out '123913715afeb8a437e6388b4473fcc4753e1c9a' 2025-03-14T04:12:40.7942682Z Submodule path 'third_party/gemmlowp/gemmlowp': checked out '3fb5c176c17c765a3492cd2f0321b0dab712f350' 2025-03-14T04:12:40.8165360Z Submodule path 'third_party/gloo': checked out '5354032ea08eadd7fc4456477f7f7c6308818509' 2025-03-14T04:12:40.8572539Z Submodule path 'third_party/googletest': checked out 'b514bdc898e2951020cbdca1304b75f5950d1f59' 2025-03-14T04:12:40.8685593Z Submodule path 'third_party/ideep': checked out '719d8e6cd7f7a0e01b155657526d693acf97c2b3' 2025-03-14T04:12:41.3597858Z Submodule path 'third_party/ideep/mkl-dnn': checked out '8d263e693366ef8db40acc569cc7d8edf644556d' 2025-03-14T04:12:41.3740857Z Submodule path 'third_party/ittapi': checked out '5b8a7d7422611c3a0d799fb5fc5dd4abfae35b42' 2025-03-14T04:12:41.4576944Z Submodule path 'third_party/kineto': checked out '2859721fd9e73d3ca1c56f827dbc64e6d68f78a2' 2025-03-14T04:12:41.5311582Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog': checked out '7d04a0053a845370ae06ce317a22a48e9edcc74e' 2025-03-14T04:12:41.6959456Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM': checked out 'ffde4e54bc7249a6039a5e6b45b395141e1217f9' 2025-03-14T04:12:41.7120558Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr': checked out '871ed52d350214a034f6ef8a3b8f51c5ce1bd400' 2025-03-14T04:12:41.7439655Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt': checked out 'cd4af11efc9c622896a3e4cb599fa28668ca3d05' 2025-03-14T04:12:41.7559360Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags': checked out 'e171aa2d15ed9eb17054558e0b3a6a413bb01067' 2025-03-14T04:12:41.7641870Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc': checked out '8411df715cf522606e3b1aca386ddfc0b63d34b4' 2025-03-14T04:12:41.7810675Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog': checked out 'b33e3bad4c46c8a6345525fd822af355e5ef9446' 2025-03-14T04:12:41.8200293Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest': checked out '58d77fa8070e8cec2dc1ed015d66b454c8d78850' 2025-03-14T04:12:41.9101672Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/json': checked out '4f8fba14066156b73f1189a2b8bd568bde5284c5' 2025-03-14T04:12:41.9248369Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs': checked out 'f68a2fa8ea36c783bdd760371411fcb495aa3150' 2025-03-14T04:12:41.9604634Z Submodule path 'third_party/kineto/libkineto/third_party/fmt': checked out '0041a40c1350ba702d475b9c4ad62da77caea164' 2025-03-14T04:12:42.0005225Z Submodule path 'third_party/kineto/libkineto/third_party/googletest': checked out '7aca84427f224eeed3144123d5230d5871e93347' 2025-03-14T04:12:42.0450217Z Submodule path 'third_party/kleidiai': checked out 'ef685a13cfbe8d418aa2ed34350e21e4938358b6' 2025-03-14T04:12:42.0785601Z Submodule path 'third_party/mimalloc': checked out 'b66e3214d8a104669c2ec05ae91ebc26a8f5ab78' 2025-03-14T04:12:42.1726658Z Submodule path 'third_party/nlohmann': checked out '87cda1d6646592ac5866dc703c8e1839046a6806' 2025-03-14T04:12:42.4650473Z Submodule path 'third_party/onnx': checked out 'b8baa8446686496da4cc8fda09f2b6fe65c2a02c' 2025-03-14T04:12:42.4980894Z Submodule path 'third_party/onnx/third_party/pybind11': checked out '3e9dfa2866941655c56877882565e7577de6fc7b' 2025-03-14T04:12:42.5605350Z Submodule path 'third_party/opentelemetry-cpp': checked out 'a799f4aed9c94b765dcdaabaeab7d5e7e2310878' 2025-03-14T04:12:42.5792536Z Submodule path 'third_party/opentelemetry-cpp/third_party/benchmark': checked out 'd572f4777349d43653b21d6c2fc63020ab326db2' 2025-03-14T04:12:42.6146841Z Submodule path 'third_party/opentelemetry-cpp/third_party/googletest': checked out 'b796f7d44681514f58a683a3a71ff17c94edb0c1' 2025-03-14T04:12:42.6258184Z Submodule path 'third_party/opentelemetry-cpp/third_party/ms-gsl': checked out '6f4529395c5b7c2d661812257cd6780c67e54afa' 2025-03-14T04:12:42.7198423Z Submodule path 'third_party/opentelemetry-cpp/third_party/nlohmann-json': checked out 'bc889afb4c5bf1c0d8ee29ef35eaaf4c8bef8a5d' 2025-03-14T04:12:42.7333372Z Submodule path 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto': checked out '4ca4f0335c63cda7ab31ea7ed70d6553aee14dce' 2025-03-14T04:12:42.7469425Z Submodule path 'third_party/opentelemetry-cpp/third_party/opentracing-cpp': checked out '06b57f48ded1fa3bdd3d4346f6ef29e40e08eaf5' 2025-03-14T04:12:42.7612896Z Submodule path 'third_party/opentelemetry-cpp/third_party/prometheus-cpp': checked out 'c9ffcdda9086ffd9e1283ea7a0276d831f3c8a8d' 2025-03-14T04:12:42.9825272Z Submodule path 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb': checked out 'eefb26f82b233268fc98577d265352720d477ba4' 2025-03-14T04:12:43.0227638Z Submodule path 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest': checked out 'e2239ee6043f73722e7aa812a459f54a28552929' 2025-03-14T04:12:43.4135016Z Submodule path 'third_party/opentelemetry-cpp/tools/vcpkg': checked out '8eb57355a4ffb410a2e94c07b4dca2dffbee8e50' 2025-03-14T04:12:43.4233960Z Submodule path 'third_party/pocketfft': checked out '9d3ab05a7fffbc71a492bc6a17be034e83e8f0fe' 2025-03-14T04:12:43.6569683Z Submodule path 'third_party/protobuf': checked out 'd1eca4e4b421cd2997495c4b4e65cea6be4e9b8a' 2025-03-14T04:12:43.6707269Z Submodule path 'third_party/protobuf/third_party/benchmark': checked out '5b7683f49e1e9223cf9927b24f6fd3d6bd82e3f8' 2025-03-14T04:12:43.7138639Z Submodule path 'third_party/protobuf/third_party/googletest': checked out '5ec7f0c4a113e2f18ac2c6cc7df51ad6afc24081' 2025-03-14T04:12:43.7218331Z Submodule path 'third_party/psimd': checked out '072586a71b55b7f8c584153d223e95687148a900' 2025-03-14T04:12:43.7336012Z Submodule path 'third_party/pthreadpool': checked out '4fe0e1e183925bf8cfa6aae24237e724a96479b8' 2025-03-14T04:12:43.7636834Z Submodule path 'third_party/pybind11': checked out 'a2e59f0e7065404b44dfe92a28aca47ba1378dc4' 2025-03-14T04:12:43.7885462Z Submodule path 'third_party/python-peachpy': checked out 'f45429b087dd7d5bc78bb40dc7cf06425c252d67' 2025-03-14T04:12:43.8253936Z Submodule path 'third_party/sleef': checked out '56e1f79cb140fb9326d612d0be06b5250565cade' 2025-03-14T04:12:43.8495223Z Submodule path 'third_party/tensorpipe': checked out '52791a2fd214b2a9dc5759d36725909c1daa7f2e' 2025-03-14T04:12:43.8883064Z Submodule path 'third_party/tensorpipe/third_party/googletest': checked out 'aee0f9d9b5b87796ee8a0ab26b7587ec30e8858e' 2025-03-14T04:12:43.9020712Z Submodule path 'third_party/tensorpipe/third_party/libnop': checked out '910b55815be16109f04f4180e9adee14fb4ce281' 2025-03-14T04:12:43.9570343Z Submodule path 'third_party/tensorpipe/third_party/libuv': checked out '1dff88e5161cba5c59276d2070d2e304e4dcb242' 2025-03-14T04:12:43.9823246Z Submodule path 'third_party/tensorpipe/third_party/pybind11': checked out 'a23996fce38ff6ccfbcdc09f1e63f2c4be5ea2ef' 2025-03-14T04:12:43.9903799Z Submodule path 'third_party/tensorpipe/third_party/pybind11/tools/clang': checked out '6a00cbc4a9b8e68b71caf7f774b3f9c753ae84d5' 2025-03-14T04:12:43.9945935Z [command]/usr/bin/git submodule foreach --recursive git config --local gc.auto 0 2025-03-14T04:12:44.0234346Z Entering 'android/libs/fbjni' 2025-03-14T04:12:44.0272213Z Entering 'third_party/FP16' 2025-03-14T04:12:44.0311429Z Entering 'third_party/FXdiv' 2025-03-14T04:12:44.0345078Z Entering 'third_party/NNPACK' 2025-03-14T04:12:44.0384885Z Entering 'third_party/NVTX' 2025-03-14T04:12:44.0427465Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:44.0459261Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:44.0512716Z Entering 'third_party/benchmark' 2025-03-14T04:12:44.0547747Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:44.0592874Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:44.0633020Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:44.0660292Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:44.0704195Z Entering 'third_party/cutlass' 2025-03-14T04:12:44.0748909Z Entering 'third_party/eigen' 2025-03-14T04:12:44.0789112Z Entering 'third_party/fbgemm' 2025-03-14T04:12:44.0821770Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:44.0853085Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:44.0892241Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:44.0928630Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:44.0962385Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:44.0997500Z Entering 'third_party/flash-attention' 2025-03-14T04:12:44.1033964Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:44.1075424Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:44.1117440Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:44.1154364Z Entering 'third_party/fmt' 2025-03-14T04:12:44.1190952Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:44.1227444Z Entering 'third_party/gloo' 2025-03-14T04:12:44.1260409Z Entering 'third_party/googletest' 2025-03-14T04:12:44.1301401Z Entering 'third_party/ideep' 2025-03-14T04:12:44.1337744Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:44.1383190Z Entering 'third_party/ittapi' 2025-03-14T04:12:44.1423889Z Entering 'third_party/kineto' 2025-03-14T04:12:44.1455952Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:44.1495016Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:44.1531437Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:44.1571191Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:44.1602207Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:44.1638229Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:44.1674766Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:44.1711693Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:44.1748999Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:44.1791651Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:44.1835587Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:44.1871874Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:44.1912285Z Entering 'third_party/kleidiai' 2025-03-14T04:12:44.1957264Z Entering 'third_party/mimalloc' 2025-03-14T04:12:44.1998709Z Entering 'third_party/nlohmann' 2025-03-14T04:12:44.2040578Z Entering 'third_party/onnx' 2025-03-14T04:12:44.2082478Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:44.2119595Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:44.2162148Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:44.2204034Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:44.2237235Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:44.2277228Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:44.2313208Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:44.2348019Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:44.2384307Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:44.2422355Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:44.2477208Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:44.2502444Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:44.2553400Z Entering 'third_party/pocketfft' 2025-03-14T04:12:44.2595836Z Entering 'third_party/protobuf' 2025-03-14T04:12:44.2633420Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:44.2670920Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:44.2709013Z Entering 'third_party/psimd' 2025-03-14T04:12:44.2746034Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:44.2790046Z Entering 'third_party/pybind11' 2025-03-14T04:12:44.2824908Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:44.2861138Z Entering 'third_party/sleef' 2025-03-14T04:12:44.2896167Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:44.2932047Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:44.2971870Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:44.3008478Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:44.3046978Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:44.3082987Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:44.3138817Z ##[endgroup] 2025-03-14T04:12:44.3144620Z ##[group]Persisting credentials for submodules 2025-03-14T04:12:44.3146355Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'url\.https\:\/\/github\.com\/\.insteadOf' && git config --local --unset-all 'url.https://github.com/.insteadOf' || :" 2025-03-14T04:12:44.3429591Z Entering 'android/libs/fbjni' 2025-03-14T04:12:44.3456800Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3457070Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3491030Z Entering 'third_party/FP16' 2025-03-14T04:12:44.3524286Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3526400Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3556267Z Entering 'third_party/FXdiv' 2025-03-14T04:12:44.3589595Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3593633Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3624286Z Entering 'third_party/NNPACK' 2025-03-14T04:12:44.3651567Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3651991Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3685361Z Entering 'third_party/NVTX' 2025-03-14T04:12:44.3713505Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3713825Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3747276Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:44.3782869Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3783343Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3813082Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:44.3843831Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3844112Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3885937Z Entering 'third_party/benchmark' 2025-03-14T04:12:44.3918756Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3920288Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3952279Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:44.3984010Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3984478Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4022096Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:44.4052991Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4054874Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4089693Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:44.4118227Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4121801Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4152291Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:44.4183458Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4187653Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4216798Z Entering 'third_party/cutlass' 2025-03-14T04:12:44.4246633Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4247029Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4289722Z Entering 'third_party/eigen' 2025-03-14T04:12:44.4322626Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4324560Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4357655Z Entering 'third_party/fbgemm' 2025-03-14T04:12:44.4391968Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4393710Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4426851Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:44.4454503Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4454931Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4490814Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:44.4519640Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4521462Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4556802Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:44.4580246Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4580668Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4620051Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:44.4649473Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4649777Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4681367Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:44.4711477Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4713384Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4748504Z Entering 'third_party/flash-attention' 2025-03-14T04:12:44.4782525Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4785273Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4813082Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:44.4841713Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4843662Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4878818Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:44.4911476Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4914940Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4953371Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:44.4985602Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4989043Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5021203Z Entering 'third_party/fmt' 2025-03-14T04:12:44.5049515Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5051285Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5085588Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:44.5114829Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5117067Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5149947Z Entering 'third_party/gloo' 2025-03-14T04:12:44.5179373Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5182870Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5217494Z Entering 'third_party/googletest' 2025-03-14T04:12:44.5242162Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5243797Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5277320Z Entering 'third_party/ideep' 2025-03-14T04:12:44.5306496Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5308445Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5340029Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:44.5370561Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5371156Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5412142Z Entering 'third_party/ittapi' 2025-03-14T04:12:44.5443062Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5444742Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5476077Z Entering 'third_party/kineto' 2025-03-14T04:12:44.5504872Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5506884Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5538120Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:44.5571043Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5571959Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5602943Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:44.5630000Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5631636Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5673375Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:44.5703323Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5705305Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5738581Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:44.5769401Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5771508Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5806075Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:44.5836643Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5836940Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5870547Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:44.5899438Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5904143Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5934422Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:44.5962282Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5967038Z url.https://github.com/.insteadof 2025-03-14T04:12:44.5996777Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:44.6026820Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6027258Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6058299Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:44.6090960Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6091504Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6128299Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:44.6155239Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6155678Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6204861Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:44.6232592Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6236712Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6263999Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:44.6295164Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6295591Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6329273Z Entering 'third_party/kleidiai' 2025-03-14T04:12:44.6377454Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6377917Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6442487Z Entering 'third_party/mimalloc' 2025-03-14T04:12:44.6473956Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6474412Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6505342Z Entering 'third_party/nlohmann' 2025-03-14T04:12:44.6536244Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6536682Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6570598Z Entering 'third_party/onnx' 2025-03-14T04:12:44.6600713Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6601517Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6647393Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:44.6673008Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6677781Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6708667Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:44.6741518Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6746407Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6769336Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:44.6802470Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6802942Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6837417Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:44.6868552Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6870542Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6902860Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:44.6932041Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6936892Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6965670Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:44.6993006Z url.https://github.com/.insteadof 2025-03-14T04:12:44.6993429Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7032932Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:44.7065997Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7066276Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7103590Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:44.7132757Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7138029Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7165561Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:44.7192365Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7196717Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7228119Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:44.7252996Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7253281Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7292672Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:44.7323242Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7323673Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7361716Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:44.7391649Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7392088Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7445162Z Entering 'third_party/pocketfft' 2025-03-14T04:12:44.7472552Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7472980Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7508183Z Entering 'third_party/protobuf' 2025-03-14T04:12:44.7540024Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7540454Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7589671Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:44.7600553Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7600976Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7635296Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:44.7659791Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7660078Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7767907Z Entering 'third_party/psimd' 2025-03-14T04:12:44.7795263Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7795681Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7833237Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:44.7861869Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7865633Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7892371Z Entering 'third_party/pybind11' 2025-03-14T04:12:44.7919468Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7919861Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7957433Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:44.7985332Z url.https://github.com/.insteadof 2025-03-14T04:12:44.7995209Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8018273Z Entering 'third_party/sleef' 2025-03-14T04:12:44.8049997Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8050445Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8079413Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:44.8109759Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8110156Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8144116Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:44.8171909Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8172351Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8212245Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:44.8239641Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8240078Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8272318Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:44.8299875Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8304685Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8332705Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:44.8362970Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8363384Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8401006Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:44.8434247Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8436372Z url.https://github.com/.insteadof 2025-03-14T04:12:44.8490282Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local 'http.https://github.com/.extraheader' 'AUTHORIZATION: basic ***' && git config --local --show-origin --name-only --get-regexp remote.origin.url" 2025-03-14T04:12:44.8790309Z Entering 'android/libs/fbjni' 2025-03-14T04:12:44.8830258Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/android/libs/fbjni/config remote.origin.url 2025-03-14T04:12:44.8847146Z Entering 'third_party/FP16' 2025-03-14T04:12:44.8888416Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/FP16/config remote.origin.url 2025-03-14T04:12:44.8907500Z Entering 'third_party/FXdiv' 2025-03-14T04:12:44.8948192Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/FXdiv/config remote.origin.url 2025-03-14T04:12:44.8958860Z Entering 'third_party/NNPACK' 2025-03-14T04:12:44.9008910Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK/config remote.origin.url 2025-03-14T04:12:44.9027577Z Entering 'third_party/NVTX' 2025-03-14T04:12:44.9068130Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NVTX/config remote.origin.url 2025-03-14T04:12:44.9084205Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:44.9125347Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/VulkanMemoryAllocator/config remote.origin.url 2025-03-14T04:12:44.9143654Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:44.9185235Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/XNNPACK/config remote.origin.url 2025-03-14T04:12:44.9213541Z Entering 'third_party/benchmark' 2025-03-14T04:12:44.9253724Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/benchmark/config remote.origin.url 2025-03-14T04:12:44.9276749Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:44.9311591Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/composable_kernel/config remote.origin.url 2025-03-14T04:12:44.9334077Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:44.9379291Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cpp-httplib/config remote.origin.url 2025-03-14T04:12:44.9413749Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:44.9438336Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cpuinfo/config remote.origin.url 2025-03-14T04:12:44.9457428Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:44.9503985Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cudnn_frontend/config remote.origin.url 2025-03-14T04:12:44.9523324Z Entering 'third_party/cutlass' 2025-03-14T04:12:44.9560407Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cutlass/config remote.origin.url 2025-03-14T04:12:44.9584496Z Entering 'third_party/eigen' 2025-03-14T04:12:44.9630354Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/eigen/config remote.origin.url 2025-03-14T04:12:44.9647301Z Entering 'third_party/fbgemm' 2025-03-14T04:12:44.9694319Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/config remote.origin.url 2025-03-14T04:12:44.9707135Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:44.9745903Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/asmjit/config remote.origin.url 2025-03-14T04:12:44.9757676Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:44.9804293Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/cpuinfo/config remote.origin.url 2025-03-14T04:12:44.9829225Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:44.9871679Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/cutlass/config remote.origin.url 2025-03-14T04:12:44.9893668Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:44.9935475Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/googletest/config remote.origin.url 2025-03-14T04:12:44.9949021Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:44.9994901Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/hipify_torch/config remote.origin.url 2025-03-14T04:12:45.0012688Z Entering 'third_party/flash-attention' 2025-03-14T04:12:45.0054287Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/flash-attention/config remote.origin.url 2025-03-14T04:12:45.0072208Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:45.0114482Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/flash-attention/modules/csrc/composable_kernel/config remote.origin.url 2025-03-14T04:12:45.0136905Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:45.0181842Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/flash-attention/modules/csrc/cutlass/config remote.origin.url 2025-03-14T04:12:45.0207211Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:45.0247688Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/flatbuffers/config remote.origin.url 2025-03-14T04:12:45.0267995Z Entering 'third_party/fmt' 2025-03-14T04:12:45.0306444Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fmt/config remote.origin.url 2025-03-14T04:12:45.0327075Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:45.0368114Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/gemmlowp/gemmlowp/config remote.origin.url 2025-03-14T04:12:45.0385675Z Entering 'third_party/gloo' 2025-03-14T04:12:45.0425045Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/gloo/config remote.origin.url 2025-03-14T04:12:45.0444257Z Entering 'third_party/googletest' 2025-03-14T04:12:45.0491809Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/googletest/config remote.origin.url 2025-03-14T04:12:45.0507209Z Entering 'third_party/ideep' 2025-03-14T04:12:45.0550767Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ideep/config remote.origin.url 2025-03-14T04:12:45.0562303Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:45.0608080Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ideep/modules/mkl-dnn/config remote.origin.url 2025-03-14T04:12:45.0628840Z Entering 'third_party/ittapi' 2025-03-14T04:12:45.0674726Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ittapi/config remote.origin.url 2025-03-14T04:12:45.0687134Z Entering 'third_party/kineto' 2025-03-14T04:12:45.0732523Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/config remote.origin.url 2025-03-14T04:12:45.0748280Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:45.0790199Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/config remote.origin.url 2025-03-14T04:12:45.0803076Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:45.0845613Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/DCGM/config remote.origin.url 2025-03-14T04:12:45.0861955Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:45.0912001Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/cpr/config remote.origin.url 2025-03-14T04:12:45.0925542Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:45.0967866Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/fmt/config remote.origin.url 2025-03-14T04:12:45.0982456Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:45.1024602Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/gflags/config remote.origin.url 2025-03-14T04:12:45.1039665Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:45.1080115Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/gflags/modules/doc/config remote.origin.url 2025-03-14T04:12:45.1092544Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:45.1137541Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/glog/config remote.origin.url 2025-03-14T04:12:45.1167778Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:45.1192625Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/googletest/config remote.origin.url 2025-03-14T04:12:45.1211285Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:45.1254598Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/json/config remote.origin.url 2025-03-14T04:12:45.1276664Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:45.1317754Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/pfs/config remote.origin.url 2025-03-14T04:12:45.1336800Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:45.1379016Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/fmt/config remote.origin.url 2025-03-14T04:12:45.1395380Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:45.1438026Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/googletest/config remote.origin.url 2025-03-14T04:12:45.1455183Z Entering 'third_party/kleidiai' 2025-03-14T04:12:45.1500038Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kleidiai/config remote.origin.url 2025-03-14T04:12:45.1515726Z Entering 'third_party/mimalloc' 2025-03-14T04:12:45.1559264Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/mimalloc/config remote.origin.url 2025-03-14T04:12:45.1580438Z Entering 'third_party/nlohmann' 2025-03-14T04:12:45.1621874Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/nlohmann/config remote.origin.url 2025-03-14T04:12:45.1653184Z Entering 'third_party/onnx' 2025-03-14T04:12:45.1681473Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/config remote.origin.url 2025-03-14T04:12:45.1708942Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:45.1748996Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/modules/third_party/pybind11/config remote.origin.url 2025-03-14T04:12:45.1767191Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:45.1811553Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/config remote.origin.url 2025-03-14T04:12:45.1827235Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:45.1877626Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/benchmark/config remote.origin.url 2025-03-14T04:12:45.1885001Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:45.1926580Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/googletest/config remote.origin.url 2025-03-14T04:12:45.1942981Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:45.1983676Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/ms-gsl/config remote.origin.url 2025-03-14T04:12:45.2003098Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:45.2044216Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/nlohmann-json/config remote.origin.url 2025-03-14T04:12:45.2057511Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:45.2104602Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/opentelemetry-proto/config remote.origin.url 2025-03-14T04:12:45.2121277Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:45.2164652Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/opentracing-cpp/config remote.origin.url 2025-03-14T04:12:45.2183759Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:45.2232443Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/prometheus-cpp/config remote.origin.url 2025-03-14T04:12:45.2245738Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:45.2288817Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/prometheus-cpp/modules/civetweb/config remote.origin.url 2025-03-14T04:12:45.2328914Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:45.2351272Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/prometheus-cpp/modules/googletest/config remote.origin.url 2025-03-14T04:12:45.2370222Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:45.2413411Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/tools/vcpkg/config remote.origin.url 2025-03-14T04:12:45.2446567Z Entering 'third_party/pocketfft' 2025-03-14T04:12:45.2489671Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/pocketfft/config remote.origin.url 2025-03-14T04:12:45.2503512Z Entering 'third_party/protobuf' 2025-03-14T04:12:45.2544777Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/config remote.origin.url 2025-03-14T04:12:45.2561655Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:45.2609209Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/modules/third_party/benchmark/config remote.origin.url 2025-03-14T04:12:45.2625795Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:45.2667336Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/modules/third_party/googletest/config remote.origin.url 2025-03-14T04:12:45.2685903Z Entering 'third_party/psimd' 2025-03-14T04:12:45.2727897Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/psimd/config remote.origin.url 2025-03-14T04:12:45.2744824Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:45.2785452Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/pthreadpool/config remote.origin.url 2025-03-14T04:12:45.2802912Z Entering 'third_party/pybind11' 2025-03-14T04:12:45.2845302Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/pybind11/config remote.origin.url 2025-03-14T04:12:45.2858220Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:45.2904933Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/python-peachpy/config remote.origin.url 2025-03-14T04:12:45.2916326Z Entering 'third_party/sleef' 2025-03-14T04:12:45.2963177Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/sleef/config remote.origin.url 2025-03-14T04:12:45.2974646Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:45.3018931Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/config remote.origin.url 2025-03-14T04:12:45.3032790Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:45.3074015Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/googletest/config remote.origin.url 2025-03-14T04:12:45.3089647Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:45.3128411Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/libnop/config remote.origin.url 2025-03-14T04:12:45.3147274Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:45.3190277Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/libuv/config remote.origin.url 2025-03-14T04:12:45.3204659Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:45.3248526Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/pybind11/config remote.origin.url 2025-03-14T04:12:45.3260879Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:45.3303499Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/pybind11/modules/tools/clang/config remote.origin.url 2025-03-14T04:12:45.4411216Z [command]/usr/bin/git submodule foreach --recursive git config --local --add 'url.https://github.com/.insteadOf' 'git@github.com:' 2025-03-14T04:12:45.4698441Z Entering 'android/libs/fbjni' 2025-03-14T04:12:45.4730642Z Entering 'third_party/FP16' 2025-03-14T04:12:45.4769775Z Entering 'third_party/FXdiv' 2025-03-14T04:12:45.4809799Z Entering 'third_party/NNPACK' 2025-03-14T04:12:45.4849675Z Entering 'third_party/NVTX' 2025-03-14T04:12:45.4885957Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:45.4926037Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:45.4974305Z Entering 'third_party/benchmark' 2025-03-14T04:12:45.5012009Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:45.5054295Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:45.5093470Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:45.5131780Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:45.5166891Z Entering 'third_party/cutlass' 2025-03-14T04:12:45.5210662Z Entering 'third_party/eigen' 2025-03-14T04:12:45.5245726Z Entering 'third_party/fbgemm' 2025-03-14T04:12:45.5282180Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:45.5316801Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:45.5351477Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:45.5387545Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:45.5424357Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:45.5457849Z Entering 'third_party/flash-attention' 2025-03-14T04:12:45.5500194Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:45.5544573Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:45.5592947Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:45.5627774Z Entering 'third_party/fmt' 2025-03-14T04:12:45.5659741Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:45.5698479Z Entering 'third_party/gloo' 2025-03-14T04:12:45.5736048Z Entering 'third_party/googletest' 2025-03-14T04:12:45.5769320Z Entering 'third_party/ideep' 2025-03-14T04:12:45.5806115Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:45.5849262Z Entering 'third_party/ittapi' 2025-03-14T04:12:45.5883516Z Entering 'third_party/kineto' 2025-03-14T04:12:45.5921518Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:45.5963793Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:45.6007234Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:45.6040417Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:45.6077190Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:45.6115295Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:45.6155542Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:45.6193392Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:45.6236265Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:45.6273239Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:45.6310670Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:45.6342792Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:45.6385102Z Entering 'third_party/kleidiai' 2025-03-14T04:12:45.6424946Z Entering 'third_party/mimalloc' 2025-03-14T04:12:45.6461359Z Entering 'third_party/nlohmann' 2025-03-14T04:12:45.6502539Z Entering 'third_party/onnx' 2025-03-14T04:12:45.6553945Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:45.6611784Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:45.6631837Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:45.6667096Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:45.6699983Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:45.6732656Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:45.6772066Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:45.6806100Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:45.6841218Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:45.6874666Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:45.6912622Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:45.6950946Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:45.7002066Z Entering 'third_party/pocketfft' 2025-03-14T04:12:45.7044817Z Entering 'third_party/protobuf' 2025-03-14T04:12:45.7083948Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:45.7119793Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:45.7157745Z Entering 'third_party/psimd' 2025-03-14T04:12:45.7193119Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:45.7229274Z Entering 'third_party/pybind11' 2025-03-14T04:12:45.7266258Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:45.7303147Z Entering 'third_party/sleef' 2025-03-14T04:12:45.7336984Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:45.7377738Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:45.7411993Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:45.7452625Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:45.7500280Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:45.7535473Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:45.7597199Z [command]/usr/bin/git submodule foreach --recursive git config --local --add 'url.https://github.com/.insteadOf' 'org-21003710@github.com:' 2025-03-14T04:12:45.7878756Z Entering 'android/libs/fbjni' 2025-03-14T04:12:45.7919245Z Entering 'third_party/FP16' 2025-03-14T04:12:45.7952601Z Entering 'third_party/FXdiv' 2025-03-14T04:12:45.7996847Z Entering 'third_party/NNPACK' 2025-03-14T04:12:45.8034153Z Entering 'third_party/NVTX' 2025-03-14T04:12:45.8071392Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:45.8109499Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:45.8158479Z Entering 'third_party/benchmark' 2025-03-14T04:12:45.8195300Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:45.8238853Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:45.8276055Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:45.8312871Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:45.8349457Z Entering 'third_party/cutlass' 2025-03-14T04:12:45.8397706Z Entering 'third_party/eigen' 2025-03-14T04:12:45.8436299Z Entering 'third_party/fbgemm' 2025-03-14T04:12:45.8475361Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:45.8511557Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:45.8544322Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:45.8587777Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:45.8623645Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:45.8662096Z Entering 'third_party/flash-attention' 2025-03-14T04:12:45.8699105Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:45.8739567Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:45.8785686Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:45.8826648Z Entering 'third_party/fmt' 2025-03-14T04:12:45.8869079Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:45.8908278Z Entering 'third_party/gloo' 2025-03-14T04:12:45.8946952Z Entering 'third_party/googletest' 2025-03-14T04:12:45.8982247Z Entering 'third_party/ideep' 2025-03-14T04:12:45.9018000Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:45.9057630Z Entering 'third_party/ittapi' 2025-03-14T04:12:45.9092929Z Entering 'third_party/kineto' 2025-03-14T04:12:45.9129219Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:45.9167145Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:45.9209030Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:45.9244345Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:45.9279668Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:45.9313312Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:45.9372733Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:45.9403119Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:45.9439163Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:45.9473502Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:45.9513471Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:45.9547353Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:45.9589130Z Entering 'third_party/kleidiai' 2025-03-14T04:12:45.9627235Z Entering 'third_party/mimalloc' 2025-03-14T04:12:45.9661250Z Entering 'third_party/nlohmann' 2025-03-14T04:12:45.9699074Z Entering 'third_party/onnx' 2025-03-14T04:12:45.9746739Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:45.9786740Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:45.9832099Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:45.9857860Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:45.9892005Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:45.9927213Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:45.9958989Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:45.9996119Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:46.0031691Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:46.0065645Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:46.0102421Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:46.0143431Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:46.0202848Z Entering 'third_party/pocketfft' 2025-03-14T04:12:46.0238236Z Entering 'third_party/protobuf' 2025-03-14T04:12:46.0275170Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:46.0321751Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:46.0357899Z Entering 'third_party/psimd' 2025-03-14T04:12:46.0397906Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:46.0433573Z Entering 'third_party/pybind11' 2025-03-14T04:12:46.0472516Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:46.0502633Z Entering 'third_party/sleef' 2025-03-14T04:12:46.0541017Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:46.0577802Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:46.0610049Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:46.0649739Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:46.0683393Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:46.0715434Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:46.0772373Z ##[endgroup] 2025-03-14T04:12:46.0823583Z [command]/usr/bin/git log -1 --format=%H 2025-03-14T04:12:46.0847477Z aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:12:46.1005491Z Prepare all required actions 2025-03-14T04:12:46.1006015Z Getting action download info 2025-03-14T04:12:46.1956881Z ##[group]Run ./.github/actions/setup-linux 2025-03-14T04:12:46.1957121Z env: 2025-03-14T04:12:46.1957288Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:46.1957473Z ##[endgroup] 2025-03-14T04:12:46.1998892Z ##[group]Run set -euo pipefail 2025-03-14T04:12:46.1999169Z set -euo pipefail 2025-03-14T04:12:46.1999539Z function get_ec2_metadata() { 2025-03-14T04:12:46.1999806Z  # Pulled from instance metadata endpoint for EC2 2025-03-14T04:12:46.2000224Z  # see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html 2025-03-14T04:12:46.2000583Z  category=$1 2025-03-14T04:12:46.2000835Z  # If it is GCP runner (runner name contains gcp), do not run this 2025-03-14T04:12:46.2001128Z  runner_name_str=i-00f46405241e0bbc9 2025-03-14T04:12:46.2001411Z  if [[ -f /.inarc ]]; then 2025-03-14T04:12:46.2001655Z  echo "ARC Runner, no info on ec2 metadata" 2025-03-14T04:12:46.2001918Z  elif [[ $runner_name_str == *"gcp"* ]]; then 2025-03-14T04:12:46.2002219Z  echo "Runner is from Google Cloud Platform, No info on ec2 metadata" 2025-03-14T04:12:46.2002492Z  else 2025-03-14T04:12:46.2003019Z  curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}" 2025-03-14T04:12:46.2003558Z  fi 2025-03-14T04:12:46.2003727Z } 2025-03-14T04:12:46.2003934Z echo "ami-id: $(get_ec2_metadata ami-id)" 2025-03-14T04:12:46.2004218Z echo "instance-id: $(get_ec2_metadata instance-id)" 2025-03-14T04:12:46.2004518Z echo "instance-type: $(get_ec2_metadata instance-type)" 2025-03-14T04:12:46.2004786Z echo "system info $(uname -a)" 2025-03-14T04:12:46.2009511Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:46.2009772Z env: 2025-03-14T04:12:46.2009945Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:46.2010137Z ##[endgroup] 2025-03-14T04:12:46.2135961Z ami-id: ami-08b5b3a93ed654d19 2025-03-14T04:12:46.2225687Z instance-id: i-00f46405241e0bbc9 2025-03-14T04:12:46.2306544Z instance-type: m7i-flex.8xlarge 2025-03-14T04:12:46.2315093Z system info Linux ip-10-0-63-215.ec2.internal 6.1.129-138.220.amzn2023.x86_64 #1 SMP PREEMPT_DYNAMIC Tue Feb 25 22:18:43 UTC 2025 x86_64 x86_64 x86_64 GNU/Linux 2025-03-14T04:12:46.2340865Z ##[group]Run echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT" 2025-03-14T04:12:46.2341427Z echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT" 2025-03-14T04:12:46.2345961Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:46.2346235Z env: 2025-03-14T04:12:46.2346411Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:46.2346605Z ##[endgroup] 2025-03-14T04:12:46.2396801Z ##[group]Run if systemctl is-active --quiet docker; then 2025-03-14T04:12:46.2397191Z if systemctl is-active --quiet docker; then 2025-03-14T04:12:46.2397514Z  echo "Docker daemon is running..."; 2025-03-14T04:12:46.2397824Z else 2025-03-14T04:12:46.2398128Z  echo "Starting docker deamon..." && sudo systemctl start docker; 2025-03-14T04:12:46.2398465Z fi 2025-03-14T04:12:46.2402927Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:46.2403197Z env: 2025-03-14T04:12:46.2403397Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:46.2403658Z ##[endgroup] 2025-03-14T04:12:46.2522369Z Docker daemon is running... 2025-03-14T04:12:46.2567086Z ##[group]Run nick-fields/retry@v3.0.0 2025-03-14T04:12:46.2567401Z with: 2025-03-14T04:12:46.2567631Z shell: bash 2025-03-14T04:12:46.2567974Z timeout_minutes: 5 2025-03-14T04:12:46.2568241Z max_attempts: 3 2025-03-14T04:12:46.2568502Z retry_wait_seconds: 30 2025-03-14T04:12:46.2570012Z command: AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\") aws ecr get-login-password --region "$AWS_DEFAULT_REGION" | docker login --username AWS \ --password-stdin "$AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com" # For LF Runners we need to make sure we also login to Meta's ECR docker registry too. META_AWS_ACCOUNT_ID=308535385114 if [ "$AWS_ACCOUNT_ID" != "$META_AWS_ACCOUNT_ID" ] ; then aws ecr get-login-password --region "$AWS_DEFAULT_REGION" | docker login --username AWS \ --password-stdin "$META_AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com" fi 2025-03-14T04:12:46.2571643Z polling_interval_seconds: 1 2025-03-14T04:12:46.2571953Z warning_on_retry: true 2025-03-14T04:12:46.2572246Z continue_on_error: false 2025-03-14T04:12:46.2572530Z env: 2025-03-14T04:12:46.2572790Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:46.2573036Z AWS_RETRY_MODE: standard 2025-03-14T04:12:46.2573269Z AWS_MAX_ATTEMPTS: 5 2025-03-14T04:12:46.2573535Z AWS_DEFAULT_REGION: us-east-1 2025-03-14T04:12:46.2573800Z ##[endgroup] 2025-03-14T04:12:47.1511762Z WARNING! Your password will be stored unencrypted in /home/ec2-user/.docker/config.json. 2025-03-14T04:12:47.1512610Z Configure a credential helper to remove this warning. See 2025-03-14T04:12:47.1513122Z https://docs.docker.com/engine/reference/commandline/login/#credentials-store 2025-03-14T04:12:47.1513455Z 2025-03-14T04:12:47.1513543Z Login Succeeded 2025-03-14T04:12:47.3256252Z Command completed after 1 attempt(s). 2025-03-14T04:12:47.3319538Z ##[group]Run env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2025-03-14T04:12:47.3319969Z env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2025-03-14T04:12:47.3320364Z env | grep '^CI' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2025-03-14T04:12:47.3325290Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:47.3325615Z env: 2025-03-14T04:12:47.3325839Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:47.3326098Z ##[endgroup] 2025-03-14T04:12:47.3411072Z ##[group]Run # ignore expansion of "docker ps -q" since it could be empty 2025-03-14T04:12:47.3411764Z # ignore expansion of "docker ps -q" since it could be empty 2025-03-14T04:12:47.3412185Z # shellcheck disable=SC2046 2025-03-14T04:12:47.3412507Z docker stop $(docker ps -q) || true 2025-03-14T04:12:47.3412823Z # Prune all of the docker images 2025-03-14T04:12:47.3413189Z docker system prune -af 2025-03-14T04:12:47.3417231Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:47.3418376Z env: 2025-03-14T04:12:47.3418671Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:47.3418959Z ##[endgroup] 2025-03-14T04:12:47.3681658Z "docker stop" requires at least 1 argument. 2025-03-14T04:12:47.3682031Z See 'docker stop --help'. 2025-03-14T04:12:47.3682397Z 2025-03-14T04:12:47.3682602Z Usage: docker stop [OPTIONS] CONTAINER [CONTAINER...] 2025-03-14T04:12:47.3682802Z 2025-03-14T04:12:47.3682945Z Stop one or more running containers 2025-03-14T04:12:47.3842025Z Total reclaimed space: 0B 2025-03-14T04:12:47.3881806Z ##[group]Run set +e 2025-03-14T04:12:47.3882118Z set +e 2025-03-14T04:12:47.3882358Z set -x 2025-03-14T04:12:47.3882576Z  2025-03-14T04:12:47.3882843Z PT_DOMAIN=download.pytorch.org 2025-03-14T04:12:47.3883302Z # TODO: Flaky access to download.pytorch.org https://github.com/pytorch/pytorch/issues/100400, 2025-03-14T04:12:47.3883819Z # cleaning this up once the issue is fixed. There are more than one resolved IP here, the last 2025-03-14T04:12:47.3884210Z # one is returned at random 2025-03-14T04:12:47.3884567Z RESOLVED_IP=$(dig -4 +short "${PT_DOMAIN}" | tail -n1) 2025-03-14T04:12:47.3884879Z  2025-03-14T04:12:47.3885228Z if [ -z "${RESOLVED_IP}" ]; then 2025-03-14T04:12:47.3885552Z  echo "Couldn't resolve ${PT_DOMAIN}, retrying with Google DNS..." 2025-03-14T04:12:47.3885956Z  RESOLVED_IP=$(dig -4 +short "${PT_DOMAIN}" @8.8.8.8 | tail -n1) 2025-03-14T04:12:47.3886262Z  2025-03-14T04:12:47.3886504Z  if [ -z "${RESOLVED_IP}" ]; then 2025-03-14T04:12:47.3886824Z  echo "Couldn't resolve ${PT_DOMAIN}, exiting..." 2025-03-14T04:12:47.3887195Z  exit 1 2025-03-14T04:12:47.3887460Z  fi 2025-03-14T04:12:47.3887709Z fi 2025-03-14T04:12:47.3887904Z  2025-03-14T04:12:47.3888192Z if grep -r "${PT_DOMAIN}" /etc/hosts; then 2025-03-14T04:12:47.3888490Z  # Clean up any old records first 2025-03-14T04:12:47.3888791Z  sudo sed -i "/${PT_DOMAIN}/d" /etc/hosts 2025-03-14T04:12:47.3889075Z fi 2025-03-14T04:12:47.3889286Z  2025-03-14T04:12:47.3889582Z echo "${RESOLVED_IP} ${PT_DOMAIN}" | sudo tee -a /etc/hosts 2025-03-14T04:12:47.3889889Z cat /etc/hosts 2025-03-14T04:12:47.3894794Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:47.3895134Z env: 2025-03-14T04:12:47.3895382Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:47.3895647Z ##[endgroup] 2025-03-14T04:12:47.3917428Z + PT_DOMAIN=download.pytorch.org 2025-03-14T04:12:47.3926584Z ++ dig -4 +short download.pytorch.org 2025-03-14T04:12:47.3927047Z ++ tail -n1 2025-03-14T04:12:47.4319219Z + RESOLVED_IP=18.160.10.22 2025-03-14T04:12:47.4319827Z + '[' -z 18.160.10.22 ']' 2025-03-14T04:12:47.4320329Z + grep -r download.pytorch.org /etc/hosts 2025-03-14T04:12:47.4329901Z 18.160.10.76 download.pytorch.org 2025-03-14T04:12:47.4330673Z + sudo sed -i /download.pytorch.org/d /etc/hosts 2025-03-14T04:12:47.6955502Z + echo '18.160.10.22 download.pytorch.org' 2025-03-14T04:12:47.6957015Z + sudo tee -a /etc/hosts 2025-03-14T04:12:47.7871172Z 18.160.10.22 download.pytorch.org 2025-03-14T04:12:47.7889184Z + cat /etc/hosts 2025-03-14T04:12:47.7898694Z 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 2025-03-14T04:12:47.7904509Z ::1 localhost6 localhost6.localdomain6 2025-03-14T04:12:47.7904887Z 18.160.10.22 download.pytorch.org 2025-03-14T04:12:47.8024432Z ##[group]Run pytorch/test-infra/.github/actions/calculate-docker-image@main 2025-03-14T04:12:47.8024846Z with: 2025-03-14T04:12:47.8025390Z docker-image-name: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.8025990Z docker-build-dir: .ci/docker 2025-03-14T04:12:47.8026270Z working-directory: . 2025-03-14T04:12:47.8026593Z docker-registry: 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:47.8026959Z force-push: false 2025-03-14T04:12:47.8027187Z env: 2025-03-14T04:12:47.8027409Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:47.8027773Z ##[endgroup] 2025-03-14T04:12:47.8055143Z ##[group]Run set -ex 2025-03-14T04:12:47.8055460Z set -ex 2025-03-14T04:12:47.8055714Z  2025-03-14T04:12:47.8056091Z # If the docker build directory or the build script doesn't exist, the action will 2025-03-14T04:12:47.8056707Z # gracefully return the docker image name as it is. Pulling docker image in Linux 2025-03-14T04:12:47.8057195Z # job could then download the pre-built image as usual 2025-03-14T04:12:47.8057622Z if [[ ! -d "${DOCKER_BUILD_DIR}" ]] || [[ ! -f "${DOCKER_BUILD_DIR}/build.sh" ]]; then 2025-03-14T04:12:47.8058096Z  echo "skip=true" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.8058492Z  echo "docker-image=${DOCKER_IMAGE_NAME}" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.8058835Z  2025-03-14T04:12:47.8059172Z  echo "There is no Docker build script in ${REPO_NAME} repo, skipping..." 2025-03-14T04:12:47.8059542Z  exit 0 2025-03-14T04:12:47.8059791Z else 2025-03-14T04:12:47.8060082Z  echo "skip=false" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.8060372Z fi 2025-03-14T04:12:47.8060868Z  2025-03-14T04:12:47.8061384Z if [[ "${DOCKER_IMAGE_NAME}" == *"${DOCKER_REGISTRY}/${REPO_NAME}"* ]]; then 2025-03-14T04:12:47.8061940Z  # The docker image name already includes the ECR prefix and tag, so we can just 2025-03-14T04:12:47.8062367Z  # use it as it is, but first let's extract the tag 2025-03-14T04:12:47.8063004Z  DOCKER_TAG=$(echo "${DOCKER_IMAGE_NAME}" | awk -F '[:,]' '{print $2}') 2025-03-14T04:12:47.8063416Z  echo "docker-tag=${DOCKER_TAG}" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.8063828Z  echo "docker-image=${DOCKER_IMAGE_NAME}" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.8064146Z else 2025-03-14T04:12:47.8064411Z  DOCKER_TAG=$(git rev-parse HEAD:"${DOCKER_BUILD_DIR}") 2025-03-14T04:12:47.8064792Z  echo "docker-tag=${DOCKER_TAG}" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.8065229Z  echo "docker-image=${DOCKER_REGISTRY}/${REPO_NAME}/${DOCKER_IMAGE_NAME}:${DOCKER_TAG}" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.8065652Z fi 2025-03-14T04:12:47.8072486Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:47.8072808Z env: 2025-03-14T04:12:47.8073043Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:47.8073280Z REPO_NAME: pytorch 2025-03-14T04:12:47.8073850Z DOCKER_IMAGE_NAME: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.8074409Z DOCKER_BUILD_DIR: .ci/docker 2025-03-14T04:12:47.8074724Z DOCKER_REGISTRY: 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:47.8075051Z ##[endgroup] 2025-03-14T04:12:47.8096899Z + [[ ! -d .ci/docker ]] 2025-03-14T04:12:47.8097261Z + [[ ! -f .ci/docker/build.sh ]] 2025-03-14T04:12:47.8097537Z + echo skip=false 2025-03-14T04:12:47.8098520Z + [[ 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 == *\3\0\8\5\3\5\3\8\5\1\1\4\.\d\k\r\.\e\c\r\.\u\s\-\e\a\s\t\-\1\.\a\m\a\z\o\n\a\w\s\.\c\o\m\/\p\y\t\o\r\c\h* ]] 2025-03-14T04:12:47.8102753Z ++ echo 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.8103443Z ++ awk -F '[:,]' '{print $2}' 2025-03-14T04:12:47.8124619Z + DOCKER_TAG=aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.8125132Z + echo docker-tag=aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.8126007Z + echo docker-image=308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.8157007Z ##[group]Run set +e 2025-03-14T04:12:47.8157425Z set +e 2025-03-14T04:12:47.8157650Z set -x 2025-03-14T04:12:47.8157911Z  2025-03-14T04:12:47.8158134Z login() { 2025-03-14T04:12:47.8158534Z  aws ecr get-login-password --region us-east-1 | docker login -u AWS --password-stdin "$1" 2025-03-14T04:12:47.8158936Z } 2025-03-14T04:12:47.8159163Z  2025-03-14T04:12:47.8159398Z retry () { 2025-03-14T04:12:47.8159623Z  $* || (sleep 1 && $*) || (sleep 2 && $*) 2025-03-14T04:12:47.8159900Z } 2025-03-14T04:12:47.8160220Z  2025-03-14T04:12:47.8160451Z retry login "${DOCKER_REGISTRY}" 2025-03-14T04:12:47.8161003Z  2025-03-14T04:12:47.8161264Z START_TIME=$(date +%s) 2025-03-14T04:12:47.8161549Z # Wait up to 120 minutes 2025-03-14T04:12:47.8161900Z while [[ $(( $(date +%s) - 7200 )) -lt $START_TIME ]]; do 2025-03-14T04:12:47.8162286Z  # Check if image already exists, if it does then skip building it 2025-03-14T04:12:47.8162675Z  if docker manifest inspect "${DOCKER_IMAGE}"; then 2025-03-14T04:12:47.8163006Z  exit 0 2025-03-14T04:12:47.8163238Z  fi 2025-03-14T04:12:47.8163645Z  2025-03-14T04:12:47.8164010Z  # NB: This flag is used by Docker build workflow to push the image to ECR, so we can 2025-03-14T04:12:47.8164474Z  # use this to differentiate between the Docker build and regular build jobs. For the 2025-03-14T04:12:47.8164934Z  # latter, it will wait for the Docker images to become available before continuing 2025-03-14T04:12:47.8165440Z  if [ "${DOCKER_PUSH:-false}" == "true" ]; then 2025-03-14T04:12:47.8165772Z  # It's a Docker build job, let's build the image 2025-03-14T04:12:47.8166090Z  break 2025-03-14T04:12:47.8166331Z  else 2025-03-14T04:12:47.8166621Z  # It's a regular build job, wait for the image to become available 2025-03-14T04:12:47.8166987Z  sleep 300 2025-03-14T04:12:47.8167317Z  fi 2025-03-14T04:12:47.8167545Z done 2025-03-14T04:12:47.8167791Z  2025-03-14T04:12:47.8168096Z # NB: This part requires a full checkout. Otherwise, the merge base will 2025-03-14T04:12:47.8168554Z # be empty. The default action would be to continue rebuild the image 2025-03-14T04:12:47.8168949Z if [[ "$BASE_REVISION" = "$(git rev-parse HEAD)" ]]; then 2025-03-14T04:12:47.8169304Z  # if we're on the base branch then use the parent commit 2025-03-14T04:12:47.8169675Z  MERGE_BASE=$(git rev-parse HEAD~) 2025-03-14T04:12:47.8169961Z else 2025-03-14T04:12:47.8170269Z  # otherwise we're on a PR, so use the most recent base commit 2025-03-14T04:12:47.8170648Z  MERGE_BASE=$(git merge-base HEAD "$BASE_REVISION") 2025-03-14T04:12:47.8171012Z fi 2025-03-14T04:12:47.8171255Z  2025-03-14T04:12:47.8202023Z if [[ -z "${MERGE_BASE}" ]]; then 2025-03-14T04:12:47.8202294Z  echo "rebuild=true" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.8202528Z  2025-03-14T04:12:47.8202825Z  echo "Finding merge base only works with full checkout, please set fetch-depth to 0, continuing ..." 2025-03-14T04:12:47.8203326Z  exit 0 2025-03-14T04:12:47.8203494Z fi 2025-03-14T04:12:47.8203640Z  2025-03-14T04:12:47.8203847Z if ! git rev-parse "${MERGE_BASE}:${DOCKER_BUILD_DIR}"; then 2025-03-14T04:12:47.8204250Z  echo "Directory '${DOCKER_BUILD_DIR}' not found in commit $MERGE_BASE, you should rebase onto a more recent commit" 2025-03-14T04:12:47.8204595Z  exit 1 2025-03-14T04:12:47.8204751Z fi 2025-03-14T04:12:47.8204897Z  2025-03-14T04:12:47.8205130Z PREVIOUS_DOCKER_TAG=$(git rev-parse "${MERGE_BASE}:${DOCKER_BUILD_DIR}") 2025-03-14T04:12:47.8205523Z # If no image exists but the hash is the same as the previous hash then we should error out here 2025-03-14T04:12:47.8205877Z if [[ "${PREVIOUS_DOCKER_TAG}" == "${DOCKER_TAG}" ]]; then 2025-03-14T04:12:47.8206282Z  echo "WARNING: Something has gone wrong and the previous image isn't available for the merge-base of your branch" 2025-03-14T04:12:47.8206732Z  echo " Will re-build docker image to store in local cache, TTS may be longer" 2025-03-14T04:12:47.8207018Z fi 2025-03-14T04:12:47.8207170Z  2025-03-14T04:12:47.8207356Z echo "rebuild=true" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.8211650Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:47.8211918Z env: 2025-03-14T04:12:47.8212098Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:47.8212341Z DOCKER_BUILD_DIR: .ci/docker 2025-03-14T04:12:47.8212613Z BASE_REVISION: aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:12:47.8213170Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.8213709Z DOCKER_TAG: aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.8213998Z DOCKER_REGISTRY: 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:47.8214256Z DOCKER_PUSH: 2025-03-14T04:12:47.8214433Z ##[endgroup] 2025-03-14T04:12:47.8234822Z + retry login 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:47.8235729Z + login 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:47.8236381Z + aws ecr get-login-password --region us-east-1 2025-03-14T04:12:47.8237380Z + docker login -u AWS --password-stdin 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:48.2412654Z WARNING! Your password will be stored unencrypted in /home/ec2-user/.docker/config.json. 2025-03-14T04:12:48.2416707Z Configure a credential helper to remove this warning. See 2025-03-14T04:12:48.2416972Z Login Succeeded 2025-03-14T04:12:48.2417288Z https://docs.docker.com/engine/reference/commandline/login/#credentials-store 2025-03-14T04:12:48.2417523Z 2025-03-14T04:12:48.2436192Z ++ date +%s 2025-03-14T04:12:48.2443457Z + START_TIME=1741925568 2025-03-14T04:12:48.2443732Z ++ date +%s 2025-03-14T04:12:48.2451232Z + [[ 1741918368 -lt 1741925568 ]] 2025-03-14T04:12:48.2451941Z + docker manifest inspect 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:48.4832684Z { 2025-03-14T04:12:48.4832980Z "schemaVersion": 2, 2025-03-14T04:12:48.4833532Z "mediaType": "application/vnd.docker.distribution.manifest.v2+json", 2025-03-14T04:12:48.4833942Z "config": { 2025-03-14T04:12:48.4834270Z "mediaType": "application/vnd.docker.container.image.v1+json", 2025-03-14T04:12:48.4834658Z "size": 42081, 2025-03-14T04:12:48.4835047Z "digest": "sha256:1bab961b3bd90ec6714167a095e5437a0239700971887d1c663377ef708f8526" 2025-03-14T04:12:48.4835469Z }, 2025-03-14T04:12:48.4835676Z "layers": [ 2025-03-14T04:12:48.4835881Z { 2025-03-14T04:12:48.4836201Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4836587Z "size": 30440118, 2025-03-14T04:12:48.4837013Z "digest": "sha256:8f84a9f2102e97a4a6bf673b150fc9894df5acc9618ad3484c6c36f768c1caa0" 2025-03-14T04:12:48.4837482Z }, 2025-03-14T04:12:48.4838139Z { 2025-03-14T04:12:48.4838482Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4838885Z "size": 1896, 2025-03-14T04:12:48.4839321Z "digest": "sha256:f35880ae6ee6dd2a62a077d19ff6b5c4a69745027e986e8ed5fec074f76c859a" 2025-03-14T04:12:48.4839810Z }, 2025-03-14T04:12:48.4840024Z { 2025-03-14T04:12:48.4840361Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4840785Z "size": 319404545, 2025-03-14T04:12:48.4841216Z "digest": "sha256:8eb502731466bf7440d89c4538928f5a175e8b54b788f1e8d194d0f864ff206d" 2025-03-14T04:12:48.4841677Z }, 2025-03-14T04:12:48.4841898Z { 2025-03-14T04:12:48.4842251Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4842680Z "size": 864, 2025-03-14T04:12:48.4843119Z "digest": "sha256:d4ce6a1f04ff4b142de5bce2ef06e1538172f3f7245835a1393a2a3b87a616bb" 2025-03-14T04:12:48.4843608Z }, 2025-03-14T04:12:48.4843823Z { 2025-03-14T04:12:48.4844185Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4844620Z "size": 106, 2025-03-14T04:12:48.4845062Z "digest": "sha256:ca18d6003a1855ff2be2115cc2154b50c52d2fef9f8628623f168c33016d3b33" 2025-03-14T04:12:48.4845545Z }, 2025-03-14T04:12:48.4845757Z { 2025-03-14T04:12:48.4846118Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4846541Z "size": 704, 2025-03-14T04:12:48.4846982Z "digest": "sha256:f6b56646e2f02522c5afb19aff566ef53261a591ce3ecbeaa224ed40df1ed9a4" 2025-03-14T04:12:48.4847450Z }, 2025-03-14T04:12:48.4847735Z { 2025-03-14T04:12:48.4848082Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4848480Z "size": 1216, 2025-03-14T04:12:48.4848917Z "digest": "sha256:454c9d6c7abb004ad3cf2a984a4c653d3dcb3af36d26bfe90988a24dfbe1650c" 2025-03-14T04:12:48.4849400Z }, 2025-03-14T04:12:48.4849609Z { 2025-03-14T04:12:48.4849962Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4850420Z "size": 483, 2025-03-14T04:12:48.4850890Z "digest": "sha256:a66b8377f49fed837811a0ed9d612fc454b00944b0bafccbb4611b19e2fd2976" 2025-03-14T04:12:48.4851888Z }, 2025-03-14T04:12:48.4852123Z { 2025-03-14T04:12:48.4852488Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4852921Z "size": 110341891, 2025-03-14T04:12:48.4853393Z "digest": "sha256:c75867b7d634b7bfdf1bb7a2cf5062bef03aa58f357db40fad0ca3db26633c1f" 2025-03-14T04:12:48.4853898Z }, 2025-03-14T04:12:48.4854121Z { 2025-03-14T04:12:48.4854473Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4854938Z "size": 4165, 2025-03-14T04:12:48.4855410Z "digest": "sha256:64866485623d4cd2c086ae4dd8c332eba6200229a00c3457274adf9cf3878f44" 2025-03-14T04:12:48.4855927Z }, 2025-03-14T04:12:48.4856152Z { 2025-03-14T04:12:48.4856559Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4857005Z "size": 1860, 2025-03-14T04:12:48.4857532Z "digest": "sha256:04b678046b3a28400a60c07993009616e6f2667c9052eeba35cd953db82b1af2" 2025-03-14T04:12:48.4858027Z }, 2025-03-14T04:12:48.4858258Z { 2025-03-14T04:12:48.4858619Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4859058Z "size": 701, 2025-03-14T04:12:48.4859510Z "digest": "sha256:1e2892d1c0d6f1b67d3ba1d866912303eac78217715c2fa8631fd39c22f81996" 2025-03-14T04:12:48.4860009Z }, 2025-03-14T04:12:48.4860219Z { 2025-03-14T04:12:48.4860770Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4861222Z "size": 477, 2025-03-14T04:12:48.4861680Z "digest": "sha256:564c8877ceb50a429fa53713805ae4726c040473188d1fb1e4dcd5ba9706304f" 2025-03-14T04:12:48.4862167Z }, 2025-03-14T04:12:48.4862369Z { 2025-03-14T04:12:48.4862719Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4863425Z "size": 2831705826, 2025-03-14T04:12:48.4863915Z "digest": "sha256:8d7dafab91e2016111c6948bf0794c93e2721bf193c48886fe2240153b249e33" 2025-03-14T04:12:48.4864410Z }, 2025-03-14T04:12:48.4864630Z { 2025-03-14T04:12:48.4864993Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4865562Z "size": 32, 2025-03-14T04:12:48.4866021Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.4866527Z }, 2025-03-14T04:12:48.4866735Z { 2025-03-14T04:12:48.4867089Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4867533Z "size": 380, 2025-03-14T04:12:48.4867964Z "digest": "sha256:3195860f4968f586f181dbcfe1714dbac201156cad2831d1f0b2a7e7d77cd745" 2025-03-14T04:12:48.4868444Z }, 2025-03-14T04:12:48.4868656Z { 2025-03-14T04:12:48.4868951Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4869227Z "size": 232996, 2025-03-14T04:12:48.4869522Z "digest": "sha256:64889f83e2762c0beecdc83ecdcda11013915f96d9a510a4d4c71d8f5c98c0d1" 2025-03-14T04:12:48.4869826Z }, 2025-03-14T04:12:48.4869974Z { 2025-03-14T04:12:48.4870200Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4870471Z "size": 231, 2025-03-14T04:12:48.4870750Z "digest": "sha256:a2f45c18f0c1c2df7c02c57024d329a2fabc91c70176271b58e5d318dd3458da" 2025-03-14T04:12:48.4871047Z }, 2025-03-14T04:12:48.4871191Z { 2025-03-14T04:12:48.4871405Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4871671Z "size": 3780000, 2025-03-14T04:12:48.4871946Z "digest": "sha256:16d7101d144158769623d4f9f5a88461a9f00e204f0d8eb2de4e5df6a1550c14" 2025-03-14T04:12:48.4872237Z }, 2025-03-14T04:12:48.4872382Z { 2025-03-14T04:12:48.4872604Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4872865Z "size": 1946, 2025-03-14T04:12:48.4873149Z "digest": "sha256:9f39c1b701e2a249071ced1a08ec63d1cfb1b7cb8379cab2cade1bf20b3c9de2" 2025-03-14T04:12:48.4873458Z }, 2025-03-14T04:12:48.4873598Z { 2025-03-14T04:12:48.4873812Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4874257Z "size": 105, 2025-03-14T04:12:48.4874530Z "digest": "sha256:2edf8a767cf2f72a7b1de53020b860979b1bdd164a8ed7ef367bd832d23d2f8b" 2025-03-14T04:12:48.4874823Z }, 2025-03-14T04:12:48.4874966Z { 2025-03-14T04:12:48.4875184Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4875435Z "size": 802, 2025-03-14T04:12:48.4875705Z "digest": "sha256:6ee1d4017bc6986ed5897ef9a654bbf0ed6a7817dc066925f236df53355fcf90" 2025-03-14T04:12:48.4875998Z }, 2025-03-14T04:12:48.4876144Z { 2025-03-14T04:12:48.4876359Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4876611Z "size": 32, 2025-03-14T04:12:48.4876876Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.4877171Z }, 2025-03-14T04:12:48.4877311Z { 2025-03-14T04:12:48.4877526Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4877780Z "size": 104, 2025-03-14T04:12:48.4878051Z "digest": "sha256:aa5b1d7b7a2ced97aeb9c9ae265f99c9200cf7925c897161239a001f052f72a8" 2025-03-14T04:12:48.4878347Z }, 2025-03-14T04:12:48.4878487Z { 2025-03-14T04:12:48.4878701Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4878955Z "size": 504, 2025-03-14T04:12:48.4879215Z "digest": "sha256:6100538713cbf01bbdc99f33c49d4158409d312b0d91e0da2b1b27872c295aef" 2025-03-14T04:12:48.4879499Z }, 2025-03-14T04:12:48.4879640Z { 2025-03-14T04:12:48.4879857Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4880116Z "size": 101109876, 2025-03-14T04:12:48.4880387Z "digest": "sha256:f53dff608124892061f86553f7367a2bbc24bf8e87852b705ead5a9711ce0551" 2025-03-14T04:12:48.4880668Z }, 2025-03-14T04:12:48.4880862Z { 2025-03-14T04:12:48.4881083Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4881345Z "size": 107, 2025-03-14T04:12:48.4881612Z "digest": "sha256:692dab4cd4df9b516d5a00637f3b139f358fac08546e782196a6b571e89db338" 2025-03-14T04:12:48.4881908Z }, 2025-03-14T04:12:48.4882046Z { 2025-03-14T04:12:48.4882262Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4882523Z "size": 490, 2025-03-14T04:12:48.4882789Z "digest": "sha256:2e13cb071445f474d0c6c51ba16f9efb8107ab2b96467aee933b5f0c8724b604" 2025-03-14T04:12:48.4883080Z }, 2025-03-14T04:12:48.4883214Z { 2025-03-14T04:12:48.4883432Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4883694Z "size": 338, 2025-03-14T04:12:48.4883949Z "digest": "sha256:12fc0b9855405052fa6937387f7293816b891253be753195323ce0073a151b5e" 2025-03-14T04:12:48.4884227Z }, 2025-03-14T04:12:48.4884367Z { 2025-03-14T04:12:48.4884589Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4884954Z "size": 103, 2025-03-14T04:12:48.4885219Z "digest": "sha256:9c0523cdc042e8a11440408370d68e599496333bff6312078af524f2611baae4" 2025-03-14T04:12:48.4885545Z }, 2025-03-14T04:12:48.4885743Z { 2025-03-14T04:12:48.4885990Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4886257Z "size": 1473, 2025-03-14T04:12:48.4886531Z "digest": "sha256:76be39b43c8ff15ab266bcad8f5744d72bc263df9d447748733c6fcf4fc1943e" 2025-03-14T04:12:48.4886827Z }, 2025-03-14T04:12:48.4886970Z { 2025-03-14T04:12:48.4887182Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4887449Z "size": 446377208, 2025-03-14T04:12:48.4887736Z "digest": "sha256:a813b158a4210a11a29ed58fd3d62fa8dab8efdf6e0af85385c2885a1d1c9d55" 2025-03-14T04:12:48.4888034Z }, 2025-03-14T04:12:48.4888177Z { 2025-03-14T04:12:48.4888397Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4888667Z "size": 164, 2025-03-14T04:12:48.4888943Z "digest": "sha256:bbc30b7542d1a52790dae399a0e23ec15f0ec726ef5d671b4e06e6118c912f91" 2025-03-14T04:12:48.4889305Z }, 2025-03-14T04:12:48.4889451Z { 2025-03-14T04:12:48.4889673Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4889938Z "size": 422, 2025-03-14T04:12:48.4890210Z "digest": "sha256:2a30d35d5515be01fdb30110959c5f5adcd6b7e5fca723ec9c98f48f91fcb738" 2025-03-14T04:12:48.4890510Z }, 2025-03-14T04:12:48.4890655Z { 2025-03-14T04:12:48.4890871Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4891133Z "size": 32, 2025-03-14T04:12:48.4891517Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.4891838Z }, 2025-03-14T04:12:48.4891986Z { 2025-03-14T04:12:48.4892211Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4892496Z "size": 111, 2025-03-14T04:12:48.4892791Z "digest": "sha256:34c633845b891bd5eee69ead4576b3fde778f2ee4d7e65cd095848edc8946683" 2025-03-14T04:12:48.4893099Z }, 2025-03-14T04:12:48.4893240Z { 2025-03-14T04:12:48.4893508Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4893770Z "size": 473, 2025-03-14T04:12:48.4894038Z "digest": "sha256:f4328165c8f338158381d4a7bc37f4596966f29a09ff5b1cfd3c9e8fbb149342" 2025-03-14T04:12:48.4894338Z }, 2025-03-14T04:12:48.4894476Z { 2025-03-14T04:12:48.4894688Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4894944Z "size": 32, 2025-03-14T04:12:48.4895205Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.4895482Z }, 2025-03-14T04:12:48.4895620Z { 2025-03-14T04:12:48.4895833Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4896086Z "size": 112, 2025-03-14T04:12:48.4896452Z "digest": "sha256:ced7420502578d83680bff46820c743cf2dc7d1f7bd6c4650fe189c940416b54" 2025-03-14T04:12:48.4896736Z }, 2025-03-14T04:12:48.4896878Z { 2025-03-14T04:12:48.4897089Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4897351Z "size": 565, 2025-03-14T04:12:48.4897616Z "digest": "sha256:7543460794d1c69c1e1a7e1edba30a6239234fb5014d8b334f01f8addc38128e" 2025-03-14T04:12:48.4897902Z }, 2025-03-14T04:12:48.4898039Z { 2025-03-14T04:12:48.4898252Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4898511Z "size": 43164080, 2025-03-14T04:12:48.4898790Z "digest": "sha256:81f896b48ff04356cc2ca3a784defda917a1bc7f9ccc1a3c0dbdf15b1d1cf156" 2025-03-14T04:12:48.4899103Z }, 2025-03-14T04:12:48.4899234Z { 2025-03-14T04:12:48.4899444Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4899692Z "size": 106, 2025-03-14T04:12:48.4899951Z "digest": "sha256:f11b5769703741548b6910c4cf3891909c6fc2153c15ddf1596145939bc1f675" 2025-03-14T04:12:48.4900236Z }, 2025-03-14T04:12:48.4900373Z { 2025-03-14T04:12:48.4900590Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4900850Z "size": 345, 2025-03-14T04:12:48.4901115Z "digest": "sha256:d09490ef7bbf73ff136691138f700147ae2c817b845e5ea9a86e1c3be639c159" 2025-03-14T04:12:48.4901407Z }, 2025-03-14T04:12:48.4901546Z { 2025-03-14T04:12:48.4901763Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4902021Z "size": 32, 2025-03-14T04:12:48.4902286Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.4902591Z }, 2025-03-14T04:12:48.4902724Z { 2025-03-14T04:12:48.4902925Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4903185Z "size": 106, 2025-03-14T04:12:48.4903452Z "digest": "sha256:595c6ea973ce7878ed25917778eaa88783efa7e652b515158353e878cedce9fa" 2025-03-14T04:12:48.4903751Z }, 2025-03-14T04:12:48.4903889Z { 2025-03-14T04:12:48.4904103Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4904365Z "size": 425, 2025-03-14T04:12:48.4904765Z "digest": "sha256:b65570655a311da76613ae5622813bfe1741f803bd187d1f83d1542c73c3ceed" 2025-03-14T04:12:48.4905062Z }, 2025-03-14T04:12:48.4905206Z { 2025-03-14T04:12:48.4905422Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4905683Z "size": 19308697, 2025-03-14T04:12:48.4905961Z "digest": "sha256:f3024011b7b6bb9bbd71304103e6e4c7e7cf6cc0e616150929ffcdb4660be46b" 2025-03-14T04:12:48.4906255Z }, 2025-03-14T04:12:48.4906401Z { 2025-03-14T04:12:48.4906616Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4906870Z "size": 105, 2025-03-14T04:12:48.4907122Z "digest": "sha256:0b7e81f1bc5d8e9784247bb0d869e69737e76887e24b3ef6773f42405a938f63" 2025-03-14T04:12:48.4907412Z }, 2025-03-14T04:12:48.4907562Z { 2025-03-14T04:12:48.4907775Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4908031Z "size": 643, 2025-03-14T04:12:48.4908293Z "digest": "sha256:c9603583aaa028021352754f45cfaedb840742c6578e1efada89ec05c07d5082" 2025-03-14T04:12:48.4908581Z }, 2025-03-14T04:12:48.4908720Z { 2025-03-14T04:12:48.4908935Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4909194Z "size": 701, 2025-03-14T04:12:48.4909488Z "digest": "sha256:1e2892d1c0d6f1b67d3ba1d866912303eac78217715c2fa8631fd39c22f81996" 2025-03-14T04:12:48.4909779Z }, 2025-03-14T04:12:48.4909923Z { 2025-03-14T04:12:48.4910140Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4910393Z "size": 143, 2025-03-14T04:12:48.4910644Z "digest": "sha256:68f75179d12201922607e31597da3d213875a942f8012b1c43d43c357499b646" 2025-03-14T04:12:48.4910922Z }, 2025-03-14T04:12:48.4911055Z { 2025-03-14T04:12:48.4911317Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4911582Z "size": 136, 2025-03-14T04:12:48.4911845Z "digest": "sha256:2ce6ce002394ba831fcec41621aa011ca17592a66c8020b64eb1fe58505f2ed4" 2025-03-14T04:12:48.4912142Z }, 2025-03-14T04:12:48.4912282Z { 2025-03-14T04:12:48.4912496Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4912759Z "size": 5219780266, 2025-03-14T04:12:48.4913043Z "digest": "sha256:cb03b7532b5e2d7fbb9a55d16acbdc1fd4f52b9cc00e62003118e2c820bbdd07" 2025-03-14T04:12:48.4913346Z }, 2025-03-14T04:12:48.4913486Z { 2025-03-14T04:12:48.4913700Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4913959Z "size": 196, 2025-03-14T04:12:48.4914228Z "digest": "sha256:046ab5a4210dd05ee2a4d9ed8f1f5c86bf8ac03438dd03bb9f586578f0b40434" 2025-03-14T04:12:48.4914524Z }, 2025-03-14T04:12:48.4914665Z { 2025-03-14T04:12:48.4914877Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4915139Z "size": 1401, 2025-03-14T04:12:48.4915416Z "digest": "sha256:da2b385f2f548b4fdb79d4a5f8dcaceff0a8e1c0ef59425e041cf189dfe66f74" 2025-03-14T04:12:48.4915721Z }, 2025-03-14T04:12:48.4915863Z { 2025-03-14T04:12:48.4916081Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4916342Z "size": 701, 2025-03-14T04:12:48.4916602Z "digest": "sha256:1e2892d1c0d6f1b67d3ba1d866912303eac78217715c2fa8631fd39c22f81996" 2025-03-14T04:12:48.4916890Z }, 2025-03-14T04:12:48.4917032Z { 2025-03-14T04:12:48.4917245Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4917501Z "size": 139, 2025-03-14T04:12:48.4917754Z "digest": "sha256:7bc635713dd5ff2321baf7a09438d605c0145a774060722495c5682045e3eed1" 2025-03-14T04:12:48.4918037Z }, 2025-03-14T04:12:48.4918177Z { 2025-03-14T04:12:48.4918392Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4918648Z "size": 5175240887, 2025-03-14T04:12:48.4918929Z "digest": "sha256:cd296e79aaba46073adfef39e70b87062399ab2648d531184bdae59da7021328" 2025-03-14T04:12:48.4919223Z }, 2025-03-14T04:12:48.4919405Z { 2025-03-14T04:12:48.4919628Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4919896Z "size": 155, 2025-03-14T04:12:48.4920168Z "digest": "sha256:26ea03719a99ff44da69ffcc24e8f006472a88c1160a1b48f194d012108735b3" 2025-03-14T04:12:48.4920468Z }, 2025-03-14T04:12:48.4920612Z { 2025-03-14T04:12:48.4920834Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4921103Z "size": 1401, 2025-03-14T04:12:48.4921390Z "digest": "sha256:da2b385f2f548b4fdb79d4a5f8dcaceff0a8e1c0ef59425e041cf189dfe66f74" 2025-03-14T04:12:48.4921698Z }, 2025-03-14T04:12:48.4921840Z { 2025-03-14T04:12:48.4922061Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4922331Z "size": 701, 2025-03-14T04:12:48.4922590Z "digest": "sha256:1e2892d1c0d6f1b67d3ba1d866912303eac78217715c2fa8631fd39c22f81996" 2025-03-14T04:12:48.4922868Z }, 2025-03-14T04:12:48.4923009Z { 2025-03-14T04:12:48.4923228Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4923486Z "size": 139, 2025-03-14T04:12:48.4923751Z "digest": "sha256:f37a0227cb699ac15b09aa6ef41075ffe443681db0af5841da6553a2090fbfe6" 2025-03-14T04:12:48.4924046Z }, 2025-03-14T04:12:48.4924186Z { 2025-03-14T04:12:48.4924402Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4924667Z "size": 32, 2025-03-14T04:12:48.4924931Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.4925224Z }, 2025-03-14T04:12:48.4925478Z { 2025-03-14T04:12:48.4925701Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4925965Z "size": 160, 2025-03-14T04:12:48.4926287Z "digest": "sha256:0bd4004e84e3c2791c68438d3e95d8c82de275d45fb9a3ddf018d8d6dc8ffdc2" 2025-03-14T04:12:48.4926582Z }, 2025-03-14T04:12:48.4926716Z { 2025-03-14T04:12:48.4926933Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4927200Z "size": 765, 2025-03-14T04:12:48.4927469Z "digest": "sha256:967b86e63131ae345453e13efb40580cc1c734b0eb75aa6c65aa173a45946211" 2025-03-14T04:12:48.4927786Z }, 2025-03-14T04:12:48.4927939Z { 2025-03-14T04:12:48.4928170Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4928447Z "size": 701, 2025-03-14T04:12:48.4928730Z "digest": "sha256:1e2892d1c0d6f1b67d3ba1d866912303eac78217715c2fa8631fd39c22f81996" 2025-03-14T04:12:48.4929040Z }, 2025-03-14T04:12:48.4929192Z { 2025-03-14T04:12:48.4929426Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4929703Z "size": 138, 2025-03-14T04:12:48.4929996Z "digest": "sha256:905d662f8eef91929aef8d9f01cfd429c3ecb16b2544892af0aeb64d98122115" 2025-03-14T04:12:48.4930312Z }, 2025-03-14T04:12:48.4930463Z { 2025-03-14T04:12:48.4930687Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4930969Z "size": 32, 2025-03-14T04:12:48.4931256Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.4931666Z }, 2025-03-14T04:12:48.4931825Z { 2025-03-14T04:12:48.4932064Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4932349Z "size": 159, 2025-03-14T04:12:48.4932634Z "digest": "sha256:39fff80b800e3735de2c6daf433e9df8cf0b4b02bcc5b2f62ba6154177fde92c" 2025-03-14T04:12:48.4932949Z }, 2025-03-14T04:12:48.4933093Z { 2025-03-14T04:12:48.4933311Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4933572Z "size": 907, 2025-03-14T04:12:48.4933835Z "digest": "sha256:d681503af97af958755d5133477828ceca373627a9a0354ec6ba5f355c576422" 2025-03-14T04:12:48.4934129Z }, 2025-03-14T04:12:48.4934272Z { 2025-03-14T04:12:48.4934486Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4934745Z "size": 701, 2025-03-14T04:12:48.4935049Z "digest": "sha256:1e2892d1c0d6f1b67d3ba1d866912303eac78217715c2fa8631fd39c22f81996" 2025-03-14T04:12:48.4935339Z }, 2025-03-14T04:12:48.4935483Z { 2025-03-14T04:12:48.4935705Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4935966Z "size": 134, 2025-03-14T04:12:48.4936240Z "digest": "sha256:acd125116d9b9aa3745376e8edce601ca8c1cbe1f1cbd14d0d116b13ed58d436" 2025-03-14T04:12:48.4936542Z }, 2025-03-14T04:12:48.4936687Z { 2025-03-14T04:12:48.4936911Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4937176Z "size": 32, 2025-03-14T04:12:48.4937446Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.4937741Z }, 2025-03-14T04:12:48.4937887Z { 2025-03-14T04:12:48.4938104Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4938367Z "size": 159, 2025-03-14T04:12:48.4938631Z "digest": "sha256:78b00f805b53e274a95890d94e0cae256b17552d517d2a19c38760a1d8ff107b" 2025-03-14T04:12:48.4938921Z }, 2025-03-14T04:12:48.4939064Z { 2025-03-14T04:12:48.4939291Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4939546Z "size": 1485, 2025-03-14T04:12:48.4939814Z "digest": "sha256:8b3d8ccc53ec9443f345526e1411cbfb5910da12fad3f39f76ee42ce0ad14e1d" 2025-03-14T04:12:48.4940103Z }, 2025-03-14T04:12:48.4940242Z { 2025-03-14T04:12:48.4940456Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4940717Z "size": 32, 2025-03-14T04:12:48.4940986Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.4941283Z }, 2025-03-14T04:12:48.4941428Z { 2025-03-14T04:12:48.4941722Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4941984Z "size": 135, 2025-03-14T04:12:48.4942257Z "digest": "sha256:07259ecbb7c987e75528fb0aa9e313d0ae77eb9a8f6e6249e4fdfd7d985a80b7" 2025-03-14T04:12:48.4942564Z }, 2025-03-14T04:12:48.4942702Z { 2025-03-14T04:12:48.4942943Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4943204Z "size": 380, 2025-03-14T04:12:48.4943475Z "digest": "sha256:afabfb1e95267970e90e2058d9c09f857443f80b997adfe57208801f5b8db81b" 2025-03-14T04:12:48.4943771Z }, 2025-03-14T04:12:48.4943917Z { 2025-03-14T04:12:48.4944138Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4944407Z "size": 32, 2025-03-14T04:12:48.4944668Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.4944957Z }, 2025-03-14T04:12:48.4945099Z { 2025-03-14T04:12:48.4945315Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4945570Z "size": 104, 2025-03-14T04:12:48.4945836Z "digest": "sha256:56aa7cdd744f50ae4b9a678f5e53e7e9471f9dcf42ae8f15323d71ae01af8bd1" 2025-03-14T04:12:48.4946126Z }, 2025-03-14T04:12:48.4946269Z { 2025-03-14T04:12:48.4946476Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4946734Z "size": 1899, 2025-03-14T04:12:48.4947004Z "digest": "sha256:3d413cedb292cce13e279df55899acbcf1227ea646c86a599808a03ae8b7aba9" 2025-03-14T04:12:48.4947298Z }, 2025-03-14T04:12:48.4947439Z { 2025-03-14T04:12:48.4947655Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4947918Z "size": 196997029, 2025-03-14T04:12:48.4948197Z "digest": "sha256:c4d93cca7501ea10375008b5a60aef7eee5cf0d7d670fd766e7be3479726c58c" 2025-03-14T04:12:48.4948496Z }, 2025-03-14T04:12:48.4948639Z { 2025-03-14T04:12:48.4948855Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4949111Z "size": 106, 2025-03-14T04:12:48.4949385Z "digest": "sha256:be17a58842f02580271fffb31b6d71f17498b862bce2cb181d9897e73ce18af5" 2025-03-14T04:12:48.4949673Z }, 2025-03-14T04:12:48.4949814Z { 2025-03-14T04:12:48.4950092Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4950361Z "size": 163, 2025-03-14T04:12:48.4950628Z "digest": "sha256:af209379fbc2a1ce9c38f2383ec08f704de1b1eb23a531463224e80d937a13a3" 2025-03-14T04:12:48.4950933Z }, 2025-03-14T04:12:48.4951081Z { 2025-03-14T04:12:48.4951304Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4951574Z "size": 7943, 2025-03-14T04:12:48.4951850Z "digest": "sha256:879b59207c78a7748870b6aea98a65bafa1b3f0c63ec86b59a9b142260d41250" 2025-03-14T04:12:48.4952149Z }, 2025-03-14T04:12:48.4952294Z { 2025-03-14T04:12:48.4952517Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4952788Z "size": 8069, 2025-03-14T04:12:48.4953069Z "digest": "sha256:4918b9b279ff8944ea8eb1ba1ea23f23f39710864919f41470520c03f36ba04c" 2025-03-14T04:12:48.4953360Z }, 2025-03-14T04:12:48.4953500Z { 2025-03-14T04:12:48.4953719Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4953990Z "size": 304, 2025-03-14T04:12:48.4954271Z "digest": "sha256:f3e4cb9dda5d3af4525d8c720afb11c9ba9a48a146bbfb268434720eb33f9b7b" 2025-03-14T04:12:48.4954570Z }, 2025-03-14T04:12:48.4954715Z { 2025-03-14T04:12:48.4954942Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4955211Z "size": 32, 2025-03-14T04:12:48.4955483Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.4955788Z }, 2025-03-14T04:12:48.4955929Z { 2025-03-14T04:12:48.4956154Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4956427Z "size": 106, 2025-03-14T04:12:48.4956741Z "digest": "sha256:da83488e1344293ac1fcf6c9ed132b6a3746e8c347dc0c5b4ebc8e24a3b73eee" 2025-03-14T04:12:48.4957044Z }, 2025-03-14T04:12:48.4957191Z { 2025-03-14T04:12:48.4957411Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4957681Z "size": 54145653, 2025-03-14T04:12:48.4957970Z "digest": "sha256:78dfb83debe9f57e9eec061eb7ad61e56e2549b77b32b9ca98395ba6655ab167" 2025-03-14T04:12:48.4958274Z }, 2025-03-14T04:12:48.4958410Z { 2025-03-14T04:12:48.4958629Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.4958896Z "size": 32, 2025-03-14T04:12:48.4959166Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.4959459Z } 2025-03-14T04:12:48.4959607Z ] 2025-03-14T04:12:48.4959750Z } 2025-03-14T04:12:48.4959920Z + exit 0 2025-03-14T04:12:48.5002442Z ##[group]Run set -eux 2025-03-14T04:12:48.5002681Z set -eux 2025-03-14T04:12:48.5003232Z aws secretsmanager get-secret-value --secret-id docker_hub_readonly_token | jq --raw-output '.SecretString' | jq -r .docker_hub_readonly_token | docker login --username pytorchbot --password-stdin 2025-03-14T04:12:48.5011919Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:48.5012355Z env: 2025-03-14T04:12:48.5012615Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:48.5012905Z ##[endgroup] 2025-03-14T04:12:48.5043866Z + jq --raw-output .SecretString 2025-03-14T04:12:48.5044544Z + aws secretsmanager get-secret-value --secret-id docker_hub_readonly_token 2025-03-14T04:12:48.5045118Z + jq -r .docker_hub_readonly_token 2025-03-14T04:12:48.5065207Z + docker login --username pytorchbot --password-stdin 2025-03-14T04:12:48.9810902Z WARNING! Your password will be stored unencrypted in /home/ec2-user/.docker/config.json. 2025-03-14T04:12:48.9811333Z Configure a credential helper to remove this warning. See 2025-03-14T04:12:48.9811810Z https://docs.docker.com/engine/reference/commandline/login/#credentials-store 2025-03-14T04:12:48.9812103Z 2025-03-14T04:12:48.9813774Z Login Succeeded 2025-03-14T04:12:48.9898159Z ##[group]Run tag=${ECR_DOCKER_IMAGE##*/} 2025-03-14T04:12:48.9898439Z tag=${ECR_DOCKER_IMAGE##*/} 2025-03-14T04:12:48.9898709Z echo "docker pull ghcr.io/pytorch/ci-image:${tag/:/-}" 2025-03-14T04:12:48.9903177Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:48.9903438Z env: 2025-03-14T04:12:48.9903612Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:48.9904122Z ECR_DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:48.9904616Z ##[endgroup] 2025-03-14T04:12:48.9925989Z docker pull ghcr.io/pytorch/ci-image:pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks-aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:48.9965485Z ##[group]Run pytorch/test-infra/.github/actions/pull-docker-image@main 2025-03-14T04:12:48.9965796Z with: 2025-03-14T04:12:48.9966308Z docker-image: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:48.9966911Z docker-registry: 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:48.9967204Z env: 2025-03-14T04:12:48.9967381Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:48.9967592Z ##[endgroup] 2025-03-14T04:12:48.9986270Z ##[group]Run set -x 2025-03-14T04:12:48.9986497Z set -x 2025-03-14T04:12:48.9986673Z set +e 2025-03-14T04:12:48.9986849Z  2025-03-14T04:12:48.9987014Z login() { 2025-03-14T04:12:48.9987346Z  aws ecr get-login-password --region us-east-1 | docker login -u AWS --password-stdin "$1" 2025-03-14T04:12:48.9987698Z } 2025-03-14T04:12:48.9987864Z  2025-03-14T04:12:48.9988058Z retry () { 2025-03-14T04:12:48.9988261Z  $* || (sleep 1 && $*) || (sleep 2 && $*) 2025-03-14T04:12:48.9988487Z } 2025-03-14T04:12:48.9988647Z  2025-03-14T04:12:48.9988821Z retry login "${DOCKER_REGISTRY}" 2025-03-14T04:12:48.9989039Z  2025-03-14T04:12:48.9989189Z set -e 2025-03-14T04:12:48.9989423Z # ignore output since only exit code is used for conditional 2025-03-14T04:12:48.9989758Z # only pull docker image if it's not available locally 2025-03-14T04:12:48.9990100Z if ! docker inspect --type=image "${DOCKER_IMAGE}" >/dev/null 2>/dev/null; then 2025-03-14T04:12:48.9990407Z  retry docker pull "${DOCKER_IMAGE}" 2025-03-14T04:12:48.9990621Z fi 2025-03-14T04:12:48.9994452Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:48.9994692Z env: 2025-03-14T04:12:48.9994863Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:48.9995376Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:48.9995951Z DOCKER_REGISTRY: 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:48.9996217Z ##[endgroup] 2025-03-14T04:12:49.0020510Z + set +e 2025-03-14T04:12:49.0025628Z + retry login 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:49.0027605Z + login 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:49.0028054Z + aws ecr get-login-password --region us-east-1 2025-03-14T04:12:49.0028565Z + docker login -u AWS --password-stdin 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:49.4131604Z WARNING! Your password will be stored unencrypted in /home/ec2-user/.docker/config.json. 2025-03-14T04:12:49.4132083Z Login Succeeded 2025-03-14T04:12:49.4135347Z Configure a credential helper to remove this warning. See 2025-03-14T04:12:49.4136015Z https://docs.docker.com/engine/reference/commandline/login/#credentials-store 2025-03-14T04:12:49.4136310Z 2025-03-14T04:12:49.4148135Z + set -e 2025-03-14T04:12:49.4148785Z + docker inspect --type=image 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:49.4299480Z + retry docker pull 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:49.4305643Z + docker pull 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:49.6569146Z aa89d6e739080d90fa18625d57297c6734465849: Pulling from pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks 2025-03-14T04:12:49.6569830Z 8f84a9f2102e: Pulling fs layer 2025-03-14T04:12:49.6570174Z f35880ae6ee6: Pulling fs layer 2025-03-14T04:12:49.6570455Z 8eb502731466: Pulling fs layer 2025-03-14T04:12:49.6571088Z d4ce6a1f04ff: Pulling fs layer 2025-03-14T04:12:49.6571357Z ca18d6003a18: Pulling fs layer 2025-03-14T04:12:49.6571745Z f6b56646e2f0: Pulling fs layer 2025-03-14T04:12:49.6571954Z 454c9d6c7abb: Pulling fs layer 2025-03-14T04:12:49.6572154Z a66b8377f49f: Pulling fs layer 2025-03-14T04:12:49.6572360Z c75867b7d634: Pulling fs layer 2025-03-14T04:12:49.6572550Z 64866485623d: Pulling fs layer 2025-03-14T04:12:49.6572757Z 04b678046b3a: Pulling fs layer 2025-03-14T04:12:49.6572944Z 1e2892d1c0d6: Pulling fs layer 2025-03-14T04:12:49.6573152Z 564c8877ceb5: Pulling fs layer 2025-03-14T04:12:49.6573339Z 8d7dafab91e2: Pulling fs layer 2025-03-14T04:12:49.6573529Z 4f4fb700ef54: Pulling fs layer 2025-03-14T04:12:49.6573712Z 3195860f4968: Pulling fs layer 2025-03-14T04:12:49.6573896Z 64889f83e276: Pulling fs layer 2025-03-14T04:12:49.6574078Z a2f45c18f0c1: Pulling fs layer 2025-03-14T04:12:49.6574259Z 16d7101d1441: Pulling fs layer 2025-03-14T04:12:49.6574441Z 9f39c1b701e2: Pulling fs layer 2025-03-14T04:12:49.6574630Z 2edf8a767cf2: Pulling fs layer 2025-03-14T04:12:49.6574809Z d4ce6a1f04ff: Waiting 2025-03-14T04:12:49.6574985Z 6ee1d4017bc6: Pulling fs layer 2025-03-14T04:12:49.6575166Z ca18d6003a18: Waiting 2025-03-14T04:12:49.6575338Z aa5b1d7b7a2c: Pulling fs layer 2025-03-14T04:12:49.6575519Z f6b56646e2f0: Waiting 2025-03-14T04:12:49.6575679Z 6100538713cb: Pulling fs layer 2025-03-14T04:12:49.6575861Z 454c9d6c7abb: Waiting 2025-03-14T04:12:49.6576037Z f53dff608124: Pulling fs layer 2025-03-14T04:12:49.6576225Z 692dab4cd4df: Pulling fs layer 2025-03-14T04:12:49.6576409Z a66b8377f49f: Waiting 2025-03-14T04:12:49.6576578Z 2e13cb071445: Pulling fs layer 2025-03-14T04:12:49.6576756Z c75867b7d634: Waiting 2025-03-14T04:12:49.6576927Z 12fc0b985540: Pulling fs layer 2025-03-14T04:12:49.6577108Z 64866485623d: Waiting 2025-03-14T04:12:49.6577279Z 9c0523cdc042: Pulling fs layer 2025-03-14T04:12:49.6577459Z 04b678046b3a: Waiting 2025-03-14T04:12:49.6577630Z 76be39b43c8f: Pulling fs layer 2025-03-14T04:12:49.6577813Z a813b158a421: Pulling fs layer 2025-03-14T04:12:49.6577996Z 1e2892d1c0d6: Waiting 2025-03-14T04:12:49.6578168Z bbc30b7542d1: Pulling fs layer 2025-03-14T04:12:49.6578342Z 564c8877ceb5: Waiting 2025-03-14T04:12:49.6578512Z 2a30d35d5515: Pulling fs layer 2025-03-14T04:12:49.6578691Z 8d7dafab91e2: Waiting 2025-03-14T04:12:49.6578861Z 34c633845b89: Pulling fs layer 2025-03-14T04:12:49.6579044Z f4328165c8f3: Pulling fs layer 2025-03-14T04:12:49.6579223Z 4f4fb700ef54: Waiting 2025-03-14T04:12:49.6579392Z ced742050257: Pulling fs layer 2025-03-14T04:12:49.6579573Z 7543460794d1: Pulling fs layer 2025-03-14T04:12:49.6579773Z 81f896b48ff0: Pulling fs layer 2025-03-14T04:12:49.6579948Z 3195860f4968: Waiting 2025-03-14T04:12:49.6580115Z f11b57697037: Pulling fs layer 2025-03-14T04:12:49.6580300Z d09490ef7bbf: Pulling fs layer 2025-03-14T04:12:49.6580483Z 595c6ea973ce: Pulling fs layer 2025-03-14T04:12:49.6580665Z b65570655a31: Pulling fs layer 2025-03-14T04:12:49.6580847Z f3024011b7b6: Pulling fs layer 2025-03-14T04:12:49.6581034Z 0b7e81f1bc5d: Pulling fs layer 2025-03-14T04:12:49.6581288Z 64889f83e276: Waiting 2025-03-14T04:12:49.6581513Z c9603583aaa0: Pulling fs layer 2025-03-14T04:12:49.6581767Z a2f45c18f0c1: Waiting 2025-03-14T04:12:49.6581998Z 68f75179d122: Pulling fs layer 2025-03-14T04:12:49.6582257Z 2ce6ce002394: Pulling fs layer 2025-03-14T04:12:49.6582504Z 16d7101d1441: Waiting 2025-03-14T04:12:49.6582741Z cb03b7532b5e: Pulling fs layer 2025-03-14T04:12:49.6583163Z 9f39c1b701e2: Waiting 2025-03-14T04:12:49.6583388Z 046ab5a4210d: Pulling fs layer 2025-03-14T04:12:49.6583577Z da2b385f2f54: Pulling fs layer 2025-03-14T04:12:49.6583761Z 7bc635713dd5: Pulling fs layer 2025-03-14T04:12:49.6583948Z cd296e79aaba: Pulling fs layer 2025-03-14T04:12:49.6584135Z 26ea03719a99: Pulling fs layer 2025-03-14T04:12:49.6584322Z 2edf8a767cf2: Waiting 2025-03-14T04:12:49.6584541Z 6ee1d4017bc6: Waiting 2025-03-14T04:12:49.6584709Z f37a0227cb69: Pulling fs layer 2025-03-14T04:12:49.6584894Z 0bd4004e84e3: Pulling fs layer 2025-03-14T04:12:49.6585160Z 967b86e63131: Pulling fs layer 2025-03-14T04:12:49.6585361Z 905d662f8eef: Pulling fs layer 2025-03-14T04:12:49.6585543Z 692dab4cd4df: Waiting 2025-03-14T04:12:49.6585704Z 39fff80b800e: Pulling fs layer 2025-03-14T04:12:49.6585883Z aa5b1d7b7a2c: Waiting 2025-03-14T04:12:49.6586056Z d681503af97a: Pulling fs layer 2025-03-14T04:12:49.6586238Z 2e13cb071445: Waiting 2025-03-14T04:12:49.6586404Z 12fc0b985540: Waiting 2025-03-14T04:12:49.6586588Z acd125116d9b: Pulling fs layer 2025-03-14T04:12:49.6586771Z 78b00f805b53: Pulling fs layer 2025-03-14T04:12:49.6586948Z 2a30d35d5515: Waiting 2025-03-14T04:12:49.6587114Z 8b3d8ccc53ec: Pulling fs layer 2025-03-14T04:12:49.6587288Z 6100538713cb: Waiting 2025-03-14T04:12:49.6587448Z 34c633845b89: Waiting 2025-03-14T04:12:49.6587605Z f37a0227cb69: Waiting 2025-03-14T04:12:49.6587768Z 07259ecbb7c9: Pulling fs layer 2025-03-14T04:12:49.6587942Z f4328165c8f3: Waiting 2025-03-14T04:12:49.6588094Z 0bd4004e84e3: Waiting 2025-03-14T04:12:49.6588261Z afabfb1e9526: Pulling fs layer 2025-03-14T04:12:49.6588440Z ced742050257: Waiting 2025-03-14T04:12:49.6588595Z 967b86e63131: Waiting 2025-03-14T04:12:49.6588748Z 7543460794d1: Waiting 2025-03-14T04:12:49.6588902Z 905d662f8eef: Waiting 2025-03-14T04:12:49.6589058Z 9c0523cdc042: Waiting 2025-03-14T04:12:49.6589220Z 56aa7cdd744f: Pulling fs layer 2025-03-14T04:12:49.6589395Z 76be39b43c8f: Waiting 2025-03-14T04:12:49.6589553Z 81f896b48ff0: Waiting 2025-03-14T04:12:49.6589712Z a813b158a421: Waiting 2025-03-14T04:12:49.6589868Z bbc30b7542d1: Waiting 2025-03-14T04:12:49.6590031Z 3d413cedb292: Pulling fs layer 2025-03-14T04:12:49.6590205Z f11b57697037: Waiting 2025-03-14T04:12:49.6590362Z d09490ef7bbf: Waiting 2025-03-14T04:12:49.6590515Z c4d93cca7501: Pulling fs layer 2025-03-14T04:12:49.6590697Z be17a58842f0: Pulling fs layer 2025-03-14T04:12:49.6590880Z af209379fbc2: Pulling fs layer 2025-03-14T04:12:49.6591058Z 879b59207c78: Pulling fs layer 2025-03-14T04:12:49.6591270Z da2b385f2f54: Waiting 2025-03-14T04:12:49.6591497Z 4918b9b279ff: Pulling fs layer 2025-03-14T04:12:49.6591767Z 7bc635713dd5: Waiting 2025-03-14T04:12:49.6592002Z 39fff80b800e: Waiting 2025-03-14T04:12:49.6592227Z cd296e79aaba: Waiting 2025-03-14T04:12:49.6592452Z d681503af97a: Waiting 2025-03-14T04:12:49.6592648Z f3e4cb9dda5d: Pulling fs layer 2025-03-14T04:12:49.6592904Z acd125116d9b: Waiting 2025-03-14T04:12:49.6593158Z cb03b7532b5e: Waiting 2025-03-14T04:12:49.6593350Z 78b00f805b53: Waiting 2025-03-14T04:12:49.6593512Z da83488e1344: Pulling fs layer 2025-03-14T04:12:49.6593697Z 78dfb83debe9: Pulling fs layer 2025-03-14T04:12:49.6593877Z 2ce6ce002394: Waiting 2025-03-14T04:12:49.6594069Z 26ea03719a99: Waiting 2025-03-14T04:12:49.6594296Z 8b3d8ccc53ec: Waiting 2025-03-14T04:12:49.6594529Z 046ab5a4210d: Waiting 2025-03-14T04:12:49.6594769Z c9603583aaa0: Waiting 2025-03-14T04:12:49.6594946Z afabfb1e9526: Waiting 2025-03-14T04:12:49.6595110Z 595c6ea973ce: Waiting 2025-03-14T04:12:49.6595274Z 56aa7cdd744f: Waiting 2025-03-14T04:12:49.6595436Z 68f75179d122: Waiting 2025-03-14T04:12:49.6595597Z 3d413cedb292: Waiting 2025-03-14T04:12:49.6595760Z c4d93cca7501: Waiting 2025-03-14T04:12:49.6595921Z f3024011b7b6: Waiting 2025-03-14T04:12:49.6596088Z b65570655a31: Waiting 2025-03-14T04:12:49.6596236Z 4918b9b279ff: Waiting 2025-03-14T04:12:49.6596393Z be17a58842f0: Waiting 2025-03-14T04:12:49.6596550Z da83488e1344: Waiting 2025-03-14T04:12:49.6596707Z f3e4cb9dda5d: Waiting 2025-03-14T04:12:49.6596955Z 78dfb83debe9: Waiting 2025-03-14T04:12:49.6597125Z f53dff608124: Waiting 2025-03-14T04:12:49.6597340Z 879b59207c78: Waiting 2025-03-14T04:12:49.6597567Z af209379fbc2: Waiting 2025-03-14T04:12:49.6597807Z 07259ecbb7c9: Waiting 2025-03-14T04:12:49.6597980Z 0b7e81f1bc5d: Waiting 2025-03-14T04:12:49.7279871Z f35880ae6ee6: Verifying Checksum 2025-03-14T04:12:49.7280186Z f35880ae6ee6: Download complete 2025-03-14T04:12:49.7964074Z d4ce6a1f04ff: Verifying Checksum 2025-03-14T04:12:49.7964420Z d4ce6a1f04ff: Download complete 2025-03-14T04:12:49.8940131Z ca18d6003a18: Verifying Checksum 2025-03-14T04:12:49.8940794Z ca18d6003a18: Download complete 2025-03-14T04:12:49.9689977Z f6b56646e2f0: Verifying Checksum 2025-03-14T04:12:49.9690299Z f6b56646e2f0: Download complete 2025-03-14T04:12:50.0319229Z 8f84a9f2102e: Verifying Checksum 2025-03-14T04:12:50.0319524Z 8f84a9f2102e: Download complete 2025-03-14T04:12:50.0998222Z 454c9d6c7abb: Verifying Checksum 2025-03-14T04:12:50.0998618Z 454c9d6c7abb: Download complete 2025-03-14T04:12:50.1340239Z a66b8377f49f: Verifying Checksum 2025-03-14T04:12:50.1346454Z a66b8377f49f: Download complete 2025-03-14T04:12:50.2026016Z 64866485623d: Download complete 2025-03-14T04:12:50.2953897Z 04b678046b3a: Verifying Checksum 2025-03-14T04:12:50.2954486Z 04b678046b3a: Download complete 2025-03-14T04:12:50.3718328Z 1e2892d1c0d6: Verifying Checksum 2025-03-14T04:12:50.3718620Z 1e2892d1c0d6: Download complete 2025-03-14T04:12:50.4781570Z 564c8877ceb5: Download complete 2025-03-14T04:12:51.0680855Z 8f84a9f2102e: Pull complete 2025-03-14T04:12:51.1030305Z f35880ae6ee6: Pull complete 2025-03-14T04:12:51.2670329Z c75867b7d634: Verifying Checksum 2025-03-14T04:12:51.2670637Z c75867b7d634: Download complete 2025-03-14T04:12:51.2772284Z 4f4fb700ef54: Verifying Checksum 2025-03-14T04:12:51.2772595Z 4f4fb700ef54: Download complete 2025-03-14T04:12:51.3495756Z 3195860f4968: Download complete 2025-03-14T04:12:51.4649710Z 64889f83e276: Download complete 2025-03-14T04:12:51.5482076Z a2f45c18f0c1: Verifying Checksum 2025-03-14T04:12:51.5482502Z a2f45c18f0c1: Download complete 2025-03-14T04:12:51.6680112Z 16d7101d1441: Verifying Checksum 2025-03-14T04:12:51.6680442Z 16d7101d1441: Download complete 2025-03-14T04:12:51.7439137Z 9f39c1b701e2: Verifying Checksum 2025-03-14T04:12:51.7443924Z 9f39c1b701e2: Download complete 2025-03-14T04:12:51.8157744Z 2edf8a767cf2: Download complete 2025-03-14T04:12:51.8974971Z 6ee1d4017bc6: Verifying Checksum 2025-03-14T04:12:51.8975488Z 6ee1d4017bc6: Download complete 2025-03-14T04:12:51.9690661Z aa5b1d7b7a2c: Verifying Checksum 2025-03-14T04:12:51.9690998Z aa5b1d7b7a2c: Download complete 2025-03-14T04:12:52.0623462Z 6100538713cb: Verifying Checksum 2025-03-14T04:12:52.0623968Z 6100538713cb: Download complete 2025-03-14T04:12:52.9178098Z 8eb502731466: Verifying Checksum 2025-03-14T04:12:52.9178433Z 8eb502731466: Download complete 2025-03-14T04:12:52.9850194Z 692dab4cd4df: Download complete 2025-03-14T04:12:53.0697305Z 2e13cb071445: Verifying Checksum 2025-03-14T04:12:53.0697682Z 2e13cb071445: Download complete 2025-03-14T04:12:53.1201547Z f53dff608124: Download complete 2025-03-14T04:12:53.1670342Z 12fc0b985540: Download complete 2025-03-14T04:12:53.1874883Z 9c0523cdc042: Download complete 2025-03-14T04:12:53.2618447Z 76be39b43c8f: Verifying Checksum 2025-03-14T04:12:53.2618832Z 76be39b43c8f: Download complete 2025-03-14T04:12:53.3226944Z bbc30b7542d1: Verifying Checksum 2025-03-14T04:12:53.3227325Z bbc30b7542d1: Download complete 2025-03-14T04:12:53.4099541Z 2a30d35d5515: Verifying Checksum 2025-03-14T04:12:53.4099866Z 2a30d35d5515: Download complete 2025-03-14T04:12:53.5703545Z f4328165c8f3: Verifying Checksum 2025-03-14T04:12:53.5703914Z f4328165c8f3: Download complete 2025-03-14T04:12:53.6532025Z ced742050257: Verifying Checksum 2025-03-14T04:12:53.6532478Z ced742050257: Download complete 2025-03-14T04:12:53.7299397Z 7543460794d1: Download complete 2025-03-14T04:12:54.2292537Z 81f896b48ff0: Verifying Checksum 2025-03-14T04:12:54.2292922Z 81f896b48ff0: Download complete 2025-03-14T04:12:54.3156897Z f11b57697037: Download complete 2025-03-14T04:12:54.4333223Z d09490ef7bbf: Verifying Checksum 2025-03-14T04:12:54.4333727Z d09490ef7bbf: Download complete 2025-03-14T04:12:54.5160173Z 595c6ea973ce: Download complete 2025-03-14T04:12:54.6126018Z b65570655a31: Download complete 2025-03-14T04:12:54.8672511Z f3024011b7b6: Verifying Checksum 2025-03-14T04:12:54.8673097Z f3024011b7b6: Download complete 2025-03-14T04:12:54.9304761Z 0b7e81f1bc5d: Verifying Checksum 2025-03-14T04:12:54.9305074Z 0b7e81f1bc5d: Download complete 2025-03-14T04:12:55.0158606Z c9603583aaa0: Verifying Checksum 2025-03-14T04:12:55.0159224Z c9603583aaa0: Download complete 2025-03-14T04:12:55.1081479Z 68f75179d122: Download complete 2025-03-14T04:12:55.1979637Z 2ce6ce002394: Verifying Checksum 2025-03-14T04:12:55.1979976Z 2ce6ce002394: Download complete 2025-03-14T04:12:57.7209092Z a813b158a421: Verifying Checksum 2025-03-14T04:12:57.7209442Z a813b158a421: Download complete 2025-03-14T04:12:57.8216360Z 046ab5a4210d: Download complete 2025-03-14T04:12:57.9164361Z da2b385f2f54: Verifying Checksum 2025-03-14T04:12:57.9164798Z da2b385f2f54: Download complete 2025-03-14T04:12:58.0066888Z 7bc635713dd5: Download complete 2025-03-14T04:13:02.3811554Z 8eb502731466: Pull complete 2025-03-14T04:13:02.3975503Z d4ce6a1f04ff: Pull complete 2025-03-14T04:13:02.4155413Z ca18d6003a18: Pull complete 2025-03-14T04:13:02.4300324Z f6b56646e2f0: Pull complete 2025-03-14T04:13:02.4688233Z 454c9d6c7abb: Pull complete 2025-03-14T04:13:02.5164300Z a66b8377f49f: Pull complete 2025-03-14T04:13:05.3069365Z c75867b7d634: Pull complete 2025-03-14T04:13:05.3403370Z 64866485623d: Pull complete 2025-03-14T04:13:05.3550926Z 04b678046b3a: Pull complete 2025-03-14T04:13:05.3687439Z 1e2892d1c0d6: Pull complete 2025-03-14T04:13:05.3839086Z 564c8877ceb5: Pull complete 2025-03-14T04:13:23.0298896Z 8d7dafab91e2: Verifying Checksum 2025-03-14T04:13:23.0299234Z 8d7dafab91e2: Download complete 2025-03-14T04:13:23.1494604Z 26ea03719a99: Verifying Checksum 2025-03-14T04:13:23.1495045Z 26ea03719a99: Download complete 2025-03-14T04:13:23.2616055Z f37a0227cb69: Verifying Checksum 2025-03-14T04:13:23.2616455Z f37a0227cb69: Download complete 2025-03-14T04:13:23.3528936Z 0bd4004e84e3: Verifying Checksum 2025-03-14T04:13:23.3529260Z 0bd4004e84e3: Download complete 2025-03-14T04:13:23.4493155Z 967b86e63131: Verifying Checksum 2025-03-14T04:13:23.4493505Z 967b86e63131: Download complete 2025-03-14T04:13:23.5821145Z 905d662f8eef: Verifying Checksum 2025-03-14T04:13:23.5821473Z 905d662f8eef: Download complete 2025-03-14T04:13:23.6627287Z 39fff80b800e: Verifying Checksum 2025-03-14T04:13:23.6627641Z 39fff80b800e: Download complete 2025-03-14T04:13:23.7351243Z d681503af97a: Verifying Checksum 2025-03-14T04:13:23.7351651Z d681503af97a: Download complete 2025-03-14T04:13:23.8276946Z acd125116d9b: Verifying Checksum 2025-03-14T04:13:23.8277252Z acd125116d9b: Download complete 2025-03-14T04:13:23.9223373Z 78b00f805b53: Verifying Checksum 2025-03-14T04:13:23.9223680Z 78b00f805b53: Download complete 2025-03-14T04:13:24.0005090Z 8b3d8ccc53ec: Verifying Checksum 2025-03-14T04:13:24.0005467Z 8b3d8ccc53ec: Download complete 2025-03-14T04:13:24.0777561Z 07259ecbb7c9: Verifying Checksum 2025-03-14T04:13:24.0777921Z 07259ecbb7c9: Download complete 2025-03-14T04:13:24.1475103Z afabfb1e9526: Verifying Checksum 2025-03-14T04:13:24.1475413Z afabfb1e9526: Download complete 2025-03-14T04:13:24.2173080Z 56aa7cdd744f: Verifying Checksum 2025-03-14T04:13:24.2173421Z 56aa7cdd744f: Download complete 2025-03-14T04:13:24.3319752Z 3d413cedb292: Verifying Checksum 2025-03-14T04:13:24.3320124Z 3d413cedb292: Download complete 2025-03-14T04:13:27.6756560Z c4d93cca7501: Verifying Checksum 2025-03-14T04:13:27.6756959Z c4d93cca7501: Download complete 2025-03-14T04:13:27.7998122Z be17a58842f0: Download complete 2025-03-14T04:13:27.8903253Z af209379fbc2: Verifying Checksum 2025-03-14T04:13:27.8903570Z af209379fbc2: Download complete 2025-03-14T04:13:27.9572510Z 879b59207c78: Download complete 2025-03-14T04:13:28.0391688Z 4918b9b279ff: Download complete 2025-03-14T04:13:28.1466468Z f3e4cb9dda5d: Verifying Checksum 2025-03-14T04:13:28.1466831Z f3e4cb9dda5d: Download complete 2025-03-14T04:13:28.2341932Z da83488e1344: Verifying Checksum 2025-03-14T04:13:28.2342304Z da83488e1344: Download complete 2025-03-14T04:13:29.3303401Z 78dfb83debe9: Download complete 2025-03-14T04:14:07.0932696Z cb03b7532b5e: Verifying Checksum 2025-03-14T04:14:07.0933106Z cb03b7532b5e: Download complete 2025-03-14T04:14:12.6706943Z cd296e79aaba: Verifying Checksum 2025-03-14T04:14:12.6710961Z cd296e79aaba: Download complete 2025-03-14T04:14:22.1898699Z 8d7dafab91e2: Pull complete 2025-03-14T04:14:22.5388002Z 4f4fb700ef54: Pull complete 2025-03-14T04:14:22.8079528Z 3195860f4968: Pull complete 2025-03-14T04:14:23.2199954Z 64889f83e276: Pull complete 2025-03-14T04:14:23.5127530Z a2f45c18f0c1: Pull complete 2025-03-14T04:14:23.9498791Z 16d7101d1441: Pull complete 2025-03-14T04:14:24.0940050Z 9f39c1b701e2: Pull complete 2025-03-14T04:14:24.4646288Z 2edf8a767cf2: Pull complete 2025-03-14T04:14:24.7666797Z 6ee1d4017bc6: Pull complete 2025-03-14T04:14:25.1486313Z aa5b1d7b7a2c: Pull complete 2025-03-14T04:14:25.4551970Z 6100538713cb: Pull complete 2025-03-14T04:14:28.8150161Z f53dff608124: Pull complete 2025-03-14T04:14:29.2905631Z 692dab4cd4df: Pull complete 2025-03-14T04:14:29.7780514Z 2e13cb071445: Pull complete 2025-03-14T04:14:30.2322535Z 12fc0b985540: Pull complete 2025-03-14T04:14:30.5294155Z 9c0523cdc042: Pull complete 2025-03-14T04:14:30.7925456Z 76be39b43c8f: Pull complete 2025-03-14T04:14:41.3196352Z a813b158a421: Pull complete 2025-03-14T04:14:41.8279577Z bbc30b7542d1: Pull complete 2025-03-14T04:14:42.2671069Z 2a30d35d5515: Pull complete 2025-03-14T04:14:42.9958765Z 34c633845b89: Pull complete 2025-03-14T04:14:43.3390342Z f4328165c8f3: Pull complete 2025-03-14T04:14:43.8293684Z ced742050257: Pull complete 2025-03-14T04:14:44.1020386Z 7543460794d1: Pull complete 2025-03-14T04:14:46.8431115Z 81f896b48ff0: Pull complete 2025-03-14T04:14:47.1519217Z f11b57697037: Pull complete 2025-03-14T04:14:47.5376692Z d09490ef7bbf: Pull complete 2025-03-14T04:14:48.3052981Z 595c6ea973ce: Pull complete 2025-03-14T04:14:48.7446061Z b65570655a31: Pull complete 2025-03-14T04:14:49.4893860Z f3024011b7b6: Pull complete 2025-03-14T04:14:49.9560770Z 0b7e81f1bc5d: Pull complete 2025-03-14T04:14:50.3864728Z c9603583aaa0: Pull complete 2025-03-14T04:14:51.2899066Z 68f75179d122: Pull complete 2025-03-14T04:14:51.8264977Z 2ce6ce002394: Pull complete 2025-03-14T04:15:39.2089663Z cb03b7532b5e: Pull complete 2025-03-14T04:15:39.7367870Z 046ab5a4210d: Pull complete 2025-03-14T04:15:40.1718411Z da2b385f2f54: Pull complete 2025-03-14T04:15:40.8818078Z 7bc635713dd5: Pull complete 2025-03-14T04:17:26.5481625Z cd296e79aaba: Pull complete 2025-03-14T04:17:27.0819107Z 26ea03719a99: Pull complete 2025-03-14T04:17:28.6285608Z f37a0227cb69: Pull complete 2025-03-14T04:17:29.5052724Z 0bd4004e84e3: Pull complete 2025-03-14T04:17:29.9981870Z 967b86e63131: Pull complete 2025-03-14T04:17:30.9048388Z 905d662f8eef: Pull complete 2025-03-14T04:17:31.8249433Z 39fff80b800e: Pull complete 2025-03-14T04:17:32.2617362Z d681503af97a: Pull complete 2025-03-14T04:17:33.3237158Z acd125116d9b: Pull complete 2025-03-14T04:17:34.2035238Z 78b00f805b53: Pull complete 2025-03-14T04:17:34.7802059Z 8b3d8ccc53ec: Pull complete 2025-03-14T04:17:35.7592669Z 07259ecbb7c9: Pull complete 2025-03-14T04:17:36.2469983Z afabfb1e9526: Pull complete 2025-03-14T04:17:37.2080212Z 56aa7cdd744f: Pull complete 2025-03-14T04:17:37.5516651Z 3d413cedb292: Pull complete 2025-03-14T04:17:44.4674747Z c4d93cca7501: Pull complete 2025-03-14T04:17:44.9128250Z be17a58842f0: Pull complete 2025-03-14T04:17:45.3551812Z af209379fbc2: Pull complete 2025-03-14T04:17:45.8190238Z 879b59207c78: Pull complete 2025-03-14T04:17:46.3046422Z 4918b9b279ff: Pull complete 2025-03-14T04:17:46.8222133Z f3e4cb9dda5d: Pull complete 2025-03-14T04:17:47.7035554Z da83488e1344: Pull complete 2025-03-14T04:17:50.0442285Z 78dfb83debe9: Pull complete 2025-03-14T04:17:50.6355461Z Digest: sha256:2f16eb7d476b5dc359eb789543b0cfc9aa5c04fe105d51acd219f91259bad5ab 2025-03-14T04:17:50.7165010Z Status: Downloaded newer image for 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:17:50.7425754Z 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:17:50.7468181Z ##[group]Run echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT" 2025-03-14T04:17:50.7468759Z echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT" 2025-03-14T04:17:50.7474723Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:50.7474972Z env: 2025-03-14T04:17:50.7475137Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:50.7475323Z ##[endgroup] 2025-03-14T04:17:50.7547332Z Prepare all required actions 2025-03-14T04:17:50.7786224Z ##[group]Run ./.github/actions/get-workflow-job-id 2025-03-14T04:17:50.7786463Z with: 2025-03-14T04:17:50.7786809Z github-token: *** 2025-03-14T04:17:50.7786971Z env: 2025-03-14T04:17:50.7787125Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:50.7787307Z ##[endgroup] 2025-03-14T04:17:50.7945056Z ##[group]Run set -eux 2025-03-14T04:17:50.7945282Z set -eux 2025-03-14T04:17:50.7945570Z python3 .github/scripts/get_workflow_job_id.py "${GITHUB_RUN_ID}" "${RUNNER_NAME}" 2025-03-14T04:17:50.7949856Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:50.7950107Z env: 2025-03-14T04:17:50.7950265Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:50.7950612Z GITHUB_TOKEN: *** 2025-03-14T04:17:50.7950781Z ##[endgroup] 2025-03-14T04:17:50.7974800Z + python3 .github/scripts/get_workflow_job_id.py 13849515380 i-00f46405241e0bbc9 2025-03-14T04:17:51.3884399Z setting job-id=38754842362 2025-03-14T04:17:51.3888403Z setting job-name=linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:17:51.4118379Z ##[group]Run python3 -m pip install psutil==5.9.1 nvidia-ml-py==11.525.84 dataclasses_json==0.6.7 2025-03-14T04:17:51.4118867Z python3 -m pip install psutil==5.9.1 nvidia-ml-py==11.525.84 dataclasses_json==0.6.7 2025-03-14T04:17:51.4119250Z python3 -m tools.stats.monitor > usage_log.txt 2>&1 & 2025-03-14T04:17:51.4119563Z echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}" 2025-03-14T04:17:51.4123902Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:51.4124157Z env: 2025-03-14T04:17:51.4124330Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:51.4124523Z JOB_ID: 38754842362 2025-03-14T04:17:51.4124876Z JOB_NAME: linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:17:51.4125256Z WORKFLOW_NAME: inductor 2025-03-14T04:17:51.4125448Z WORKFLOW_RUN_ID: 13849515380 2025-03-14T04:17:51.4125657Z ##[endgroup] 2025-03-14T04:17:51.5852043Z Defaulting to user installation because normal site-packages is not writeable 2025-03-14T04:17:51.5990520Z Requirement already satisfied: psutil==5.9.1 in /home/ec2-user/.local/lib/python3.9/site-packages (5.9.1) 2025-03-14T04:17:51.5992321Z Requirement already satisfied: nvidia-ml-py==11.525.84 in /home/ec2-user/.local/lib/python3.9/site-packages (11.525.84) 2025-03-14T04:17:51.5993079Z Requirement already satisfied: dataclasses_json==0.6.7 in /home/ec2-user/.local/lib/python3.9/site-packages (0.6.7) 2025-03-14T04:17:51.6070416Z Requirement already satisfied: typing-inspect<1,>=0.4.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from dataclasses_json==0.6.7) (0.9.0) 2025-03-14T04:17:51.6072411Z Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from dataclasses_json==0.6.7) (3.26.1) 2025-03-14T04:17:51.6130897Z Requirement already satisfied: packaging>=17.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from marshmallow<4.0.0,>=3.18.0->dataclasses_json==0.6.7) (24.2) 2025-03-14T04:17:51.6151524Z Requirement already satisfied: mypy-extensions>=0.3.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from typing-inspect<1,>=0.4.0->dataclasses_json==0.6.7) (1.0.0) 2025-03-14T04:17:51.6152473Z Requirement already satisfied: typing-extensions>=3.7.4 in /home/ec2-user/.local/lib/python3.9/site-packages (from typing-inspect<1,>=0.4.0->dataclasses_json==0.6.7) (4.12.2) 2025-03-14T04:17:51.7667145Z Prepare all required actions 2025-03-14T04:17:51.7667473Z Getting action download info 2025-03-14T04:17:51.8657171Z Download action repository 'seemethere/download-artifact-s3@v4' (SHA:1da556a7aa0a088e3153970611f6c432d58e80e6) 2025-03-14T04:17:52.8827711Z Download action repository 'actions/download-artifact@v4' (SHA:cc203385981b70ca67e1cc392babf9cc229d5806) 2025-03-14T04:17:54.9442899Z ##[group]Run ./.github/actions/download-build-artifacts 2025-03-14T04:17:54.9443199Z with: 2025-03-14T04:17:54.9443394Z name: linux-jammy-py3.9-gcc11-build 2025-03-14T04:17:54.9443634Z s3-bucket: gha-artifacts 2025-03-14T04:17:54.9443836Z env: 2025-03-14T04:17:54.9444009Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:54.9444201Z ##[endgroup] 2025-03-14T04:17:54.9474099Z ##[group]Run seemethere/download-artifact-s3@v4 2025-03-14T04:17:54.9474341Z with: 2025-03-14T04:17:54.9474522Z name: linux-jammy-py3.9-gcc11-build 2025-03-14T04:17:54.9474741Z s3-bucket: gha-artifacts 2025-03-14T04:17:54.9505565Z region: us-east-1 2025-03-14T04:17:54.9505775Z env: 2025-03-14T04:17:54.9505943Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:54.9506138Z ##[endgroup] 2025-03-14T04:17:55.3393135Z (node:225448) NOTE: We are formalizing our plans to enter AWS SDK for JavaScript (v2) into maintenance mode in 2023. 2025-03-14T04:17:55.3393618Z 2025-03-14T04:17:55.3394140Z Please migrate your code to use AWS SDK for JavaScript (v3). 2025-03-14T04:17:55.3394504Z For more information, check the migration guide at https://a.co/7PzMCcy 2025-03-14T04:17:55.3394914Z (Use `node --trace-warnings ...` to show where the warning was created) 2025-03-14T04:17:55.4261836Z Found 1 objects with prefix pytorch/pytorch/13849515380/linux-jammy-py3.9-gcc11-build/ 2025-03-14T04:17:55.4263822Z Starting download (1/1): /home/ec2-user/actions-runner/_work/pytorch/pytorch/artifacts.zip 2025-03-14T04:17:59.4042464Z Finished download (1/1): /home/ec2-user/actions-runner/_work/pytorch/pytorch/artifacts.zip 2025-03-14T04:17:59.4045372Z Artifact download has finished successfully 2025-03-14T04:17:59.4219438Z ##[group]Run unzip -o artifacts.zip 2025-03-14T04:17:59.4219701Z unzip -o artifacts.zip 2025-03-14T04:17:59.4223954Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:59.4224214Z env: 2025-03-14T04:17:59.4224380Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:59.4224563Z ##[endgroup] 2025-03-14T04:17:59.4263460Z Archive: artifacts.zip 2025-03-14T04:17:59.4264119Z creating: dist/ 2025-03-14T04:18:00.3164156Z inflating: dist/torch-2.8.0a0+gitaed0b7a-cp39-cp39-linux_x86_64.whl 2025-03-14T04:18:00.3273922Z inflating: dist/.ninja_log 2025-03-14T04:18:00.3274245Z creating: build/custom_test_artifacts/ 2025-03-14T04:18:00.3274536Z creating: build/custom_test_artifacts/custom-op-build/ 2025-03-14T04:18:00.3274872Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/ 2025-03-14T04:18:00.3275249Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/pkgRedirects/ 2025-03-14T04:18:00.3279595Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeConfigureLog.yaml 2025-03-14T04:18:00.3280176Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/ 2025-03-14T04:18:00.3280675Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CMakeSystem.cmake 2025-03-14T04:18:00.3281190Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdC/ 2025-03-14T04:18:00.3281910Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdC/tmp/ 2025-03-14T04:18:00.3282376Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdC/CMakeCCompilerId.c 2025-03-14T04:18:00.3283682Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdC/a.out 2025-03-14T04:18:00.3292137Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CMakeCCompiler.cmake 2025-03-14T04:18:00.3293048Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdCXX/ 2025-03-14T04:18:00.3293480Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdCXX/tmp/ 2025-03-14T04:18:00.3302448Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdCXX/CMakeCXXCompilerId.cpp 2025-03-14T04:18:00.3312495Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdCXX/a.out 2025-03-14T04:18:00.3313029Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CMakeCXXCompiler.cmake 2025-03-14T04:18:00.3313539Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CMakeDetermineCompilerABI_C.bin 2025-03-14T04:18:00.3315169Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CMakeDetermineCompilerABI_CXX.bin 2025-03-14T04:18:00.3315639Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeScratch/ 2025-03-14T04:18:00.3324732Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/cmake.check_cache 2025-03-14T04:18:00.3325192Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/ 2025-03-14T04:18:00.3325639Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/compiler_depend.ts 2025-03-14T04:18:00.3326129Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/compiler_depend.make 2025-03-14T04:18:00.3326596Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/depend.make 2025-03-14T04:18:00.3327045Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/link.txt 2025-03-14T04:18:00.3327496Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/cmake_clean.cmake 2025-03-14T04:18:00.3332990Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/build.make 2025-03-14T04:18:00.3333567Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/DependInfo.cmake 2025-03-14T04:18:00.3340639Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/flags.make 2025-03-14T04:18:00.3354992Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/progress.make 2025-03-14T04:18:00.3381436Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/op.cpp.o.d 2025-03-14T04:18:00.3543143Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/op.cpp.o 2025-03-14T04:18:00.3543659Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/ 2025-03-14T04:18:00.3544127Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/compiler_depend.ts 2025-03-14T04:18:00.3544644Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/compiler_depend.make 2025-03-14T04:18:00.3545143Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/depend.make 2025-03-14T04:18:00.3545604Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/link.txt 2025-03-14T04:18:00.3546078Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/cmake_clean.cmake 2025-03-14T04:18:00.3546559Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/build.make 2025-03-14T04:18:00.3547284Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/DependInfo.cmake 2025-03-14T04:18:00.3554821Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/flags.make 2025-03-14T04:18:00.3555350Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/progress.make 2025-03-14T04:18:00.3572150Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/test_custom_ops.cpp.o.d 2025-03-14T04:18:00.3643092Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/test_custom_ops.cpp.o 2025-03-14T04:18:00.3643751Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeDirectoryInformation.cmake 2025-03-14T04:18:00.3644350Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/TargetDirectories.txt 2025-03-14T04:18:00.3644879Z extracting: build/custom_test_artifacts/custom-op-build/CMakeFiles/progress.marks 2025-03-14T04:18:00.3645484Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/Makefile2 2025-03-14T04:18:00.3645889Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/Makefile.cmake 2025-03-14T04:18:00.3646947Z inflating: build/custom_test_artifacts/custom-op-build/CMakeCache.txt 2025-03-14T04:18:00.3649093Z inflating: build/custom_test_artifacts/custom-op-build/Makefile 2025-03-14T04:18:00.3649552Z inflating: build/custom_test_artifacts/custom-op-build/cmake_install.cmake 2025-03-14T04:18:00.3797081Z inflating: build/custom_test_artifacts/custom-op-build/libcustom_ops.so 2025-03-14T04:18:00.3866079Z inflating: build/custom_test_artifacts/custom-op-build/test_custom_ops 2025-03-14T04:18:00.3873429Z creating: build/custom_test_artifacts/jit-hook-build/ 2025-03-14T04:18:00.3934349Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/ 2025-03-14T04:18:00.3934790Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/pkgRedirects/ 2025-03-14T04:18:00.3935257Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeConfigureLog.yaml 2025-03-14T04:18:00.3935680Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/ 2025-03-14T04:18:00.3936092Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CMakeSystem.cmake 2025-03-14T04:18:00.3936532Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdC/ 2025-03-14T04:18:00.3936952Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdC/tmp/ 2025-03-14T04:18:00.3937414Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdC/CMakeCCompilerId.c 2025-03-14T04:18:00.3937881Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdC/a.out 2025-03-14T04:18:00.3938317Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CMakeCCompiler.cmake 2025-03-14T04:18:00.3938749Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdCXX/ 2025-03-14T04:18:00.3939191Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdCXX/tmp/ 2025-03-14T04:18:00.3939675Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdCXX/CMakeCXXCompilerId.cpp 2025-03-14T04:18:00.3940181Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdCXX/a.out 2025-03-14T04:18:00.3940622Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CMakeCXXCompiler.cmake 2025-03-14T04:18:00.3941090Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CMakeDetermineCompilerABI_C.bin 2025-03-14T04:18:00.3941581Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CMakeDetermineCompilerABI_CXX.bin 2025-03-14T04:18:00.3942015Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeScratch/ 2025-03-14T04:18:00.3942387Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/cmake.check_cache 2025-03-14T04:18:00.3943039Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/ 2025-03-14T04:18:00.3943479Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/compiler_depend.ts 2025-03-14T04:18:00.3943975Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/compiler_depend.make 2025-03-14T04:18:00.3944552Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/depend.make 2025-03-14T04:18:00.3944999Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/link.txt 2025-03-14T04:18:00.3945453Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/cmake_clean.cmake 2025-03-14T04:18:00.3945913Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/build.make 2025-03-14T04:18:00.3946371Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/DependInfo.cmake 2025-03-14T04:18:00.3946833Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/flags.make 2025-03-14T04:18:00.3947279Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/progress.make 2025-03-14T04:18:00.3947762Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/test_jit_hooks.cpp.o.d 2025-03-14T04:18:00.3978828Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/test_jit_hooks.cpp.o 2025-03-14T04:18:00.3979408Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeDirectoryInformation.cmake 2025-03-14T04:18:00.3979886Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/TargetDirectories.txt 2025-03-14T04:18:00.3980311Z extracting: build/custom_test_artifacts/jit-hook-build/CMakeFiles/progress.marks 2025-03-14T04:18:00.3980699Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/Makefile2 2025-03-14T04:18:00.3981089Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/Makefile.cmake 2025-03-14T04:18:00.3986993Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeCache.txt 2025-03-14T04:18:00.4012763Z inflating: build/custom_test_artifacts/jit-hook-build/Makefile 2025-03-14T04:18:00.4013170Z inflating: build/custom_test_artifacts/jit-hook-build/cmake_install.cmake 2025-03-14T04:18:00.4045274Z inflating: build/custom_test_artifacts/jit-hook-build/test_jit_hooks 2025-03-14T04:18:00.4045808Z creating: build/custom_test_artifacts/custom-backend-build/ 2025-03-14T04:18:00.4046209Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/ 2025-03-14T04:18:00.4046659Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/pkgRedirects/ 2025-03-14T04:18:00.4047166Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeConfigureLog.yaml 2025-03-14T04:18:00.4047674Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/ 2025-03-14T04:18:00.4048171Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CMakeSystem.cmake 2025-03-14T04:18:00.4048694Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdC/ 2025-03-14T04:18:00.4049208Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdC/tmp/ 2025-03-14T04:18:00.4049779Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdC/CMakeCCompilerId.c 2025-03-14T04:18:00.4050362Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdC/a.out 2025-03-14T04:18:00.4050904Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CMakeCCompiler.cmake 2025-03-14T04:18:00.4051418Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdCXX/ 2025-03-14T04:18:00.4052313Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdCXX/tmp/ 2025-03-14T04:18:00.4053209Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdCXX/CMakeCXXCompilerId.cpp 2025-03-14T04:18:00.4054161Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdCXX/a.out 2025-03-14T04:18:00.4054969Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CMakeCXXCompiler.cmake 2025-03-14T04:18:00.4056313Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CMakeDetermineCompilerABI_C.bin 2025-03-14T04:18:00.4057445Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CMakeDetermineCompilerABI_CXX.bin 2025-03-14T04:18:00.4057953Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeScratch/ 2025-03-14T04:18:00.4058386Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/cmake.check_cache 2025-03-14T04:18:00.4058838Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/ 2025-03-14T04:18:00.4059338Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/compiler_depend.ts 2025-03-14T04:18:00.4059896Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/compiler_depend.make 2025-03-14T04:18:00.4060437Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/depend.make 2025-03-14T04:18:00.4061146Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/link.txt 2025-03-14T04:18:00.4061664Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/cmake_clean.cmake 2025-03-14T04:18:00.4062187Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/build.make 2025-03-14T04:18:00.4062707Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/DependInfo.cmake 2025-03-14T04:18:00.4063234Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/flags.make 2025-03-14T04:18:00.4063742Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/progress.make 2025-03-14T04:18:00.4065345Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/custom_backend.cpp.o.d 2025-03-14T04:18:00.4171169Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/custom_backend.cpp.o 2025-03-14T04:18:00.4172931Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/ 2025-03-14T04:18:00.4173512Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/compiler_depend.ts 2025-03-14T04:18:00.4174084Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/compiler_depend.make 2025-03-14T04:18:00.4174648Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/depend.make 2025-03-14T04:18:00.4175153Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/link.txt 2025-03-14T04:18:00.4175669Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/cmake_clean.cmake 2025-03-14T04:18:00.4176190Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/build.make 2025-03-14T04:18:00.4176710Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/DependInfo.cmake 2025-03-14T04:18:00.4177229Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/flags.make 2025-03-14T04:18:00.4177744Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/progress.make 2025-03-14T04:18:00.4190223Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/test_custom_backend.cpp.o.d 2025-03-14T04:18:00.4236897Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/test_custom_backend.cpp.o 2025-03-14T04:18:00.4237527Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeDirectoryInformation.cmake 2025-03-14T04:18:00.4238286Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/TargetDirectories.txt 2025-03-14T04:18:00.4238764Z extracting: build/custom_test_artifacts/custom-backend-build/CMakeFiles/progress.marks 2025-03-14T04:18:00.4239189Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/Makefile2 2025-03-14T04:18:00.4239605Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/Makefile.cmake 2025-03-14T04:18:00.4240016Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeCache.txt 2025-03-14T04:18:00.4240388Z inflating: build/custom_test_artifacts/custom-backend-build/Makefile 2025-03-14T04:18:00.4240763Z inflating: build/custom_test_artifacts/custom-backend-build/cmake_install.cmake 2025-03-14T04:18:00.4330278Z inflating: build/custom_test_artifacts/custom-backend-build/libcustom_backend.so 2025-03-14T04:18:00.4369182Z inflating: build/custom_test_artifacts/custom-backend-build/test_custom_backend 2025-03-14T04:18:00.4369597Z creating: build/lib/ 2025-03-14T04:18:00.4442559Z inflating: build/lib/libprotobuf-lite.a 2025-03-14T04:18:00.4831073Z inflating: build/lib/libprotobuf.a 2025-03-14T04:18:00.5309164Z inflating: build/lib/libprotoc.a 2025-03-14T04:18:00.5311005Z inflating: build/lib/libpthreadpool.a 2025-03-14T04:18:00.5311374Z inflating: build/lib/libcpuinfo.a 2025-03-14T04:18:00.5312524Z inflating: build/lib/libcpuinfo_internals.a 2025-03-14T04:18:00.5312800Z inflating: build/lib/libclog.a 2025-03-14T04:18:00.5313085Z inflating: build/lib/libnnpack_reference_layers.a 2025-03-14T04:18:00.5313353Z inflating: build/lib/libpytorch_qnnpack.a 2025-03-14T04:18:00.5473589Z inflating: build/lib/libmicrokernels-prod.a 2025-03-14T04:18:00.5488155Z inflating: build/lib/libnnpack.a 2025-03-14T04:18:00.6258081Z inflating: build/lib/libmicrokernels-all.a 2025-03-14T04:18:00.6318594Z inflating: build/lib/libgtest.a 2025-03-14T04:18:00.6331224Z inflating: build/lib/libgmock.a 2025-03-14T04:18:00.6331802Z inflating: build/lib/libgtest_main.a 2025-03-14T04:18:00.6332194Z inflating: build/lib/libgmock_main.a 2025-03-14T04:18:00.6411371Z inflating: build/lib/libXNNPACK.a 2025-03-14T04:18:00.6478390Z inflating: build/lib/libbenchmark.a 2025-03-14T04:18:00.6483325Z inflating: build/lib/libbenchmark_main.a 2025-03-14T04:18:00.6488240Z inflating: build/lib/libittnotify.a 2025-03-14T04:18:00.6542371Z inflating: build/lib/libasmjit.a 2025-03-14T04:18:00.7434732Z inflating: build/lib/libfbgemm.a 2025-03-14T04:18:00.7458286Z inflating: build/lib/libtensorpipe_uv.a 2025-03-14T04:18:00.7938821Z inflating: build/lib/libtensorpipe.a 2025-03-14T04:18:00.8036512Z inflating: build/lib/libgloo.a 2025-03-14T04:18:00.8071000Z inflating: build/lib/libonnx_proto.a 2025-03-14T04:18:00.8705907Z inflating: build/lib/libonnx.a 2025-03-14T04:18:01.7581499Z inflating: build/lib/libdnnl.a 2025-03-14T04:18:01.7599146Z inflating: build/lib/libfmt.a 2025-03-14T04:18:01.7833046Z inflating: build/lib/libkineto.a 2025-03-14T04:18:01.7932038Z inflating: build/lib/libc10.so 2025-03-14T04:18:01.7932377Z inflating: build/lib/libtorch_global_deps.so 2025-03-14T04:18:03.9425085Z inflating: build/lib/libtorch_cpu.so 2025-03-14T04:18:03.9430501Z inflating: build/lib/libunbox_lib.a 2025-03-14T04:18:03.9431015Z inflating: build/lib/libtorch.so 2025-03-14T04:18:03.9491804Z inflating: build/lib/libtorchbind_test.so 2025-03-14T04:18:03.9510792Z inflating: build/lib/libjitbackend_test.so 2025-03-14T04:18:03.9533028Z inflating: build/lib/libbackend_with_compiler.so 2025-03-14T04:18:03.9555464Z inflating: build/lib/libaoti_custom_ops.so 2025-03-14T04:18:03.9557444Z inflating: build/lib/libshm.so 2025-03-14T04:18:04.1254787Z inflating: build/lib/libtorch_python.so 2025-03-14T04:18:04.1285128Z inflating: build/lib/libnnapi_backend.so 2025-03-14T04:18:04.1285598Z creating: build/bin/ 2025-03-14T04:18:04.1286275Z creating: build/bin/CMakeFiles/ 2025-03-14T04:18:04.1286536Z inflating: build/bin/cmake_install.cmake 2025-03-14T04:18:04.1286782Z inflating: build/bin/CTestTestfile.cmake 2025-03-14T04:18:04.1696980Z inflating: build/bin/protoc-3.13.0.0 2025-03-14T04:18:04.2112268Z inflating: build/bin/protoc 2025-03-14T04:18:04.2161421Z inflating: build/bin/c10_CompileTimeFunctionPointer_test 2025-03-14T04:18:04.2212119Z inflating: build/bin/c10_DeviceGuard_test 2025-03-14T04:18:04.2264548Z inflating: build/bin/c10_Device_test 2025-03-14T04:18:04.2318353Z inflating: build/bin/c10_DispatchKeySet_test 2025-03-14T04:18:04.2369793Z inflating: build/bin/c10_StreamGuard_test 2025-03-14T04:18:04.2424071Z inflating: build/bin/c10_Scalar_test 2025-03-14T04:18:04.2473311Z inflating: build/bin/c10_SymInt_test 2025-03-14T04:18:04.2526849Z inflating: build/bin/c10_InlineStreamGuard_test 2025-03-14T04:18:04.2581878Z inflating: build/bin/c10_InlineDeviceGuard_test 2025-03-14T04:18:04.2638607Z inflating: build/bin/c10_SizesAndStrides_test 2025-03-14T04:18:04.2705982Z inflating: build/bin/c10_cow_test 2025-03-14T04:18:04.2753808Z inflating: build/bin/c10_ConstexprCrc_test 2025-03-14T04:18:04.2803677Z inflating: build/bin/c10_ArrayRef_test 2025-03-14T04:18:04.2857929Z inflating: build/bin/c10_Bitset_test 2025-03-14T04:18:04.2904853Z inflating: build/bin/c10_DeadlockDetection_test 2025-03-14T04:18:04.2957609Z inflating: build/bin/c10_Half_test 2025-03-14T04:18:04.3012281Z inflating: build/bin/c10_LeftRight_test 2025-03-14T04:18:04.3066491Z inflating: build/bin/c10_NetworkFlow_test 2025-03-14T04:18:04.3122982Z inflating: build/bin/c10_Metaprogramming_test 2025-03-14T04:18:04.3170876Z inflating: build/bin/c10_Synchronized_test 2025-03-14T04:18:04.3224648Z inflating: build/bin/c10_TypeIndex_test 2025-03-14T04:18:04.3278562Z inflating: build/bin/c10_ThreadLocal_test 2025-03-14T04:18:04.3327378Z inflating: build/bin/c10_TypeList_test 2025-03-14T04:18:04.3379053Z inflating: build/bin/c10_TypeTraits_test 2025-03-14T04:18:04.3427162Z inflating: build/bin/c10_accumulate_test 2025-03-14T04:18:04.3478162Z inflating: build/bin/c10_bit_cast_test 2025-03-14T04:18:04.3535111Z inflating: build/bin/c10_complex_math_test 2025-03-14T04:18:04.3590924Z inflating: build/bin/c10_bfloat16_test 2025-03-14T04:18:04.3646076Z inflating: build/bin/c10_complex_test 2025-03-14T04:18:04.3695676Z inflating: build/bin/c10_error_test 2025-03-14T04:18:04.3747175Z inflating: build/bin/c10_exception_test 2025-03-14T04:18:04.3808563Z inflating: build/bin/c10_flags_test 2025-03-14T04:18:04.3951653Z inflating: build/bin/c10_intrusive_ptr_test 2025-03-14T04:18:04.3998346Z inflating: build/bin/c10_generic_math_test 2025-03-14T04:18:04.4049450Z inflating: build/bin/c10_irange_test 2025-03-14T04:18:04.4103078Z inflating: build/bin/c10_lazy_test 2025-03-14T04:18:04.4162581Z inflating: build/bin/c10_logging_test 2025-03-14T04:18:04.4213867Z inflating: build/bin/c10_registry_test 2025-03-14T04:18:04.4275876Z inflating: build/bin/c10_ordered_preserving_dict_test 2025-03-14T04:18:04.4348350Z inflating: build/bin/c10_optional_test 2025-03-14T04:18:04.4492802Z inflating: build/bin/c10_small_vector_test 2025-03-14T04:18:04.4544569Z inflating: build/bin/c10_ssize_test 2025-03-14T04:18:04.4598132Z inflating: build/bin/c10_string_util_test 2025-03-14T04:18:04.4648272Z inflating: build/bin/c10_tempfile_test 2025-03-14T04:18:04.4691091Z inflating: build/bin/c10_intrusive_ptr_benchmark 2025-03-14T04:18:04.4741478Z inflating: build/bin/c10_string_view_test 2025-03-14T04:18:04.4797590Z inflating: build/bin/c10_typeid_test 2025-03-14T04:18:04.5162635Z inflating: build/bin/vec_test_all_types_DEFAULT 2025-03-14T04:18:04.5539181Z inflating: build/bin/vec_test_all_types_AVX512 2025-03-14T04:18:04.5930193Z inflating: build/bin/vec_test_all_types_AVX2 2025-03-14T04:18:04.5983740Z inflating: build/bin/test_edge_op_registration 2025-03-14T04:18:04.6038245Z inflating: build/bin/static_runtime_bench 2025-03-14T04:18:04.6271082Z inflating: build/bin/static_runtime_test 2025-03-14T04:18:04.6344283Z inflating: build/bin/Dict_test 2025-03-14T04:18:04.6394820Z inflating: build/bin/Dimname_test 2025-03-14T04:18:04.6458252Z inflating: build/bin/MaybeOwned_test 2025-03-14T04:18:04.6513479Z inflating: build/bin/NamedTensor_test 2025-03-14T04:18:04.6573136Z inflating: build/bin/apply_utils_test 2025-03-14T04:18:04.6629802Z inflating: build/bin/atest 2025-03-14T04:18:04.6690647Z inflating: build/bin/basic 2025-03-14T04:18:04.6745276Z inflating: build/bin/broadcast_test 2025-03-14T04:18:04.6796509Z inflating: build/bin/cpu_allocator_test 2025-03-14T04:18:04.6852745Z inflating: build/bin/cpu_generator_test 2025-03-14T04:18:04.6906207Z inflating: build/bin/cpu_profiling_allocator_test 2025-03-14T04:18:04.6992516Z inflating: build/bin/cpu_rng_test 2025-03-14T04:18:04.7045281Z inflating: build/bin/dispatch_key_set_test 2025-03-14T04:18:04.7093397Z inflating: build/bin/dlconvertor_test 2025-03-14T04:18:04.7152293Z inflating: build/bin/extension_backend_test 2025-03-14T04:18:04.7207012Z inflating: build/bin/half_test 2025-03-14T04:18:04.7295523Z inflating: build/bin/ivalue_test 2025-03-14T04:18:04.7346922Z inflating: build/bin/lazy_tensor_test 2025-03-14T04:18:04.7398520Z inflating: build/bin/math_kernel_test 2025-03-14T04:18:04.7448779Z inflating: build/bin/memory_format_test 2025-03-14T04:18:04.7501956Z inflating: build/bin/memory_overlapping_test 2025-03-14T04:18:04.7556010Z inflating: build/bin/mobile_memory_cleanup 2025-03-14T04:18:04.7610693Z inflating: build/bin/native_test 2025-03-14T04:18:04.7663399Z inflating: build/bin/operator_name_test 2025-03-14T04:18:04.7732702Z inflating: build/bin/operators_test 2025-03-14T04:18:04.7764790Z inflating: build/bin/packedtensoraccessor_test 2025-03-14T04:18:04.7831848Z inflating: build/bin/pow_test 2025-03-14T04:18:04.7887638Z inflating: build/bin/quantized_test 2025-03-14T04:18:04.7938446Z inflating: build/bin/reduce_ops_test 2025-03-14T04:18:04.7991056Z inflating: build/bin/reportMemoryUsage_test 2025-03-14T04:18:04.8047870Z inflating: build/bin/scalar_tensor_test 2025-03-14T04:18:04.8101809Z inflating: build/bin/scalar_test 2025-03-14T04:18:04.8153356Z inflating: build/bin/StorageUtils_test 2025-03-14T04:18:04.8206165Z inflating: build/bin/stride_properties_test 2025-03-14T04:18:04.8282406Z inflating: build/bin/tensor_iterator_test 2025-03-14T04:18:04.8333748Z inflating: build/bin/test_parallel 2025-03-14T04:18:04.8335505Z inflating: build/bin/thread_init_test 2025-03-14T04:18:04.8393263Z inflating: build/bin/type_ptr_test 2025-03-14T04:18:04.8449985Z inflating: build/bin/type_test 2025-03-14T04:18:04.8505791Z inflating: build/bin/undefined_tensor_test 2025-03-14T04:18:04.8507801Z inflating: build/bin/verify_api_visibility 2025-03-14T04:18:04.8573185Z inflating: build/bin/legacy_vmap_test 2025-03-14T04:18:04.8625961Z inflating: build/bin/weakref_test 2025-03-14T04:18:04.8676008Z inflating: build/bin/wrapdim_test 2025-03-14T04:18:04.8728660Z inflating: build/bin/xla_tensor_test 2025-03-14T04:18:04.8783892Z inflating: build/bin/IListRef_test 2025-03-14T04:18:04.8883708Z inflating: build/bin/List_test 2025-03-14T04:18:04.8947814Z inflating: build/bin/KernelFunction_test 2025-03-14T04:18:04.9059862Z inflating: build/bin/kernel_function_legacy_test 2025-03-14T04:18:04.9149534Z inflating: build/bin/kernel_function_test 2025-03-14T04:18:04.9269066Z inflating: build/bin/kernel_lambda_legacy_test 2025-03-14T04:18:04.9365449Z inflating: build/bin/kernel_lambda_test 2025-03-14T04:18:04.9423790Z inflating: build/bin/kernel_stackbased_test 2025-03-14T04:18:04.9514518Z inflating: build/bin/make_boxed_from_unboxed_functor_test 2025-03-14T04:18:04.9566196Z inflating: build/bin/CppSignature_test 2025-03-14T04:18:04.9623254Z inflating: build/bin/backend_fallback_test 2025-03-14T04:18:04.9670882Z inflating: build/bin/op_allowlist_test 2025-03-14T04:18:04.9951448Z inflating: build/bin/op_registration_test 2025-03-14T04:18:05.0008852Z inflating: build/bin/inline_container_test 2025-03-14T04:18:05.0530844Z inflating: build/bin/test_jit 2025-03-14T04:18:05.1253254Z inflating: build/bin/test_tensorexpr 2025-03-14T04:18:05.1305867Z inflating: build/bin/BackoffTest 2025-03-14T04:18:05.1358230Z inflating: build/bin/HashStoreTest 2025-03-14T04:18:05.1410074Z inflating: build/bin/FileStoreTest 2025-03-14T04:18:05.1466486Z inflating: build/bin/TCPStoreTest 2025-03-14T04:18:05.1477664Z inflating: build/bin/tutorial_tensorexpr 2025-03-14T04:18:05.1482372Z inflating: build/bin/example_allreduce 2025-03-14T04:18:05.1543946Z inflating: build/bin/ProcessGroupGlooTest 2025-03-14T04:18:05.1597788Z inflating: build/bin/test_dist_autograd 2025-03-14T04:18:05.1665643Z inflating: build/bin/test_cpp_rpc 2025-03-14T04:18:05.2696140Z inflating: build/bin/test_api 2025-03-14T04:18:05.2696498Z inflating: build/bin/parallel_benchmark 2025-03-14T04:18:05.2762508Z inflating: build/bin/test_mobile_nnc 2025-03-14T04:18:05.2770184Z inflating: build/bin/aot_model_compiler_test 2025-03-14T04:18:05.3082327Z inflating: build/bin/test_lazy 2025-03-14T04:18:05.3084514Z inflating: build/bin/torch_shm_manager 2025-03-14T04:18:05.3084975Z creating: .additional_ci_files/ 2025-03-14T04:18:05.3181604Z inflating: .additional_ci_files/test-times.json 2025-03-14T04:18:05.3548666Z inflating: .additional_ci_files/test-class-times.json 2025-03-14T04:18:05.3575535Z ##[group]Run rm artifacts.zip 2025-03-14T04:18:05.3575827Z rm artifacts.zip 2025-03-14T04:18:05.3580348Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:18:05.3580602Z env: 2025-03-14T04:18:05.3580774Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:05.3580983Z ##[endgroup] 2025-03-14T04:18:05.4087422Z ##[group]Run df -H 2025-03-14T04:18:05.4087642Z df -H 2025-03-14T04:18:05.4092438Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:18:05.4092716Z env: 2025-03-14T04:18:05.4092889Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:05.4093082Z ##[endgroup] 2025-03-14T04:18:05.4131108Z Filesystem Size Used Avail Use% Mounted on 2025-03-14T04:18:05.4131722Z devtmpfs 4.2M 0 4.2M 0% /dev 2025-03-14T04:18:05.4132055Z tmpfs 67G 0 67G 0% /dev/shm 2025-03-14T04:18:05.4132309Z tmpfs 27G 783k 27G 1% /run 2025-03-14T04:18:05.4132554Z /dev/nvme0n1p1 215G 49G 167G 23% / 2025-03-14T04:18:05.4132797Z tmpfs 67G 29k 67G 1% /tmp 2025-03-14T04:18:05.4133084Z /dev/nvme0n1p128 11M 1.4M 9.2M 13% /boot/efi 2025-03-14T04:18:05.4157673Z Prepare all required actions 2025-03-14T04:18:05.4157988Z Getting action download info 2025-03-14T04:18:05.5506547Z ##[group]Run ./.github/actions/download-td-artifacts 2025-03-14T04:18:05.5506812Z with: 2025-03-14T04:18:05.5506974Z env: 2025-03-14T04:18:05.5507143Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:05.5507334Z ##[endgroup] 2025-03-14T04:18:05.5664139Z ##[group]Run seemethere/download-artifact-s3@v4 2025-03-14T04:18:05.5664391Z with: 2025-03-14T04:18:05.5664559Z name: td_results 2025-03-14T04:18:05.5664777Z s3-bucket: gha-artifacts 2025-03-14T04:18:05.5665006Z region: us-east-1 2025-03-14T04:18:05.5665293Z env: 2025-03-14T04:18:05.5665449Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:05.5665635Z ##[endgroup] 2025-03-14T04:18:05.9061473Z (node:225468) NOTE: We are formalizing our plans to enter AWS SDK for JavaScript (v2) into maintenance mode in 2023. 2025-03-14T04:18:05.9067199Z 2025-03-14T04:18:05.9071647Z Please migrate your code to use AWS SDK for JavaScript (v3). 2025-03-14T04:18:05.9072089Z For more information, check the migration guide at https://a.co/7PzMCcy 2025-03-14T04:18:05.9072445Z (Use `node --trace-warnings ...` to show where the warning was created) 2025-03-14T04:18:05.9832024Z Found 0 objects with prefix pytorch/pytorch/13849515380/td_results/ 2025-03-14T04:18:05.9838585Z Artifact download has finished successfully 2025-03-14T04:18:06.0237715Z ##[group]Run mkdir -p .additional_ci_files 2025-03-14T04:18:06.0238021Z mkdir -p .additional_ci_files 2025-03-14T04:18:06.0238304Z mv td_results.json .additional_ci_files/td_results.json || true 2025-03-14T04:18:06.0243305Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:18:06.0243555Z env: 2025-03-14T04:18:06.0243714Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:06.0243903Z ##[endgroup] 2025-03-14T04:18:06.0293244Z mv: cannot stat 'td_results.json': No such file or directory 2025-03-14T04:18:06.0577704Z ##[group]Run .github/scripts/parse_ref.py 2025-03-14T04:18:06.0577979Z .github/scripts/parse_ref.py 2025-03-14T04:18:06.0582637Z shell: /usr/bin/bash -e {0} 2025-03-14T04:18:06.0582833Z env: 2025-03-14T04:18:06.0582999Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:06.0583190Z ##[endgroup] 2025-03-14T04:18:06.0839405Z Prepare all required actions 2025-03-14T04:18:06.0840345Z Getting action download info 2025-03-14T04:18:06.2181193Z ##[group]Run ./.github/actions/filter-test-configs 2025-03-14T04:18:06.2181457Z with: 2025-03-14T04:18:06.2181846Z github-token: *** 2025-03-14T04:18:06.2183480Z test-matrix: {"include": [{"config": "cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_huggingface", "shard": 1, "num_shards": 1, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "inductor_torchbench_cpu_smoketest_perf", "shard": 1, "num_shards": 1, "runner": "linux.24xl.spr-metal"}]} 2025-03-14T04:18:06.2185252Z job-name: linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:18:06.2185620Z env: 2025-03-14T04:18:06.2185791Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:06.2185984Z ##[endgroup] 2025-03-14T04:18:06.2339762Z ##[group]Run nick-fields/retry@v3.0.0 2025-03-14T04:18:06.2339988Z with: 2025-03-14T04:18:06.2340156Z shell: bash 2025-03-14T04:18:06.2340325Z timeout_minutes: 10 2025-03-14T04:18:06.2340500Z max_attempts: 5 2025-03-14T04:18:06.2340672Z retry_wait_seconds: 30 2025-03-14T04:18:06.2341146Z command: set -eux # PyYAML 6.0 doesn't work with MacOS x86 anymore # This must run on Python-3.7 (AmazonLinux2) so can't use request=3.32.2 python3 -m pip install requests==2.27.1 pyyaml==6.0.1 2025-03-14T04:18:06.2341620Z polling_interval_seconds: 1 2025-03-14T04:18:06.2341825Z warning_on_retry: true 2025-03-14T04:18:06.2342035Z continue_on_error: false 2025-03-14T04:18:06.2342210Z env: 2025-03-14T04:18:06.2342364Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:06.2342885Z GITHUB_TOKEN: *** 2025-03-14T04:18:06.2343062Z ##[endgroup] 2025-03-14T04:18:06.3147953Z + python3 -m pip install requests==2.27.1 pyyaml==6.0.1 2025-03-14T04:18:06.4845069Z Defaulting to user installation because normal site-packages is not writeable 2025-03-14T04:18:06.4982152Z Requirement already satisfied: requests==2.27.1 in /home/ec2-user/.local/lib/python3.9/site-packages (2.27.1) 2025-03-14T04:18:06.4982907Z Requirement already satisfied: pyyaml==6.0.1 in /home/ec2-user/.local/lib/python3.9/site-packages (6.0.1) 2025-03-14T04:18:06.5067025Z Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3.9/site-packages (from requests==2.27.1) (2.10) 2025-03-14T04:18:06.5067824Z Requirement already satisfied: certifi>=2017.4.17 in /home/ec2-user/.local/lib/python3.9/site-packages (from requests==2.27.1) (2025.1.31) 2025-03-14T04:18:06.5070507Z Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/lib/python3.9/site-packages (from requests==2.27.1) (1.25.10) 2025-03-14T04:18:06.5077070Z Requirement already satisfied: charset-normalizer~=2.0.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from requests==2.27.1) (2.0.12) 2025-03-14T04:18:07.2959750Z Command completed after 1 attempt(s). 2025-03-14T04:18:07.3123704Z ##[group]Run set -x 2025-03-14T04:18:07.3123945Z set -x 2025-03-14T04:18:07.3124120Z  2025-03-14T04:18:07.3124386Z # Use relative path here as this could be checked out anywhere, not necessarily 2025-03-14T04:18:07.3124694Z # in runner workspace 2025-03-14T04:18:07.3124961Z python3 "${GITHUB_ACTION_PATH}/../../scripts/parse_ref.py" 2025-03-14T04:18:07.3130085Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:18:07.3130354Z env: 2025-03-14T04:18:07.3130533Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:07.3130871Z ##[endgroup] 2025-03-14T04:18:07.3153595Z + python3 /home/ec2-user/actions-runner/_work/pytorch/pytorch/./.github/actions/filter-test-configs/../../scripts/parse_ref.py 2025-03-14T04:18:07.3462615Z ##[group]Run echo "Workflow: ${GITHUB_WORKFLOW}" 2025-03-14T04:18:07.3462910Z echo "Workflow: ${GITHUB_WORKFLOW}" 2025-03-14T04:18:07.3463143Z echo "Job name: ${JOB_NAME}" 2025-03-14T04:18:07.3463360Z  2025-03-14T04:18:07.3463611Z # Use relative path here as this could be checked out anywhere, not necessarily 2025-03-14T04:18:07.3463913Z # in runner workspace 2025-03-14T04:18:07.3464189Z python3 "${GITHUB_ACTION_PATH}/../../scripts/filter_test_configs.py" \ 2025-03-14T04:18:07.3464490Z  --workflow "${GITHUB_WORKFLOW}" \ 2025-03-14T04:18:07.3464715Z  --job-name "${JOB_NAME}" \ 2025-03-14T04:18:07.3466310Z  --test-matrix "{"include": [{"config": "cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_huggingface", "shard": 1, "num_shards": 1, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "inductor_torchbench_cpu_smoketest_perf", "shard": 1, "num_shards": 1, "runner": "linux.24xl.spr-metal"}]}" \ 2025-03-14T04:18:07.3467929Z  --selected-test-configs "" \ 2025-03-14T04:18:07.3468156Z  --pr-number "${PR_NUMBER}" \ 2025-03-14T04:18:07.3468371Z  --tag "${TAG}" \ 2025-03-14T04:18:07.3468582Z  --event-name "${EVENT_NAME}" \ 2025-03-14T04:18:07.3468804Z  --schedule "${SCHEDULE}" \ 2025-03-14T04:18:07.3469019Z  --branch "${HEAD_BRANCH}" 2025-03-14T04:18:07.3473437Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:18:07.3473697Z env: 2025-03-14T04:18:07.3473867Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:07.3474253Z GITHUB_TOKEN: *** 2025-03-14T04:18:07.3474733Z JOB_NAME: linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:18:07.3475102Z PR_NUMBER: 2025-03-14T04:18:07.3475270Z TAG: 2025-03-14T04:18:07.3475415Z EVENT_NAME: push 2025-03-14T04:18:07.3475584Z SCHEDULE: 2025-03-14T04:18:07.3475743Z HEAD_BRANCH: 2025-03-14T04:18:07.3475908Z ##[endgroup] 2025-03-14T04:18:07.3500524Z Workflow: inductor 2025-03-14T04:18:07.3504929Z Job name: linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:18:07.5103090Z ##[group]Run echo "Filtered matrix:" 2025-03-14T04:18:07.5103363Z echo "Filtered matrix:" 2025-03-14T04:18:07.5104959Z echo "{"include": [{"config": "cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_huggingface", "shard": 1, "num_shards": 1, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "inductor_torchbench_cpu_smoketest_perf", "shard": 1, "num_shards": 1, "runner": "linux.24xl.spr-metal"}]}" 2025-03-14T04:18:07.5106693Z  2025-03-14T04:18:07.5106862Z echo 2025-03-14T04:18:07.5107073Z echo "Is the current job unstable? False" 2025-03-14T04:18:07.5107305Z  2025-03-14T04:18:07.5107461Z echo 2025-03-14T04:18:07.5107658Z echo "Is keep-going label set? False" 2025-03-14T04:18:07.5107883Z  2025-03-14T04:18:07.5108033Z echo 2025-03-14T04:18:07.5108212Z echo "Renabled issues? " 2025-03-14T04:18:07.5112565Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:18:07.5112827Z env: 2025-03-14T04:18:07.5113000Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:07.5113192Z ##[endgroup] 2025-03-14T04:18:07.5140767Z Filtered matrix: 2025-03-14T04:18:07.5142451Z {include: [{config: cpu_inductor_torchbench, shard: 1, num_shards: 2, runner: linux.8xlarge.amx}, {config: cpu_inductor_torchbench, shard: 2, num_shards: 2, runner: linux.8xlarge.amx}, {config: dynamic_cpu_inductor_huggingface, shard: 1, num_shards: 1, runner: linux.8xlarge.amx}, {config: dynamic_cpu_inductor_timm, shard: 1, num_shards: 2, runner: linux.8xlarge.amx}, {config: dynamic_cpu_inductor_timm, shard: 2, num_shards: 2, runner: linux.8xlarge.amx}, {config: dynamic_cpu_inductor_torchbench, shard: 1, num_shards: 2, runner: linux.8xlarge.amx}, {config: dynamic_cpu_inductor_torchbench, shard: 2, num_shards: 2, runner: linux.8xlarge.amx}, {config: inductor_torchbench_cpu_smoketest_perf, shard: 1, num_shards: 1, runner: linux.24xl.spr-metal}]} 2025-03-14T04:18:07.5144018Z 2025-03-14T04:18:07.5144107Z Is the current job unstable? False 2025-03-14T04:18:07.5144279Z 2025-03-14T04:18:07.5144385Z Is keep-going label set? False 2025-03-14T04:18:07.5144547Z 2025-03-14T04:18:07.5144631Z Renabled issues? 2025-03-14T04:18:07.5261788Z ##[group]Run echo "timeout=$((JOB_TIMEOUT-30))" >> "${GITHUB_OUTPUT}" 2025-03-14T04:18:07.5262161Z echo "timeout=$((JOB_TIMEOUT-30))" >> "${GITHUB_OUTPUT}" 2025-03-14T04:18:07.5266427Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:18:07.5266683Z env: 2025-03-14T04:18:07.5266853Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:07.5267040Z JOB_TIMEOUT: 240 2025-03-14T04:18:07.5267201Z ##[endgroup] 2025-03-14T04:18:07.5448910Z ##[group]Run set -x 2025-03-14T04:18:07.5449180Z set -x 2025-03-14T04:18:07.5449345Z  2025-03-14T04:18:07.5449527Z if [[ $TEST_CONFIG == 'multigpu' ]]; then 2025-03-14T04:18:07.5449904Z  TEST_COMMAND=.ci/pytorch/multigpu-test.sh 2025-03-14T04:18:07.5450169Z elif [[ $BUILD_ENVIRONMENT == *onnx* ]]; then 2025-03-14T04:18:07.5450417Z  TEST_COMMAND=.ci/onnx/test.sh 2025-03-14T04:18:07.5450628Z else 2025-03-14T04:18:07.5450820Z  TEST_COMMAND=.ci/pytorch/test.sh 2025-03-14T04:18:07.5451037Z fi 2025-03-14T04:18:07.5451192Z  2025-03-14T04:18:07.5451379Z # Leaving 1GB for the runner and other things 2025-03-14T04:18:07.5451899Z TOTAL_AVAILABLE_MEMORY_IN_GB=$(awk '/MemTotal/ { printf "%.3f \n", $2/1024/1024 - 1 }' /proc/meminfo) 2025-03-14T04:18:07.5452496Z # https://docs.docker.com/engine/containers/resource_constraints/#--memory-swap-details, the 3GB swap 2025-03-14T04:18:07.5452926Z # comes from https://github.com/pytorch/test-infra/pull/6058 2025-03-14T04:18:07.5453265Z TOTAL_MEMORY_WITH_SWAP=$(("${TOTAL_AVAILABLE_MEMORY_IN_GB%.*}" + 3)) 2025-03-14T04:18:07.5453525Z  2025-03-14T04:18:07.5453711Z if [[ ${BUILD_ENVIRONMENT} == *"s390x"* ]]; then 2025-03-14T04:18:07.5453932Z  SHM_OPTS= 2025-03-14T04:18:07.5454105Z  JENKINS_USER= 2025-03-14T04:18:07.5454336Z  # ensure that docker container cleanly exits in 12 hours 2025-03-14T04:18:07.5454621Z  # if for some reason cleanup action doesn't stop container 2025-03-14T04:18:07.5454869Z  # when job is cancelled 2025-03-14T04:18:07.5455079Z  DOCKER_SHELL_CMD="sleep 12h" 2025-03-14T04:18:07.5455279Z  2025-03-14T04:18:07.5455518Z  # since some steps are skipped on s390x, if they are necessary, run them here 2025-03-14T04:18:07.5455847Z  env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2025-03-14T04:18:07.5456126Z  env | grep '^CI' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2025-03-14T04:18:07.5456351Z else 2025-03-14T04:18:07.5456532Z  SHM_OPTS="--shm-size=${SHM_SIZE}" 2025-03-14T04:18:07.5456759Z  JENKINS_USER="--user jenkins" 2025-03-14T04:18:07.5456967Z  DOCKER_SHELL_CMD= 2025-03-14T04:18:07.5457150Z fi 2025-03-14T04:18:07.5457299Z  2025-03-14T04:18:07.5457521Z # detached container should get cleaned up by teardown_ec2_linux 2025-03-14T04:18:07.5457851Z # TODO: Stop building test binaries as part of the build phase 2025-03-14T04:18:07.5458200Z # Used for GPU_FLAG, SHM_OPTS, JENKINS_USER and DOCKER_SHELL_CMD since that doesn't play nice 2025-03-14T04:18:07.5458520Z # shellcheck disable=SC2086,SC2090 2025-03-14T04:18:07.5458742Z container_name=$(docker run \ 2025-03-14T04:18:07.5458963Z  ${GPU_FLAG:-} \ 2025-03-14T04:18:07.5459170Z  ${SCCACHE_SERVER_PORT_DOCKER_FLAG:-} \ 2025-03-14T04:18:07.5459396Z  -e BUILD_ENVIRONMENT \ 2025-03-14T04:18:07.5459596Z  -e PR_NUMBER \ 2025-03-14T04:18:07.5459791Z  -e GITHUB_ACTIONS \ 2025-03-14T04:18:07.5459980Z  -e GITHUB_REPOSITORY \ 2025-03-14T04:18:07.5460182Z  -e GITHUB_WORKFLOW \ 2025-03-14T04:18:07.5460377Z  -e GITHUB_JOB \ 2025-03-14T04:18:07.5460996Z  -e GITHUB_RUN_ID \ 2025-03-14T04:18:07.5461201Z  -e GITHUB_RUN_NUMBER \ 2025-03-14T04:18:07.5461405Z  -e GITHUB_RUN_ATTEMPT \ 2025-03-14T04:18:07.5461610Z  -e JOB_ID \ 2025-03-14T04:18:07.5461791Z  -e JOB_NAME \ 2025-03-14T04:18:07.5461972Z  -e BASE_SHA \ 2025-03-14T04:18:07.5462153Z  -e BRANCH \ 2025-03-14T04:18:07.5462330Z  -e SHA1 \ 2025-03-14T04:18:07.5462508Z  -e AWS_DEFAULT_REGION \ 2025-03-14T04:18:07.5462824Z  -e IN_WHEEL_TEST \ 2025-03-14T04:18:07.5463023Z  -e SHARD_NUMBER \ 2025-03-14T04:18:07.5463215Z  -e TEST_CONFIG \ 2025-03-14T04:18:07.5463411Z  -e NUM_TEST_SHARDS \ 2025-03-14T04:18:07.5463684Z  -e REENABLED_ISSUES \ 2025-03-14T04:18:07.5463881Z  -e CONTINUE_THROUGH_ERROR \ 2025-03-14T04:18:07.5464078Z  -e VERBOSE_TEST_LOGS \ 2025-03-14T04:18:07.5464279Z  -e TEST_SHOWLOCALS \ 2025-03-14T04:18:07.5464479Z  -e NO_TEST_TIMEOUT \ 2025-03-14T04:18:07.5464672Z  -e NO_TD \ 2025-03-14T04:18:07.5464853Z  -e TD_DISTRIBUTED \ 2025-03-14T04:18:07.5465046Z  -e PR_LABELS \ 2025-03-14T04:18:07.5465249Z  -e MAX_JOBS="$(nproc --ignore=2)" \ 2025-03-14T04:18:07.5465482Z  -e SCCACHE_BUCKET \ 2025-03-14T04:18:07.5465675Z  -e SCCACHE_REGION \ 2025-03-14T04:18:07.5465866Z  -e XLA_CUDA \ 2025-03-14T04:18:07.5466062Z  -e XLA_CLANG_CACHE_S3_BUCKET_NAME \ 2025-03-14T04:18:07.5466302Z  -e PYTORCH_TEST_CUDA_MEM_LEAK_CHECK \ 2025-03-14T04:18:07.5466547Z  -e PYTORCH_TEST_RERUN_DISABLED_TESTS \ 2025-03-14T04:18:07.5466786Z  -e SKIP_SCCACHE_INITIALIZATION=1 \ 2025-03-14T04:18:07.5467014Z  -e HUGGING_FACE_HUB_TOKEN \ 2025-03-14T04:18:07.5467229Z  -e SCRIBE_GRAPHQL_ACCESS_TOKEN \ 2025-03-14T04:18:07.5467474Z  -e DASHBOARD_TAG \ 2025-03-14T04:18:07.5467666Z  -e IS_A100_RUNNER \ 2025-03-14T04:18:07.5467868Z  -e ARTIFACTS_FILE_SUFFIX \ 2025-03-14T04:18:07.5468111Z  --memory="${TOTAL_AVAILABLE_MEMORY_IN_GB%.*}g" \ 2025-03-14T04:18:07.5468384Z  --memory-swap="${TOTAL_MEMORY_WITH_SWAP}g" \ 2025-03-14T04:18:07.5468653Z  --env-file="/tmp/github_env_${GITHUB_RUN_ID}" \ 2025-03-14T04:18:07.5468906Z  --security-opt seccomp=unconfined \ 2025-03-14T04:18:07.5469127Z  --cap-add=SYS_PTRACE \ 2025-03-14T04:18:07.5469333Z  --ipc=host \ 2025-03-14T04:18:07.5469517Z  ${SHM_OPTS} \ 2025-03-14T04:18:07.5469687Z  --tty \ 2025-03-14T04:18:07.5469856Z  --detach \ 2025-03-14T04:18:07.5470040Z  --name="${container_name}" \ 2025-03-14T04:18:07.5470254Z  ${JENKINS_USER} \ 2025-03-14T04:18:07.5470487Z  -v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \ 2025-03-14T04:18:07.5470740Z  -w /var/lib/jenkins/workspace \ 2025-03-14T04:18:07.5470948Z  "${DOCKER_IMAGE}" \ 2025-03-14T04:18:07.5471136Z  ${DOCKER_SHELL_CMD} 2025-03-14T04:18:07.5471318Z ) 2025-03-14T04:18:07.5471514Z # Propagate download.pytorch.org IP to container 2025-03-14T04:18:07.5471912Z grep download.pytorch.org /etc/hosts | docker exec -i "${container_name}" sudo bash -c "/bin/cat >> /etc/hosts" 2025-03-14T04:18:07.5472333Z echo "DOCKER_CONTAINER_ID=${container_name}" >> "${GITHUB_ENV}" 2025-03-14T04:18:07.5472590Z  2025-03-14T04:18:07.5472781Z if [[ ${BUILD_ENVIRONMENT} == *"s390x"* ]]; then 2025-03-14T04:18:07.5473134Z  docker exec -t "${container_name}" sh -c "python3 -m pip install -r .ci/docker/requirements-ci.txt" 2025-03-14T04:18:07.5473449Z fi 2025-03-14T04:18:07.5473602Z  2025-03-14T04:18:07.5473903Z docker exec -t "${container_name}" sh -c "python3 -m pip install $(echo dist/*.whl)[opt-einsum] && ${TEST_COMMAND}" 2025-03-14T04:18:07.5478069Z shell: /usr/bin/bash -e {0} 2025-03-14T04:18:07.5478266Z env: 2025-03-14T04:18:07.5478435Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:18:07.5478660Z BUILD_ENVIRONMENT: linux-jammy-py3.9-gcc11-build 2025-03-14T04:18:07.5478895Z PR_NUMBER: 2025-03-14T04:18:07.5479073Z GITHUB_REPOSITORY: pytorch/pytorch 2025-03-14T04:18:07.5479289Z GITHUB_WORKFLOW: inductor 2025-03-14T04:18:07.5479474Z GITHUB_JOB: test 2025-03-14T04:18:07.5479637Z GITHUB_RUN_ID: 13849515380 2025-03-14T04:18:07.5479896Z GITHUB_RUN_NUMBER: 122697 2025-03-14T04:18:07.5480082Z GITHUB_RUN_ATTEMPT: 1 2025-03-14T04:18:07.5480259Z JOB_ID: 38754842362 2025-03-14T04:18:07.5480606Z JOB_NAME: linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:18:07.5481006Z BRANCH: main 2025-03-14T04:18:07.5481192Z SHA1: aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:18:07.5481438Z BASE_SHA: aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:18:07.5481684Z TEST_CONFIG: dynamic_cpu_inductor_torchbench 2025-03-14T04:18:07.5481900Z SHARD_NUMBER: 1 2025-03-14T04:18:07.5482066Z NUM_TEST_SHARDS: 2 2025-03-14T04:18:07.5482238Z REENABLED_ISSUES: 2025-03-14T04:18:07.5482415Z CONTINUE_THROUGH_ERROR: False 2025-03-14T04:18:07.5482609Z VERBOSE_TEST_LOGS: False 2025-03-14T04:18:07.5482794Z TEST_SHOWLOCALS: False 2025-03-14T04:18:07.5482973Z NO_TEST_TIMEOUT: False 2025-03-14T04:18:07.5483147Z NO_TD: False 2025-03-14T04:18:07.5483308Z TD_DISTRIBUTED: False 2025-03-14T04:18:07.5483510Z SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2 2025-03-14T04:18:07.5483749Z SCCACHE_REGION: us-east-1 2025-03-14T04:18:07.5483930Z SHM_SIZE: 1g 2025-03-14T04:18:07.5484376Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:18:07.5484847Z XLA_CUDA: 2025-03-14T04:18:07.5485088Z XLA_CLANG_CACHE_S3_BUCKET_NAME: ossci-compiler-clang-cache-circleci-xla 2025-03-14T04:18:07.5485373Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK: 0 2025-03-14T04:18:07.5485589Z PYTORCH_TEST_RERUN_DISABLED_TESTS: 0 2025-03-14T04:18:07.5485792Z DASHBOARD_TAG: 2025-03-14T04:18:07.5486125Z HUGGING_FACE_HUB_TOKEN: *** 2025-03-14T04:18:07.5486408Z SCRIBE_GRAPHQL_ACCESS_TOKEN: *** 2025-03-14T04:18:07.5486611Z IS_A100_RUNNER: 0 2025-03-14T04:18:07.5486905Z ARTIFACTS_FILE_SUFFIX: test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362 2025-03-14T04:18:07.5487228Z ##[endgroup] 2025-03-14T04:18:07.5509127Z + [[ dynamic_cpu_inductor_torchbench == \m\u\l\t\i\g\p\u ]] 2025-03-14T04:18:07.5513975Z + [[ linux-jammy-py3.9-gcc11-build == *onnx* ]] 2025-03-14T04:18:07.5515977Z + TEST_COMMAND=.ci/pytorch/test.sh 2025-03-14T04:18:07.5516429Z ++ awk '/MemTotal/ { printf "%.3f \n", $2/1024/1024 - 1 }' /proc/meminfo 2025-03-14T04:18:07.5530942Z + TOTAL_AVAILABLE_MEMORY_IN_GB='122.780 ' 2025-03-14T04:18:07.5531231Z + TOTAL_MEMORY_WITH_SWAP=125 2025-03-14T04:18:07.5531486Z + [[ linux-jammy-py3.9-gcc11-build == *\s\3\9\0\x* ]] 2025-03-14T04:18:07.5531866Z + SHM_OPTS=--shm-size=1g 2025-03-14T04:18:07.5532071Z + JENKINS_USER='--user jenkins' 2025-03-14T04:18:07.5532277Z + DOCKER_SHELL_CMD= 2025-03-14T04:18:07.5541331Z +++ nproc --ignore=2 2025-03-14T04:18:07.5552011Z ++ docker run -e BUILD_ENVIRONMENT -e PR_NUMBER -e GITHUB_ACTIONS -e GITHUB_REPOSITORY -e GITHUB_WORKFLOW -e GITHUB_JOB -e GITHUB_RUN_ID -e GITHUB_RUN_NUMBER -e GITHUB_RUN_ATTEMPT -e JOB_ID -e JOB_NAME -e BASE_SHA -e BRANCH -e SHA1 -e AWS_DEFAULT_REGION -e IN_WHEEL_TEST -e SHARD_NUMBER -e TEST_CONFIG -e NUM_TEST_SHARDS -e REENABLED_ISSUES -e CONTINUE_THROUGH_ERROR -e VERBOSE_TEST_LOGS -e TEST_SHOWLOCALS -e NO_TEST_TIMEOUT -e NO_TD -e TD_DISTRIBUTED -e PR_LABELS -e MAX_JOBS=30 -e SCCACHE_BUCKET -e SCCACHE_REGION -e XLA_CUDA -e XLA_CLANG_CACHE_S3_BUCKET_NAME -e PYTORCH_TEST_CUDA_MEM_LEAK_CHECK -e PYTORCH_TEST_RERUN_DISABLED_TESTS -e SKIP_SCCACHE_INITIALIZATION=1 -e HUGGING_FACE_HUB_TOKEN -e SCRIBE_GRAPHQL_ACCESS_TOKEN -e DASHBOARD_TAG -e IS_A100_RUNNER -e ARTIFACTS_FILE_SUFFIX --memory=122g --memory-swap=125g --env-file=/tmp/github_env_13849515380 --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --ipc=host --shm-size=1g --tty --detach --name= --user jenkins -v /home/ec2-user/actions-runner/_work/pytorch/pytorch:/var/lib/jenkins/workspace -w /var/lib/jenkins/workspace 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:18:55.9391031Z + container_name=f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T04:18:55.9393203Z + grep download.pytorch.org /etc/hosts 2025-03-14T04:18:55.9400684Z + docker exec -i f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 sudo bash -c '/bin/cat >> /etc/hosts' 2025-03-14T04:18:56.1037764Z + echo DOCKER_CONTAINER_ID=f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T04:18:56.1038241Z + [[ linux-jammy-py3.9-gcc11-build == *\s\3\9\0\x* ]] 2025-03-14T04:18:56.1042190Z ++ echo dist/torch-2.8.0a0+gitaed0b7a-cp39-cp39-linux_x86_64.whl 2025-03-14T04:18:56.1043915Z + docker exec -t f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 sh -c 'python3 -m pip install dist/torch-2.8.0a0+gitaed0b7a-cp39-cp39-linux_x86_64.whl[opt-einsum] && .ci/pytorch/test.sh' 2025-03-14T04:18:56.4118650Z Processing ./dist/torch-2.8.0a0+gitaed0b7a-cp39-cp39-linux_x86_64.whl (from torch==2.8.0a0+gitaed0b7a) 2025-03-14T04:18:56.5951676Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (3.16.1) 2025-03-14T04:18:56.5952634Z Requirement already satisfied: typing-extensions>=4.10.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (4.12.2) 2025-03-14T04:18:56.6159355Z Collecting sympy>=1.13.3 (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) 2025-03-14T04:18:56.6173788Z Using cached sympy-1.13.3-py3-none-any.whl.metadata (12 kB) 2025-03-14T04:18:56.6187974Z Requirement already satisfied: networkx in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (2.8.8) 2025-03-14T04:18:56.6188739Z Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (3.1.6) 2025-03-14T04:18:56.6189475Z Requirement already satisfied: fsspec in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (2024.10.0) 2025-03-14T04:18:56.6206141Z Requirement already satisfied: opt-einsum>=3.3 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (3.3.0) 2025-03-14T04:18:56.6222341Z Requirement already satisfied: numpy>=1.7 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from opt-einsum>=3.3->torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (1.22.4) 2025-03-14T04:18:56.6226568Z Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from sympy>=1.13.3->torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (1.3.0) 2025-03-14T04:18:56.6502836Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from jinja2->torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (3.0.2) 2025-03-14T04:18:56.6566568Z Using cached sympy-1.13.3-py3-none-any.whl (6.2 MB) 2025-03-14T04:18:57.1816208Z Installing collected packages: sympy, torch 2025-03-14T04:18:57.1817356Z Attempting uninstall: sympy 2025-03-14T04:18:57.1823669Z Found existing installation: sympy 1.13.1 2025-03-14T04:18:57.2726107Z Uninstalling sympy-1.13.1: 2025-03-14T04:18:57.7514912Z Successfully uninstalled sympy-1.13.1 2025-03-14T04:19:06.9554511Z ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. 2025-03-14T04:19:06.9555178Z timm 1.0.14 requires torchvision, which is not installed. 2025-03-14T04:19:06.9555562Z Successfully installed sympy-1.13.3 torch-2.8.0a0+gitaed0b7a 2025-03-14T04:19:07.0407110Z + export TERM=vt100 2025-03-14T04:19:07.0407392Z + TERM=vt100 2025-03-14T04:19:07.0407582Z ++ dirname .ci/pytorch/test.sh 2025-03-14T04:19:07.0407816Z + source .ci/pytorch/common.sh 2025-03-14T04:19:07.0410717Z +++ dirname .ci/pytorch/common.sh 2025-03-14T04:19:07.0420767Z ++ source .ci/pytorch/common_utils.sh 2025-03-14T04:19:07.0421067Z +++ declare -f -t trap_add 2025-03-14T04:19:07.0426359Z ++ set -ex -o pipefail 2025-03-14T04:19:07.0426595Z ++ [[ linux-jammy-py3.9-gcc11-build == *rocm* ]] 2025-03-14T04:19:07.0426963Z ++ BUILD_TEST_LIBTORCH=0 2025-03-14T04:19:07.0427191Z + [[ linux-jammy-py3.9-gcc11-build != *rocm* ]] 2025-03-14T04:19:07.0427454Z + [[ linux-jammy-py3.9-gcc11-build != *s390x* ]] 2025-03-14T04:19:07.0427706Z + [[ -d /var/lib/jenkins/workspace ]] 2025-03-14T04:19:07.0432076Z ++ stat -c %u /var/lib/jenkins/workspace 2025-03-14T04:19:07.0442077Z + WORKSPACE_ORIGINAL_OWNER_ID=1000 2025-03-14T04:19:07.0442385Z + trap_add cleanup_workspace EXIT 2025-03-14T04:19:07.0442662Z + trap_add_cmd=cleanup_workspace 2025-03-14T04:19:07.0442895Z + shift 2025-03-14T04:19:07.0443113Z + for trap_add_name in "$@" 2025-03-14T04:19:07.0449147Z +++ trap -p EXIT 2025-03-14T04:19:07.0449362Z ++ eval 'extract_trap_cmd ' 2025-03-14T04:19:07.0449573Z +++ extract_trap_cmd 2025-03-14T04:19:07.0449822Z +++ printf '%s\n' '' 2025-03-14T04:19:07.0450028Z ++ printf '%s\n' cleanup_workspace 2025-03-14T04:19:07.0452180Z + trap -- ' 2025-03-14T04:19:07.0452377Z cleanup_workspace' EXIT 2025-03-14T04:19:07.0454771Z + sudo chown -R jenkins /var/lib/jenkins/workspace 2025-03-14T04:19:07.4027793Z + git config --global --add safe.directory /var/lib/jenkins/workspace 2025-03-14T04:19:07.4046642Z + echo 'Environment variables:' 2025-03-14T04:19:07.4047080Z Environment variables: 2025-03-14T04:19:07.4047373Z + env 2025-03-14T04:19:07.4057129Z INSTALLED_DB=yes 2025-03-14T04:19:07.4062345Z GITHUB_WORKSPACE=/home/ec2-user/actions-runner/_work/pytorch/pytorch 2025-03-14T04:19:07.4064162Z CONTINUE_THROUGH_ERROR=False 2025-03-14T04:19:07.4064531Z BUILD_ENVIRONMENT=linux-jammy-py3.9-gcc11-build 2025-03-14T04:19:07.4064788Z HOSTNAME=f121771cb12d 2025-03-14T04:19:07.4065179Z GITHUB_PATH=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/add_path_cf747ae1-d501-4db5-a2cf-d8c5918f871b 2025-03-14T04:19:07.4065627Z GITHUB_ACTION=__self 2025-03-14T04:19:07.4065833Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=0 2025-03-14T04:19:07.4066055Z GITHUB_RUN_NUMBER=122697 2025-03-14T04:19:07.4066267Z TEST_CONFIG=dynamic_cpu_inductor_torchbench 2025-03-14T04:19:07.4066515Z GITHUB_REPOSITORY_OWNER_ID=21003710 2025-03-14T04:19:07.4066745Z TORCH_NVCC_FLAGS=-Xfatbin -compress-all 2025-03-14T04:19:07.4066962Z IS_A100_RUNNER=0 2025-03-14T04:19:07.4067397Z SCRIBE_GRAPHQL_ACCESS_TOKEN=*** 2025-03-14T04:19:07.4067620Z GITHUB_TRIGGERING_ACTOR=pytorchmergebot 2025-03-14T04:19:07.4067830Z GITHUB_REF_TYPE=branch 2025-03-14T04:19:07.4068023Z TORCH_CUDA_ARCH_LIST=Maxwell 2025-03-14T04:19:07.4068249Z BASE_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:19:07.4068477Z XLA_CUDA= 2025-03-14T04:19:07.4068711Z HUGGING_FACE_HUB_TOKEN=*** 2025-03-14T04:19:07.4072148Z *** 2025-03-14T04:19:07.4072363Z GITHUB_REPOSITORY_ID=65600975 2025-03-14T04:19:07.4072579Z GITHUB_ACTIONS=true 2025-03-14T04:19:07.4072782Z SHA1=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:19:07.4073057Z GITHUB_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:19:07.4073390Z GITHUB_WORKFLOW_REF=pytorch/pytorch/.github/workflows/inductor.yml@refs/heads/main 2025-03-14T04:19:07.4073697Z UCC_HOME=/usr 2025-03-14T04:19:07.4073862Z VERBOSE_TEST_LOGS=False 2025-03-14T04:19:07.4074044Z GITHUB_REF=refs/heads/main 2025-03-14T04:19:07.4074225Z SHARD_NUMBER=1 2025-03-14T04:19:07.4074392Z GITHUB_REF_PROTECTED=true 2025-03-14T04:19:07.4074575Z HOME=/var/lib/jenkins 2025-03-14T04:19:07.4074775Z GITHUB_API_URL=https://api.github.com 2025-03-14T04:19:07.4075004Z PYTORCH_TEST_RERUN_DISABLED_TESTS=0 2025-03-14T04:19:07.4075195Z UCX_COMMIT= 2025-03-14T04:19:07.4075349Z NUM_TEST_SHARDS=2 2025-03-14T04:19:07.4075511Z UCX_HOME=/usr 2025-03-14T04:19:07.4075858Z GITHUB_STATE=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/save_state_cf747ae1-d501-4db5-a2cf-d8c5918f871b 2025-03-14T04:19:07.4076615Z JOB_NAME=linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:19:07.4077148Z GITHUB_ENV=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_env_cf747ae1-d501-4db5-a2cf-d8c5918f871b 2025-03-14T04:19:07.4077613Z GITHUB_EVENT_PATH=/home/ec2-user/actions-runner/_work/_temp/_github_workflow/event.json 2025-03-14T04:19:07.4077999Z GITHUB_EVENT_NAME=push 2025-03-14T04:19:07.4078178Z DASHBOARD_TAG= 2025-03-14T04:19:07.4078342Z GITHUB_RUN_ID=13849515380 2025-03-14T04:19:07.4078716Z GITHUB_STEP_SUMMARY=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/step_summary_cf747ae1-d501-4db5-a2cf-d8c5918f871b 2025-03-14T04:19:07.4079109Z GITHUB_ACTOR=pytorchmergebot 2025-03-14T04:19:07.4079301Z PR_NUMBER= 2025-03-14T04:19:07.4079456Z DESIRED_CUDA= 2025-03-14T04:19:07.4079617Z GITHUB_RUN_ATTEMPT=1 2025-03-14T04:19:07.4079795Z ANACONDA_PYTHON_VERSION=3.9 2025-03-14T04:19:07.4080019Z GITHUB_GRAPHQL_URL=https://api.github.com/graphql 2025-03-14T04:19:07.4080243Z TERM=vt100 2025-03-14T04:19:07.4080395Z INSTALLED_VISION=yes 2025-03-14T04:19:07.4080572Z BRANCH=main 2025-03-14T04:19:07.4080737Z SCCACHE_REGION=us-east-1 2025-03-14T04:19:07.4080933Z OPENSSL_ROOT_DIR=/opt/openssl 2025-03-14T04:19:07.4081133Z CUDA_PATH=/usr/local/cuda 2025-03-14T04:19:07.4081464Z GITHUB_ACTION_PATH=/home/ec2-user/actions-runner/_work/pytorch/pytorch/./.github/actions/setup-linux 2025-03-14T04:19:07.4081849Z GITHUB_SERVER_URL=https://github.com 2025-03-14T04:19:07.4082053Z UCC_COMMIT= 2025-03-14T04:19:07.4082209Z REENABLED_ISSUES= 2025-03-14T04:19:07.4082384Z DOCS=yes 2025-03-14T04:19:07.4082534Z SHLVL=1 2025-03-14T04:19:07.4082684Z MAX_JOBS=30 2025-03-14T04:19:07.4082844Z GITHUB_ACTOR_ID=97764156 2025-03-14T04:19:07.4083086Z GITHUB_WORKFLOW_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:19:07.4083334Z GITHUB_REF_NAME=main 2025-03-14T04:19:07.4083589Z XLA_CLANG_CACHE_S3_BUCKET_NAME=ossci-compiler-clang-cache-circleci-xla 2025-03-14T04:19:07.4083858Z GITHUB_JOB=test 2025-03-14T04:19:07.4084026Z NO_TEST_TIMEOUT=False 2025-03-14T04:19:07.4084196Z TD_DISTRIBUTED=False 2025-03-14T04:19:07.4084389Z GITHUB_REPOSITORY=pytorch/pytorch 2025-03-14T04:19:07.4084595Z GITHUB_RETENTION_DAYS=90 2025-03-14T04:19:07.4084781Z OPENSSL_DIR=/opt/openssl 2025-03-14T04:19:07.4084972Z GITHUB_ACTION_REPOSITORY= 2025-03-14T04:19:07.4085439Z PATH=/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/envs/py_3.9/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2025-03-14T04:19:07.4085905Z GITHUB_BASE_REF= 2025-03-14T04:19:07.4086071Z INSTALLED_ACL= 2025-03-14T04:19:07.4086363Z ARTIFACTS_FILE_SUFFIX=test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362 2025-03-14T04:19:07.4086682Z CI=true 2025-03-14T04:19:07.4086847Z GITHUB_REPOSITORY_OWNER=pytorch 2025-03-14T04:19:07.4087038Z JOB_ID=38754842362 2025-03-14T04:19:07.4087208Z INSTALLED_PROTOBUF=yes 2025-03-14T04:19:07.4087381Z GITHUB_HEAD_REF= 2025-03-14T04:19:07.4087545Z GITHUB_ACTION_REF= 2025-03-14T04:19:07.4087746Z SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2 2025-03-14T04:19:07.4087976Z TEST_SHOWLOCALS=False 2025-03-14T04:19:07.4088155Z GITHUB_WORKFLOW=inductor 2025-03-14T04:19:07.4088342Z DEBIAN_FRONTEND=noninteractive 2025-03-14T04:19:07.4088726Z GITHUB_OUTPUT=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_output_cf747ae1-d501-4db5-a2cf-d8c5918f871b 2025-03-14T04:19:07.4089109Z NO_TD=False 2025-03-14T04:19:07.4089278Z SKIP_SCCACHE_INITIALIZATION=1 2025-03-14T04:19:07.4089471Z _=/usr/bin/env 2025-03-14T04:19:07.4089694Z ++ python -c 'import site; print(site.getsitepackages()[0])' 2025-03-14T04:19:07.4322418Z + TORCH_INSTALL_DIR=/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch 2025-03-14T04:19:07.4324919Z + TORCH_BIN_DIR=/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/bin 2025-03-14T04:19:07.4325319Z + TORCH_LIB_DIR=/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib 2025-03-14T04:19:07.4325685Z + TORCH_TEST_DIR=/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/test 2025-03-14T04:19:07.4326311Z + BUILD_DIR=build 2025-03-14T04:19:07.4326520Z + BUILD_RENAMED_DIR=build_renamed 2025-03-14T04:19:07.4326738Z + BUILD_BIN_DIR=build/bin 2025-03-14T04:19:07.4326932Z + SHARD_NUMBER=1 2025-03-14T04:19:07.4327116Z + NUM_TEST_SHARDS=2 2025-03-14T04:19:07.4327415Z + export TORCH_SERIALIZATION_DEBUG=1 2025-03-14T04:19:07.4327634Z + TORCH_SERIALIZATION_DEBUG=1 2025-03-14T04:19:07.4327838Z + export VALGRIND=ON 2025-03-14T04:19:07.4328020Z + VALGRIND=ON 2025-03-14T04:19:07.4328259Z + [[ linux-jammy-py3.9-gcc11-build == *clang9* ]] 2025-03-14T04:19:07.4328529Z + [[ linux-jammy-py3.9-gcc11-build == *xpu* ]] 2025-03-14T04:19:07.4328779Z + [[ linux-jammy-py3.9-gcc11-build == *s390x* ]] 2025-03-14T04:19:07.4329004Z + [[ 0 == \1 ]] 2025-03-14T04:19:07.4329175Z + [[ False == \1 ]] 2025-03-14T04:19:07.4329374Z + [[ linux-jammy-py3.9-gcc11-build != *bazel* ]] 2025-03-14T04:19:07.4329627Z ++ realpath build/custom_test_artifacts 2025-03-14T04:19:07.4343045Z + CUSTOM_TEST_ARTIFACT_BUILD_DIR=/var/lib/jenkins/workspace/build/custom_test_artifacts 2025-03-14T04:19:07.4343534Z + [[ -n '' ]] 2025-03-14T04:19:07.4343815Z + echo 'Environment variables' 2025-03-14T04:19:07.4344162Z Environment variables 2025-03-14T04:19:07.4344386Z + env 2025-03-14T04:19:07.4345260Z INSTALLED_DB=yes 2025-03-14T04:19:07.4345778Z GITHUB_WORKSPACE=/home/ec2-user/actions-runner/_work/pytorch/pytorch 2025-03-14T04:19:07.4346216Z CONTINUE_THROUGH_ERROR=False 2025-03-14T04:19:07.4346599Z BUILD_ENVIRONMENT=linux-jammy-py3.9-gcc11-build 2025-03-14T04:19:07.4346860Z HOSTNAME=f121771cb12d 2025-03-14T04:19:07.4347259Z GITHUB_PATH=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/add_path_cf747ae1-d501-4db5-a2cf-d8c5918f871b 2025-03-14T04:19:07.4347658Z GITHUB_ACTION=__self 2025-03-14T04:19:07.4347859Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=0 2025-03-14T04:19:07.4348081Z GITHUB_RUN_NUMBER=122697 2025-03-14T04:19:07.4348298Z TEST_CONFIG=dynamic_cpu_inductor_torchbench 2025-03-14T04:19:07.4348541Z GITHUB_REPOSITORY_OWNER_ID=21003710 2025-03-14T04:19:07.4348803Z TORCH_NVCC_FLAGS=-Xfatbin -compress-all 2025-03-14T04:19:07.4349022Z IS_A100_RUNNER=0 2025-03-14T04:19:07.4349499Z SCRIBE_GRAPHQL_ACCESS_TOKEN=*** 2025-03-14T04:19:07.4349720Z GITHUB_TRIGGERING_ACTOR=pytorchmergebot 2025-03-14T04:19:07.4349952Z GITHUB_REF_TYPE=branch 2025-03-14T04:19:07.4350145Z TORCH_CUDA_ARCH_LIST=Maxwell 2025-03-14T04:19:07.4350371Z BASE_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:19:07.4350605Z XLA_CUDA= 2025-03-14T04:19:07.4350872Z HUGGING_FACE_HUB_TOKEN=*** 2025-03-14T04:19:07.4351290Z *** 2025-03-14T04:19:07.4351466Z GITHUB_REPOSITORY_ID=65600975 2025-03-14T04:19:07.4351673Z GITHUB_ACTIONS=true 2025-03-14T04:19:07.4351878Z SHA1=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:19:07.4352131Z GITHUB_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:19:07.4352478Z GITHUB_WORKFLOW_REF=pytorch/pytorch/.github/workflows/inductor.yml@refs/heads/main 2025-03-14T04:19:07.4352793Z UCC_HOME=/usr 2025-03-14T04:19:07.4352974Z TORCH_SERIALIZATION_DEBUG=1 2025-03-14T04:19:07.4353183Z VERBOSE_TEST_LOGS=False 2025-03-14T04:19:07.4353376Z GITHUB_REF=refs/heads/main 2025-03-14T04:19:07.4353573Z SHARD_NUMBER=1 2025-03-14T04:19:07.4353748Z GITHUB_REF_PROTECTED=true 2025-03-14T04:19:07.4353942Z HOME=/var/lib/jenkins 2025-03-14T04:19:07.4354159Z GITHUB_API_URL=https://api.github.com 2025-03-14T04:19:07.4354392Z PYTORCH_TEST_RERUN_DISABLED_TESTS=0 2025-03-14T04:19:07.4354605Z UCX_COMMIT= 2025-03-14T04:19:07.4354767Z NUM_TEST_SHARDS=2 2025-03-14T04:19:07.4354940Z UCX_HOME=/usr 2025-03-14T04:19:07.4355303Z GITHUB_STATE=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/save_state_cf747ae1-d501-4db5-a2cf-d8c5918f871b 2025-03-14T04:19:07.4355871Z JOB_NAME=linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:19:07.4356430Z GITHUB_ENV=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_env_cf747ae1-d501-4db5-a2cf-d8c5918f871b 2025-03-14T04:19:07.4357092Z GITHUB_EVENT_PATH=/home/ec2-user/actions-runner/_work/_temp/_github_workflow/event.json 2025-03-14T04:19:07.4357425Z GITHUB_EVENT_NAME=push 2025-03-14T04:19:07.4357605Z DASHBOARD_TAG= 2025-03-14T04:19:07.4357781Z GITHUB_RUN_ID=13849515380 2025-03-14T04:19:07.4358179Z GITHUB_STEP_SUMMARY=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/step_summary_cf747ae1-d501-4db5-a2cf-d8c5918f871b 2025-03-14T04:19:07.4358662Z GITHUB_ACTOR=pytorchmergebot 2025-03-14T04:19:07.4358860Z PR_NUMBER= 2025-03-14T04:19:07.4359020Z DESIRED_CUDA= 2025-03-14T04:19:07.4359188Z GITHUB_RUN_ATTEMPT=1 2025-03-14T04:19:07.4359369Z VALGRIND=ON 2025-03-14T04:19:07.4359538Z ANACONDA_PYTHON_VERSION=3.9 2025-03-14T04:19:07.4359773Z GITHUB_GRAPHQL_URL=https://api.github.com/graphql 2025-03-14T04:19:07.4360014Z TERM=vt100 2025-03-14T04:19:07.4360177Z INSTALLED_VISION=yes 2025-03-14T04:19:07.4360353Z BRANCH=main 2025-03-14T04:19:07.4360517Z SCCACHE_REGION=us-east-1 2025-03-14T04:19:07.4360928Z OPENSSL_ROOT_DIR=/opt/openssl 2025-03-14T04:19:07.4361141Z CUDA_PATH=/usr/local/cuda 2025-03-14T04:19:07.4361503Z GITHUB_ACTION_PATH=/home/ec2-user/actions-runner/_work/pytorch/pytorch/./.github/actions/setup-linux 2025-03-14T04:19:07.4361903Z GITHUB_SERVER_URL=https://github.com 2025-03-14T04:19:07.4362127Z UCC_COMMIT= 2025-03-14T04:19:07.4362291Z REENABLED_ISSUES= 2025-03-14T04:19:07.4362465Z DOCS=yes 2025-03-14T04:19:07.4362623Z SHLVL=1 2025-03-14T04:19:07.4362778Z MAX_JOBS=30 2025-03-14T04:19:07.4362943Z GITHUB_ACTOR_ID=97764156 2025-03-14T04:19:07.4363194Z GITHUB_WORKFLOW_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:19:07.4363452Z GITHUB_REF_NAME=main 2025-03-14T04:19:07.4363716Z XLA_CLANG_CACHE_S3_BUCKET_NAME=ossci-compiler-clang-cache-circleci-xla 2025-03-14T04:19:07.4364005Z GITHUB_JOB=test 2025-03-14T04:19:07.4364180Z NO_TEST_TIMEOUT=False 2025-03-14T04:19:07.4364366Z TD_DISTRIBUTED=False 2025-03-14T04:19:07.4364551Z GITHUB_REPOSITORY=pytorch/pytorch 2025-03-14T04:19:07.4364768Z GITHUB_RETENTION_DAYS=90 2025-03-14T04:19:07.4364958Z OPENSSL_DIR=/opt/openssl 2025-03-14T04:19:07.4365157Z GITHUB_ACTION_REPOSITORY= 2025-03-14T04:19:07.4365636Z PATH=/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/envs/py_3.9/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2025-03-14T04:19:07.4366125Z GITHUB_BASE_REF= 2025-03-14T04:19:07.4366291Z INSTALLED_ACL= 2025-03-14T04:19:07.4366586Z ARTIFACTS_FILE_SUFFIX=test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362 2025-03-14T04:19:07.4366909Z CI=true 2025-03-14T04:19:07.4367073Z GITHUB_REPOSITORY_OWNER=pytorch 2025-03-14T04:19:07.4367273Z JOB_ID=38754842362 2025-03-14T04:19:07.4367443Z INSTALLED_PROTOBUF=yes 2025-03-14T04:19:07.4367624Z GITHUB_HEAD_REF= 2025-03-14T04:19:07.4367795Z GITHUB_ACTION_REF= 2025-03-14T04:19:07.4368000Z SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2 2025-03-14T04:19:07.4368239Z TEST_SHOWLOCALS=False 2025-03-14T04:19:07.4368413Z GITHUB_WORKFLOW=inductor 2025-03-14T04:19:07.4368607Z DEBIAN_FRONTEND=noninteractive 2025-03-14T04:19:07.4368998Z GITHUB_OUTPUT=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_output_cf747ae1-d501-4db5-a2cf-d8c5918f871b 2025-03-14T04:19:07.4369382Z NO_TD=False 2025-03-14T04:19:07.4369551Z SKIP_SCCACHE_INITIALIZATION=1 2025-03-14T04:19:07.4369745Z _=/usr/bin/env 2025-03-14T04:19:07.4369910Z + echo 'Testing pytorch' 2025-03-14T04:19:07.4370088Z Testing pytorch 2025-03-14T04:19:07.4370286Z + export LANG=C.UTF-8 2025-03-14T04:19:07.4370460Z + LANG=C.UTF-8 2025-03-14T04:19:07.4370619Z + PR_NUMBER= 2025-03-14T04:19:07.4370820Z + [[ dynamic_cpu_inductor_torchbench == \d\e\f\a\u\l\t ]] 2025-03-14T04:19:07.4371118Z + [[ dynamic_cpu_inductor_torchbench == \d\i\s\t\r\i\b\u\t\e\d ]] 2025-03-14T04:19:07.4371405Z + [[ dynamic_cpu_inductor_torchbench == \s\l\o\w ]] 2025-03-14T04:19:07.4371788Z + [[ linux-jammy-py3.9-gcc11-build == *slow-gradcheck* ]] 2025-03-14T04:19:07.4372072Z + [[ linux-jammy-py3.9-gcc11-build == *cuda* ]] 2025-03-14T04:19:07.4372337Z + [[ linux-jammy-py3.9-gcc11-build == *rocm* ]] 2025-03-14T04:19:07.4372730Z + [[ linux-jammy-py3.9-gcc11-build == *xpu* ]] 2025-03-14T04:19:07.4373012Z + [[ dynamic_cpu_inductor_torchbench == *crossref* ]] 2025-03-14T04:19:07.4373270Z + [[ linux-jammy-py3.9-gcc11-build == *rocm* ]] 2025-03-14T04:19:07.4373609Z + [[ linux-jammy-py3.9-gcc11-build == *xpu* ]] 2025-03-14T04:19:07.4373863Z + [[ linux-jammy-py3.9-gcc11-build != *-bazel-* ]] 2025-03-14T04:19:07.4374110Z + pip_install --user ninja==1.10.2 2025-03-14T04:19:07.4374380Z + pip_install_pkg='python3 -m pip install --progress-bar off' 2025-03-14T04:19:07.4374698Z + python3 -m pip install --progress-bar off --user ninja==1.10.2 2025-03-14T04:19:07.7946233Z Collecting ninja==1.10.2 2025-03-14T04:19:07.8052520Z Downloading ninja-1.10.2-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.whl.metadata (5.0 kB) 2025-03-14T04:19:07.8198888Z Downloading ninja-1.10.2-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.whl (108 kB) 2025-03-14T04:19:08.3093664Z Installing collected packages: ninja 2025-03-14T04:19:08.3168696Z  WARNING: The script ninja is installed in '/var/lib/jenkins/.local/bin' which is not on PATH. 2025-03-14T04:19:08.3169353Z Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location. 2025-03-14T04:19:08.3233596Z Successfully installed ninja-1.10.2 2025-03-14T04:19:08.3986225Z + export PATH=/var/lib/jenkins/.local/bin:/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/envs/py_3.9/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2025-03-14T04:19:08.3987351Z + PATH=/var/lib/jenkins/.local/bin:/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/envs/py_3.9/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2025-03-14T04:19:08.3987973Z + [[ linux-jammy-py3.9-gcc11-build == *aarch64* ]] 2025-03-14T04:19:08.3988232Z + install_tlparse 2025-03-14T04:19:08.3988428Z + pip_install --user tlparse==0.3.30 2025-03-14T04:19:08.3988736Z + pip_install_pkg='python3 -m pip install --progress-bar off' 2025-03-14T04:19:08.3989048Z + python3 -m pip install --progress-bar off --user tlparse==0.3.30 2025-03-14T04:19:08.6918867Z Collecting tlparse==0.3.30 2025-03-14T04:19:08.7000635Z Downloading tlparse-0.3.30-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.9 kB) 2025-03-14T04:19:08.7185216Z Downloading tlparse-0.3.30-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB) 2025-03-14T04:19:09.2228307Z Installing collected packages: tlparse 2025-03-14T04:19:09.2567510Z Successfully installed tlparse-0.3.30 2025-03-14T04:19:09.3372711Z ++ python -m site --user-base 2025-03-14T04:19:09.3610972Z + PATH=/var/lib/jenkins/.local/bin:/var/lib/jenkins/.local/bin:/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/envs/py_3.9/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2025-03-14T04:19:09.3611827Z + [[ linux-jammy-py3.9-gcc11-build == *asan* ]] 2025-03-14T04:19:09.3612123Z + [[ linux-jammy-py3.9-gcc11-build == *-debug* ]] 2025-03-14T04:19:09.3612472Z + [[ linux-jammy-py3.9-gcc11-build != *-bazel-* ]] 2025-03-14T04:19:09.3612877Z + echo 'We are not in debug mode: linux-jammy-py3.9-gcc11-build. Expect the assertion to pass' 2025-03-14T04:19:09.3613303Z We are not in debug mode: linux-jammy-py3.9-gcc11-build. Expect the assertion to pass 2025-03-14T04:19:09.3613595Z + cd test 2025-03-14T04:19:09.3613839Z + python -c 'import torch; torch._C._crash_if_debug_asserts_fail(424242)' 2025-03-14T04:19:10.4826452Z + [[ dynamic_cpu_inductor_torchbench == \n\o\g\p\u\_\N\O\_\A\V\X\2 ]] 2025-03-14T04:19:10.4826845Z + [[ dynamic_cpu_inductor_torchbench == \n\o\g\p\u\_\A\V\X\5\1\2 ]] 2025-03-14T04:19:10.4853005Z + DYNAMO_BENCHMARK_FLAGS=() 2025-03-14T04:19:10.4853382Z + [[ dynamic_cpu_inductor_torchbench == *pr_time_benchmarks* ]] 2025-03-14T04:19:10.4853700Z + [[ dynamic_cpu_inductor_torchbench == *dynamo_eager* ]] 2025-03-14T04:19:10.4853977Z + [[ dynamic_cpu_inductor_torchbench == *aot_eager* ]] 2025-03-14T04:19:10.4855742Z + [[ dynamic_cpu_inductor_torchbench == *aot_inductor* ]] 2025-03-14T04:19:10.4856070Z + [[ dynamic_cpu_inductor_torchbench == *max_autotune_inductor* ]] 2025-03-14T04:19:10.4856368Z + [[ dynamic_cpu_inductor_torchbench == *inductor* ]] 2025-03-14T04:19:10.4856775Z + [[ dynamic_cpu_inductor_torchbench != *perf* ]] 2025-03-14T04:19:10.4857053Z + DYNAMO_BENCHMARK_FLAGS+=(--inductor) 2025-03-14T04:19:10.4857305Z + [[ dynamic_cpu_inductor_torchbench == *dynamic* ]] 2025-03-14T04:19:10.4857631Z + DYNAMO_BENCHMARK_FLAGS+=(--dynamic-shapes --dynamic-batch-only) 2025-03-14T04:19:10.4857930Z + [[ dynamic_cpu_inductor_torchbench == *cpu* ]] 2025-03-14T04:19:10.4858174Z + DYNAMO_BENCHMARK_FLAGS+=(--device cpu) 2025-03-14T04:19:10.4858431Z + [[ linux-jammy-py3.9-gcc11-build == *libtorch* ]] 2025-03-14T04:19:10.4858712Z + [[ linux-jammy-py3.9-gcc11-build == *-bazel-* ]] 2025-03-14T04:19:10.4858951Z + cd test 2025-03-14T04:19:10.4859163Z + python -c 'import torch; print(torch.__config__.show())' 2025-03-14T04:19:11.4158995Z PyTorch built with: 2025-03-14T04:19:11.4159359Z - GCC 11.4 2025-03-14T04:19:11.4159541Z - C++ Version: 201703 2025-03-14T04:19:11.4159964Z - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications 2025-03-14T04:19:11.4160432Z - Intel(R) MKL-DNN v3.7.1 (Git Hash 8d263e693366ef8db40acc569cc7d8edf644556d) 2025-03-14T04:19:11.4160998Z - OpenMP 201511 (a.k.a. OpenMP 4.5) 2025-03-14T04:19:11.4161254Z - LAPACK is enabled (usually provided by MKL) 2025-03-14T04:19:11.4161480Z - NNPACK is enabled 2025-03-14T04:19:11.4161692Z - CPU capability usage: AVX512 2025-03-14T04:19:11.4164450Z - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4, CXX_COMPILER=/opt/cache/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=range-loop-construct -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Werror -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.8.0, USE_CUDA=OFF, USE_CUDNN=OFF, USE_CUSPARSELT=OFF, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, 2025-03-14T04:19:11.4181868Z 2025-03-14T04:19:11.6219286Z + cd test 2025-03-14T04:19:11.6219698Z + python -c 'import torch; print(torch.__config__.parallel_info())' 2025-03-14T04:19:12.5321340Z ATen/Parallel: 2025-03-14T04:19:12.5323311Z at::get_num_threads() : 16 2025-03-14T04:19:12.5324531Z at::get_num_interop_threads() : 16 2025-03-14T04:19:12.5325698Z OpenMP 201511 (a.k.a. OpenMP 4.5) 2025-03-14T04:19:12.5328151Z omp_get_max_threads() : 16 2025-03-14T04:19:12.5328642Z Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications 2025-03-14T04:19:12.5329110Z mkl_get_max_threads() : 16 2025-03-14T04:19:12.5329392Z Intel(R) MKL-DNN v3.7.1 (Git Hash 8d263e693366ef8db40acc569cc7d8edf644556d) 2025-03-14T04:19:12.5329714Z std::thread::hardware_concurrency() : 32 2025-03-14T04:19:12.5329946Z Environment variables: 2025-03-14T04:19:12.5330145Z OMP_NUM_THREADS : [not set] 2025-03-14T04:19:12.5330350Z MKL_NUM_THREADS : [not set] 2025-03-14T04:19:12.5333071Z ATen parallel backend: OpenMP 2025-03-14T04:19:12.5333209Z 2025-03-14T04:19:12.7290406Z + [[ dynamic_cpu_inductor_torchbench == *numpy_2* ]] 2025-03-14T04:19:12.7290771Z + [[ linux-jammy-py3.9-gcc11-build == *aarch64* ]] 2025-03-14T04:19:12.7291466Z + [[ dynamic_cpu_inductor_torchbench == *backward* ]] 2025-03-14T04:19:12.7291882Z + [[ dynamic_cpu_inductor_torchbench == *xla* ]] 2025-03-14T04:19:12.7292178Z + [[ dynamic_cpu_inductor_torchbench == *executorch* ]] 2025-03-14T04:19:12.7292621Z + [[ dynamic_cpu_inductor_torchbench == \j\i\t\_\l\e\g\a\c\y ]] 2025-03-14T04:19:12.7292910Z + [[ linux-jammy-py3.9-gcc11-build == *libtorch* ]] 2025-03-14T04:19:12.7293182Z + [[ dynamic_cpu_inductor_torchbench == distributed ]] 2025-03-14T04:19:12.7293488Z + [[ dynamic_cpu_inductor_torchbench == *inductor_distributed* ]] 2025-03-14T04:19:12.7293792Z + [[ dynamic_cpu_inductor_torchbench == *inductor-halide* ]] 2025-03-14T04:19:12.7294093Z + [[ dynamic_cpu_inductor_torchbench == *inductor-triton-cpu* ]] 2025-03-14T04:19:12.7294413Z + [[ dynamic_cpu_inductor_torchbench == *inductor-micro-benchmark* ]] 2025-03-14T04:19:12.7294716Z + [[ dynamic_cpu_inductor_torchbench == *huggingface* ]] 2025-03-14T04:19:12.7294972Z + [[ dynamic_cpu_inductor_torchbench == *timm* ]] 2025-03-14T04:19:12.7295226Z + [[ dynamic_cpu_inductor_torchbench == cachebench ]] 2025-03-14T04:19:12.7295500Z + [[ dynamic_cpu_inductor_torchbench == verify_cachebench ]] 2025-03-14T04:19:12.7295770Z + [[ dynamic_cpu_inductor_torchbench == *torchbench* ]] 2025-03-14T04:19:12.7296032Z + [[ dynamic_cpu_inductor_torchbench == *cpu* ]] 2025-03-14T04:19:12.7296266Z + install_torchaudio cpu 2025-03-14T04:19:12.7296459Z + local commit 2025-03-14T04:19:12.7296640Z ++ get_pinned_commit audio 2025-03-14T04:19:12.7296847Z ++ cat .github/ci_commit_pins/audio.txt 2025-03-14T04:19:12.7308446Z + commit=c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:19:12.7308783Z + [[ cpu == \c\u\d\a ]] 2025-03-14T04:19:12.7309213Z + pip_install --no-use-pep517 --user git+https://github.com/pytorch/audio.git@c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:19:12.7309676Z + pip_install_pkg='python3 -m pip install --progress-bar off' 2025-03-14T04:19:12.7310219Z + python3 -m pip install --progress-bar off --no-use-pep517 --user git+https://github.com/pytorch/audio.git@c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:19:12.9951943Z Collecting git+https://github.com/pytorch/audio.git@c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:19:12.9953357Z Cloning https://github.com/pytorch/audio.git (to revision c670ad81fda266b6598aeeef434583eb98197ae8) to /tmp/pip-req-build-wwu140h_ 2025-03-14T04:19:12.9984168Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/audio.git /tmp/pip-req-build-wwu140h_ 2025-03-14T04:19:13.6730789Z Running command git rev-parse -q --verify 'sha^c670ad81fda266b6598aeeef434583eb98197ae8' 2025-03-14T04:19:13.6760888Z Running command git fetch -q https://github.com/pytorch/audio.git c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:19:13.7560989Z Resolved https://github.com/pytorch/audio.git to commit c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:19:13.7561595Z Running command git submodule update --init --recursive -q 2025-03-14T04:19:15.4613664Z Preparing metadata (setup.py) ... [?25l- done 2025-03-14T04:19:15.4648458Z [?25hRequirement already satisfied: torch in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torchaudio==2.6.0a0+c670ad8) (2.8.0a0+gitaed0b7a) 2025-03-14T04:19:15.4672980Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchaudio==2.6.0a0+c670ad8) (3.16.1) 2025-03-14T04:19:15.4673756Z Requirement already satisfied: typing-extensions>=4.10.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchaudio==2.6.0a0+c670ad8) (4.12.2) 2025-03-14T04:19:15.4678821Z Requirement already satisfied: sympy>=1.13.3 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchaudio==2.6.0a0+c670ad8) (1.13.3) 2025-03-14T04:19:15.4679559Z Requirement already satisfied: networkx in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchaudio==2.6.0a0+c670ad8) (2.8.8) 2025-03-14T04:19:15.4680539Z Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchaudio==2.6.0a0+c670ad8) (3.1.6) 2025-03-14T04:19:15.4681182Z Requirement already satisfied: fsspec in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchaudio==2.6.0a0+c670ad8) (2024.10.0) 2025-03-14T04:19:15.4697545Z Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from sympy>=1.13.3->torch->torchaudio==2.6.0a0+c670ad8) (1.3.0) 2025-03-14T04:19:15.5101757Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from jinja2->torch->torchaudio==2.6.0a0+c670ad8) (3.0.2) 2025-03-14T04:19:15.5149092Z Building wheels for collected packages: torchaudio 2025-03-14T04:20:06.8253108Z Building wheel for torchaudio (setup.py) ... [?25l- \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ done 2025-03-14T04:20:06.8283503Z [?25h Created wheel for torchaudio: filename=torchaudio-2.6.0a0+c670ad8-cp39-cp39-linux_x86_64.whl size=1820578 sha256=c8cddfc5d708fe19671471d39a802f3f77314a268f5ddc6ee56c5072c9f191cc 2025-03-14T04:20:06.8284373Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/1c/6f/84/4c8de1f050144e10889ee8fe7b3a86ac99233001c78656be9d 2025-03-14T04:20:06.8319275Z Successfully built torchaudio 2025-03-14T04:20:07.2718486Z Installing collected packages: torchaudio 2025-03-14T04:20:07.4283454Z Successfully installed torchaudio-2.6.0a0+c670ad8 2025-03-14T04:20:07.5453560Z + install_torchvision 2025-03-14T04:20:07.5457427Z + local orig_preload 2025-03-14T04:20:07.5459768Z + local commit 2025-03-14T04:20:07.5460822Z ++ get_pinned_commit vision 2025-03-14T04:20:07.5461130Z ++ cat .github/ci_commit_pins/vision.txt 2025-03-14T04:20:07.5470456Z + commit=d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:07.5470816Z + orig_preload= 2025-03-14T04:20:07.5471005Z + '[' -n '' ']' 2025-03-14T04:20:07.5471396Z + pip_install --no-use-pep517 --user git+https://github.com/pytorch/vision.git@d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:07.5471860Z + pip_install_pkg='python3 -m pip install --progress-bar off' 2025-03-14T04:20:07.5472345Z + python3 -m pip install --progress-bar off --no-use-pep517 --user git+https://github.com/pytorch/vision.git@d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:07.8132642Z Collecting git+https://github.com/pytorch/vision.git@d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:07.8134026Z Cloning https://github.com/pytorch/vision.git (to revision d23a6e1664d20707c11781299611436e1f0c104f) to /tmp/pip-req-build-ajt6yyze 2025-03-14T04:20:07.8165148Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/vision.git /tmp/pip-req-build-ajt6yyze 2025-03-14T04:20:09.2676892Z Running command git rev-parse -q --verify 'sha^d23a6e1664d20707c11781299611436e1f0c104f' 2025-03-14T04:20:09.2703465Z Running command git fetch -q https://github.com/pytorch/vision.git d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:09.3576991Z Running command git checkout -q d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:09.6745669Z Resolved https://github.com/pytorch/vision.git to commit d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:11.4780920Z Preparing metadata (setup.py) ... [?25l- \ done 2025-03-14T04:20:11.4818165Z [?25hRequirement already satisfied: numpy in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torchvision==0.19.0a0+d23a6e1) (1.22.4) 2025-03-14T04:20:11.4823482Z Requirement already satisfied: torch in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torchvision==0.19.0a0+d23a6e1) (2.8.0a0+gitaed0b7a) 2025-03-14T04:20:11.4824209Z Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torchvision==0.19.0a0+d23a6e1) (11.0.0) 2025-03-14T04:20:11.4886239Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchvision==0.19.0a0+d23a6e1) (3.16.1) 2025-03-14T04:20:11.4887034Z Requirement already satisfied: typing-extensions>=4.10.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchvision==0.19.0a0+d23a6e1) (4.12.2) 2025-03-14T04:20:11.4887876Z Requirement already satisfied: sympy>=1.13.3 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchvision==0.19.0a0+d23a6e1) (1.13.3) 2025-03-14T04:20:11.4888535Z Requirement already satisfied: networkx in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchvision==0.19.0a0+d23a6e1) (2.8.8) 2025-03-14T04:20:11.4890448Z Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchvision==0.19.0a0+d23a6e1) (3.1.6) 2025-03-14T04:20:11.4897518Z Requirement already satisfied: fsspec in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchvision==0.19.0a0+d23a6e1) (2024.10.0) 2025-03-14T04:20:11.4913820Z Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from sympy>=1.13.3->torch->torchvision==0.19.0a0+d23a6e1) (1.3.0) 2025-03-14T04:20:11.5330226Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from jinja2->torch->torchvision==0.19.0a0+d23a6e1) (3.0.2) 2025-03-14T04:20:11.5407362Z Building wheels for collected packages: torchvision 2025-03-14T04:20:33.4513531Z Building wheel for torchvision (setup.py) ... [?25l- \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / done 2025-03-14T04:20:33.4538990Z [?25h Created wheel for torchvision: filename=torchvision-0.19.0a0+d23a6e1-cp39-cp39-linux_x86_64.whl size=1218778 sha256=bfdeeafebb538d16122d5711a87c562eccb7710f69fbe89354029649a48f28de 2025-03-14T04:20:33.4539803Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/76/25/46/00629fe1ec5f276eb28faecc4ae7c48c9ef9e6bbaa0691ad87 2025-03-14T04:20:33.4577004Z Successfully built torchvision 2025-03-14T04:20:33.8953393Z Installing collected packages: torchvision 2025-03-14T04:20:34.1963062Z Successfully installed torchvision-0.19.0a0+d23a6e1 2025-03-14T04:20:34.2939765Z + '[' -n '' ']' 2025-03-14T04:20:34.2946055Z + TORCH_CUDA_ARCH_LIST='8.0;8.6' 2025-03-14T04:20:34.2947965Z + pip_install git+https://github.com/pytorch/ao.git 2025-03-14T04:20:34.2948380Z + pip_install_pkg='python3 -m pip install --progress-bar off' 2025-03-14T04:20:34.2948764Z + python3 -m pip install --progress-bar off git+https://github.com/pytorch/ao.git 2025-03-14T04:20:34.5573330Z Collecting git+https://github.com/pytorch/ao.git 2025-03-14T04:20:34.5573768Z Cloning https://github.com/pytorch/ao.git to /tmp/pip-req-build-toprblbf 2025-03-14T04:20:34.5610530Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/ao.git /tmp/pip-req-build-toprblbf 2025-03-14T04:20:35.3799194Z Resolved https://github.com/pytorch/ao.git to commit 9259584f98db0760b27492a63050a2915c753dbe 2025-03-14T04:20:35.3799642Z Running command git submodule update --init --recursive -q 2025-03-14T04:20:39.0869849Z Preparing metadata (setup.py) ... [?25l- done 2025-03-14T04:20:39.0915518Z [?25hBuilding wheels for collected packages: torchao 2025-03-14T04:20:41.0092172Z Building wheel for torchao (setup.py) ... [?25l- \ | done 2025-03-14T04:20:41.0105154Z [?25h Created wheel for torchao: filename=torchao-0.10.0+git9259584f-py3-none-any.whl size=687512 sha256=0c7a3ef5346c37aba572d3f580c02e0f3052789f9b5a6501ca13c8b72f80f2b9 2025-03-14T04:20:41.0111463Z Stored in directory: /tmp/pip-ephem-wheel-cache-x4yn79p_/wheels/7d/5c/37/b607f0d104c0d0de07b506bc734c280ece23dce90e0c5cddc7 2025-03-14T04:20:41.0136414Z Successfully built torchao 2025-03-14T04:20:41.4905861Z Installing collected packages: torchao 2025-03-14T04:20:41.9235137Z Successfully installed torchao-0.10.0+git9259584f 2025-03-14T04:20:42.1108323Z + id=0 2025-03-14T04:20:42.1109043Z + pip_install opencv-python==4.8.0.74 2025-03-14T04:20:42.1109376Z + pip_install_pkg='python3 -m pip install --progress-bar off' 2025-03-14T04:20:42.1109715Z + python3 -m pip install --progress-bar off opencv-python==4.8.0.74 2025-03-14T04:20:42.4590411Z Collecting opencv-python==4.8.0.74 2025-03-14T04:20:42.4718489Z Downloading opencv_python-4.8.0.74-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (19 kB) 2025-03-14T04:20:42.4824140Z Requirement already satisfied: numpy>=1.17.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from opencv-python==4.8.0.74) (1.22.4) 2025-03-14T04:20:42.4903597Z Downloading opencv_python-4.8.0.74-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (61.7 MB) 2025-03-14T04:20:43.3978890Z Installing collected packages: opencv-python 2025-03-14T04:20:44.1762810Z Successfully installed opencv-python-4.8.0.74 2025-03-14T04:20:44.2642902Z + [[ dynamic_cpu_inductor_torchbench == *inductor_torchbench_smoketest_perf* ]] 2025-03-14T04:20:44.2643638Z + [[ dynamic_cpu_inductor_torchbench == *inductor_torchbench_cpu_smoketest_perf* ]] 2025-03-14T04:20:44.2644009Z + [[ dynamic_cpu_inductor_torchbench == *torchbench_gcp_smoketest* ]] 2025-03-14T04:20:44.2644299Z + checkout_install_torchbench 2025-03-14T04:20:44.2644497Z + local commit 2025-03-14T04:20:44.2644673Z ++ get_pinned_commit torchbench 2025-03-14T04:20:44.2644892Z ++ cat .github/ci_commit_pins/torchbench.txt 2025-03-14T04:20:44.2652970Z + commit=373ffb19dc470f4423a3176a4133f8f4b3cdb5bd 2025-03-14T04:20:44.2653528Z + git clone https://github.com/pytorch/benchmark torchbench 2025-03-14T04:20:44.2669708Z Cloning into 'torchbench'... 2025-03-14T04:20:44.5195077Z remote: Enumerating objects: 35366, done. 2025-03-14T04:20:44.5195448Z remote: Counting objects: 0% (1/5443) 2025-03-14T04:20:44.5195784Z remote: Counting objects: 1% (55/5443) 2025-03-14T04:20:44.5196064Z remote: Counting objects: 2% (109/5443) 2025-03-14T04:20:44.5196351Z remote: Counting objects: 3% (164/5443) 2025-03-14T04:20:44.5196655Z remote: Counting objects: 4% (218/5443) 2025-03-14T04:20:44.5196928Z remote: Counting objects: 5% (273/5443) 2025-03-14T04:20:44.5197190Z remote: Counting objects: 6% (327/5443) 2025-03-14T04:20:44.5197463Z remote: Counting objects: 7% (382/5443) 2025-03-14T04:20:44.5197790Z remote: Counting objects: 8% (436/5443) 2025-03-14T04:20:44.5198066Z remote: Counting objects: 9% (490/5443) 2025-03-14T04:20:44.5198322Z remote: Counting objects: 10% (545/5443) 2025-03-14T04:20:44.5198583Z remote: Counting objects: 11% (599/5443) 2025-03-14T04:20:44.5198846Z remote: Counting objects: 12% (654/5443) 2025-03-14T04:20:44.5199109Z remote: Counting objects: 13% (708/5443) 2025-03-14T04:20:44.5199385Z remote: Counting objects: 14% (763/5443) 2025-03-14T04:20:44.5199649Z remote: Counting objects: 15% (817/5443) 2025-03-14T04:20:44.5199925Z remote: Counting objects: 16% (871/5443) 2025-03-14T04:20:44.5200197Z remote: Counting objects: 17% (926/5443) 2025-03-14T04:20:44.5200464Z remote: Counting objects: 18% (980/5443) 2025-03-14T04:20:44.5200738Z remote: Counting objects: 19% (1035/5443) 2025-03-14T04:20:44.5201021Z remote: Counting objects: 20% (1089/5443) 2025-03-14T04:20:44.5201294Z remote: Counting objects: 21% (1144/5443) 2025-03-14T04:20:44.5201549Z remote: Counting objects: 22% (1198/5443) 2025-03-14T04:20:44.5201814Z remote: Counting objects: 23% (1252/5443) 2025-03-14T04:20:44.5202079Z remote: Counting objects: 24% (1307/5443) 2025-03-14T04:20:44.5202406Z remote: Counting objects: 25% (1361/5443) 2025-03-14T04:20:44.5202687Z remote: Counting objects: 26% (1416/5443) 2025-03-14T04:20:44.5205211Z remote: Counting objects: 27% (1470/5443) 2025-03-14T04:20:44.5205546Z remote: Counting objects: 28% (1525/5443) 2025-03-14T04:20:44.5205826Z remote: Counting objects: 29% (1579/5443) 2025-03-14T04:20:44.5206100Z remote: Counting objects: 30% (1633/5443) 2025-03-14T04:20:44.5206782Z remote: Counting objects: 31% (1688/5443) 2025-03-14T04:20:44.5207064Z remote: Counting objects: 32% (1742/5443) 2025-03-14T04:20:44.5207332Z remote: Counting objects: 33% (1797/5443) 2025-03-14T04:20:44.5207737Z remote: Counting objects: 34% (1851/5443) 2025-03-14T04:20:44.5208022Z remote: Counting objects: 35% (1906/5443) 2025-03-14T04:20:44.5208309Z remote: Counting objects: 36% (1960/5443) 2025-03-14T04:20:44.5208594Z remote: Counting objects: 37% (2014/5443) 2025-03-14T04:20:44.5208889Z remote: Counting objects: 38% (2069/5443) 2025-03-14T04:20:44.5209173Z remote: Counting objects: 39% (2123/5443) 2025-03-14T04:20:44.5209457Z remote: Counting objects: 40% (2178/5443) 2025-03-14T04:20:44.5209736Z remote: Counting objects: 41% (2232/5443) 2025-03-14T04:20:44.5210019Z remote: Counting objects: 42% (2287/5443) 2025-03-14T04:20:44.5210298Z remote: Counting objects: 43% (2341/5443) 2025-03-14T04:20:44.5210579Z remote: Counting objects: 44% (2395/5443) 2025-03-14T04:20:44.5210864Z remote: Counting objects: 45% (2450/5443) 2025-03-14T04:20:44.5211158Z remote: Counting objects: 46% (2504/5443) 2025-03-14T04:20:44.5211568Z remote: Counting objects: 47% (2559/5443) 2025-03-14T04:20:44.5211964Z remote: Counting objects: 48% (2613/5443) 2025-03-14T04:20:44.5212272Z remote: Counting objects: 49% (2668/5443) 2025-03-14T04:20:44.5212604Z remote: Counting objects: 50% (2722/5443) 2025-03-14T04:20:44.5212892Z remote: Counting objects: 51% (2776/5443) 2025-03-14T04:20:44.5213180Z remote: Counting objects: 52% (2831/5443) 2025-03-14T04:20:44.5213466Z remote: Counting objects: 53% (2885/5443) 2025-03-14T04:20:44.5213751Z remote: Counting objects: 54% (2940/5443) 2025-03-14T04:20:44.5214038Z remote: Counting objects: 55% (2994/5443) 2025-03-14T04:20:44.5214311Z remote: Counting objects: 56% (3049/5443) 2025-03-14T04:20:44.5214580Z remote: Counting objects: 57% (3103/5443) 2025-03-14T04:20:44.5214854Z remote: Counting objects: 58% (3157/5443) 2025-03-14T04:20:44.5215132Z remote: Counting objects: 59% (3212/5443) 2025-03-14T04:20:44.5215417Z remote: Counting objects: 60% (3266/5443) 2025-03-14T04:20:44.5215699Z remote: Counting objects: 61% (3321/5443) 2025-03-14T04:20:44.5215985Z remote: Counting objects: 62% (3375/5443) 2025-03-14T04:20:44.5216328Z remote: Counting objects: 63% (3430/5443) 2025-03-14T04:20:44.5216615Z remote: Counting objects: 64% (3484/5443) 2025-03-14T04:20:44.5216895Z remote: Counting objects: 65% (3538/5443) 2025-03-14T04:20:44.5217169Z remote: Counting objects: 66% (3593/5443) 2025-03-14T04:20:44.5217450Z remote: Counting objects: 67% (3647/5443) 2025-03-14T04:20:44.5217730Z remote: Counting objects: 68% (3702/5443) 2025-03-14T04:20:44.5218010Z remote: Counting objects: 69% (3756/5443) 2025-03-14T04:20:44.5218291Z remote: Counting objects: 70% (3811/5443) 2025-03-14T04:20:44.5218571Z remote: Counting objects: 71% (3865/5443) 2025-03-14T04:20:44.5218857Z remote: Counting objects: 72% (3919/5443) 2025-03-14T04:20:44.5219139Z remote: Counting objects: 73% (3974/5443) 2025-03-14T04:20:44.5219418Z remote: Counting objects: 74% (4028/5443) 2025-03-14T04:20:44.5219705Z remote: Counting objects: 75% (4083/5443) 2025-03-14T04:20:44.5219986Z remote: Counting objects: 76% (4137/5443) 2025-03-14T04:20:44.5220265Z remote: Counting objects: 77% (4192/5443) 2025-03-14T04:20:44.5220548Z remote: Counting objects: 78% (4246/5443) 2025-03-14T04:20:44.5220829Z remote: Counting objects: 79% (4300/5443) 2025-03-14T04:20:44.5221113Z remote: Counting objects: 80% (4355/5443) 2025-03-14T04:20:44.5221394Z remote: Counting objects: 81% (4409/5443) 2025-03-14T04:20:44.5221675Z remote: Counting objects: 82% (4464/5443) 2025-03-14T04:20:44.5221958Z remote: Counting objects: 83% (4518/5443) 2025-03-14T04:20:44.5222247Z remote: Counting objects: 84% (4573/5443) 2025-03-14T04:20:44.5222523Z remote: Counting objects: 85% (4627/5443) 2025-03-14T04:20:44.5222866Z remote: Counting objects: 86% (4681/5443) 2025-03-14T04:20:44.5223155Z remote: Counting objects: 87% (4736/5443) 2025-03-14T04:20:44.5223421Z remote: Counting objects: 88% (4790/5443) 2025-03-14T04:20:44.5223743Z remote: Counting objects: 89% (4845/5443) 2025-03-14T04:20:44.5224013Z remote: Counting objects: 90% (4899/5443) 2025-03-14T04:20:44.5224279Z remote: Counting objects: 91% (4954/5443) 2025-03-14T04:20:44.5224545Z remote: Counting objects: 92% (5008/5443) 2025-03-14T04:20:44.5224813Z remote: Counting objects: 93% (5062/5443) 2025-03-14T04:20:44.5225082Z remote: Counting objects: 94% (5117/5443) 2025-03-14T04:20:44.5225350Z remote: Counting objects: 95% (5171/5443) 2025-03-14T04:20:44.5225621Z remote: Counting objects: 96% (5226/5443) 2025-03-14T04:20:44.5225891Z remote: Counting objects: 97% (5280/5443) 2025-03-14T04:20:44.5226157Z remote: Counting objects: 98% (5335/5443) 2025-03-14T04:20:44.5226429Z remote: Counting objects: 99% (5389/5443) 2025-03-14T04:20:44.5226702Z remote: Counting objects: 100% (5443/5443) 2025-03-14T04:20:44.5226997Z remote: Counting objects: 100% (5443/5443), done. 2025-03-14T04:20:44.5227645Z remote: Compressing objects: 0% (1/605) 2025-03-14T04:20:44.5272704Z remote: Compressing objects: 1% (7/605) 2025-03-14T04:20:44.5289857Z remote: Compressing objects: 2% (13/605) 2025-03-14T04:20:44.5315555Z remote: Compressing objects: 3% (19/605) 2025-03-14T04:20:44.5330121Z remote: Compressing objects: 4% (25/605) 2025-03-14T04:20:44.5356122Z remote: Compressing objects: 5% (31/605) 2025-03-14T04:20:44.5377719Z remote: Compressing objects: 6% (37/605) 2025-03-14T04:20:44.5393062Z remote: Compressing objects: 7% (43/605) 2025-03-14T04:20:44.5405452Z remote: Compressing objects: 8% (49/605) 2025-03-14T04:20:44.5407537Z remote: Compressing objects: 9% (55/605) 2025-03-14T04:20:44.5409090Z remote: Compressing objects: 10% (61/605) 2025-03-14T04:20:44.5526128Z remote: Compressing objects: 11% (67/605) 2025-03-14T04:20:44.5626760Z remote: Compressing objects: 12% (73/605) 2025-03-14T04:20:44.5643473Z remote: Compressing objects: 13% (79/605) 2025-03-14T04:20:44.5764793Z remote: Compressing objects: 14% (85/605) 2025-03-14T04:20:44.5823597Z remote: Compressing objects: 15% (91/605) 2025-03-14T04:20:44.5849306Z remote: Compressing objects: 16% (97/605) 2025-03-14T04:20:44.5893256Z remote: Compressing objects: 17% (103/605) 2025-03-14T04:20:44.5938806Z remote: Compressing objects: 18% (109/605) 2025-03-14T04:20:44.5975106Z remote: Compressing objects: 19% (115/605) 2025-03-14T04:20:44.5993224Z remote: Compressing objects: 20% (121/605) 2025-03-14T04:20:44.6025536Z remote: Compressing objects: 21% (128/605) 2025-03-14T04:20:44.6053558Z remote: Compressing objects: 22% (134/605) 2025-03-14T04:20:44.6090227Z remote: Compressing objects: 23% (140/605) 2025-03-14T04:20:44.6111224Z remote: Compressing objects: 24% (146/605) 2025-03-14T04:20:44.6133428Z remote: Compressing objects: 25% (152/605) 2025-03-14T04:20:44.6151453Z remote: Compressing objects: 26% (158/605) 2025-03-14T04:20:44.6171222Z remote: Compressing objects: 27% (164/605) 2025-03-14T04:20:44.6186149Z remote: Compressing objects: 28% (170/605) 2025-03-14T04:20:44.6202941Z remote: Compressing objects: 29% (176/605) 2025-03-14T04:20:44.6217416Z remote: Compressing objects: 30% (182/605) 2025-03-14T04:20:44.6240026Z remote: Compressing objects: 31% (188/605) 2025-03-14T04:20:44.6250709Z remote: Compressing objects: 32% (194/605) 2025-03-14T04:20:44.6266151Z remote: Compressing objects: 33% (200/605) 2025-03-14T04:20:44.6281720Z remote: Compressing objects: 34% (206/605) 2025-03-14T04:20:44.6289524Z remote: Compressing objects: 35% (212/605) 2025-03-14T04:20:44.6297505Z remote: Compressing objects: 36% (218/605) 2025-03-14T04:20:44.6304793Z remote: Compressing objects: 37% (224/605) 2025-03-14T04:20:44.6313198Z remote: Compressing objects: 38% (230/605) 2025-03-14T04:20:44.6313567Z remote: Compressing objects: 39% (236/605) 2025-03-14T04:20:44.6320843Z remote: Compressing objects: 40% (242/605) 2025-03-14T04:20:44.6321452Z remote: Compressing objects: 41% (249/605) 2025-03-14T04:20:44.6321742Z remote: Compressing objects: 42% (255/605) 2025-03-14T04:20:44.6322024Z remote: Compressing objects: 43% (261/605) 2025-03-14T04:20:44.6326783Z remote: Compressing objects: 44% (267/605) 2025-03-14T04:20:44.6327126Z remote: Compressing objects: 45% (273/605) 2025-03-14T04:20:44.6327415Z remote: Compressing objects: 46% (279/605) 2025-03-14T04:20:44.6329946Z remote: Compressing objects: 47% (285/605) 2025-03-14T04:20:44.6343500Z remote: Compressing objects: 48% (291/605) 2025-03-14T04:20:44.6349212Z remote: Compressing objects: 49% (297/605) 2025-03-14T04:20:44.6349516Z remote: Compressing objects: 50% (303/605) 2025-03-14T04:20:44.6349809Z remote: Compressing objects: 51% (309/605) 2025-03-14T04:20:44.6350082Z remote: Compressing objects: 52% (315/605) 2025-03-14T04:20:44.6361704Z remote: Compressing objects: 53% (321/605) 2025-03-14T04:20:44.6362181Z remote: Compressing objects: 54% (327/605) 2025-03-14T04:20:44.6368305Z remote: Compressing objects: 55% (333/605) 2025-03-14T04:20:44.6368706Z remote: Compressing objects: 56% (339/605) 2025-03-14T04:20:44.6369014Z remote: Compressing objects: 57% (345/605) 2025-03-14T04:20:44.6369833Z remote: Compressing objects: 58% (351/605) 2025-03-14T04:20:44.6370152Z remote: Compressing objects: 59% (357/605) 2025-03-14T04:20:44.6370454Z remote: Compressing objects: 60% (363/605) 2025-03-14T04:20:44.6371103Z remote: Compressing objects: 61% (370/605) 2025-03-14T04:20:44.6371976Z remote: Compressing objects: 62% (376/605) 2025-03-14T04:20:44.6387137Z remote: Compressing objects: 63% (382/605) 2025-03-14T04:20:44.6388718Z remote: Compressing objects: 64% (388/605) 2025-03-14T04:20:44.6389211Z remote: Compressing objects: 65% (394/605) 2025-03-14T04:20:44.6395159Z remote: Compressing objects: 66% (400/605) 2025-03-14T04:20:44.6397126Z remote: Compressing objects: 67% (406/605) 2025-03-14T04:20:44.6397500Z remote: Compressing objects: 68% (412/605) 2025-03-14T04:20:44.6397914Z remote: Compressing objects: 69% (418/605) 2025-03-14T04:20:44.6403967Z remote: Compressing objects: 70% (424/605) 2025-03-14T04:20:44.6405621Z remote: Compressing objects: 71% (430/605) 2025-03-14T04:20:44.6405944Z remote: Compressing objects: 72% (436/605) 2025-03-14T04:20:44.6406244Z remote: Compressing objects: 73% (442/605) 2025-03-14T04:20:44.6406541Z remote: Compressing objects: 74% (448/605) 2025-03-14T04:20:44.6406830Z remote: Compressing objects: 75% (454/605) 2025-03-14T04:20:44.6408520Z remote: Compressing objects: 76% (460/605) 2025-03-14T04:20:44.6408831Z remote: Compressing objects: 77% (466/605) 2025-03-14T04:20:44.6409144Z remote: Compressing objects: 78% (472/605) 2025-03-14T04:20:44.6409431Z remote: Compressing objects: 79% (478/605) 2025-03-14T04:20:44.6409718Z remote: Compressing objects: 80% (484/605) 2025-03-14T04:20:44.6410010Z remote: Compressing objects: 81% (491/605) 2025-03-14T04:20:44.6410311Z remote: Compressing objects: 82% (497/605) 2025-03-14T04:20:44.6417976Z remote: Compressing objects: 83% (503/605) 2025-03-14T04:20:44.6419579Z remote: Compressing objects: 84% (509/605) 2025-03-14T04:20:44.6419891Z remote: Compressing objects: 85% (515/605) 2025-03-14T04:20:44.6420170Z remote: Compressing objects: 86% (521/605) 2025-03-14T04:20:44.6420446Z remote: Compressing objects: 87% (527/605) 2025-03-14T04:20:44.6420724Z remote: Compressing objects: 88% (533/605) 2025-03-14T04:20:44.6420999Z remote: Compressing objects: 89% (539/605) 2025-03-14T04:20:44.6421275Z remote: Compressing objects: 90% (545/605) 2025-03-14T04:20:44.6424937Z remote: Compressing objects: 91% (551/605) 2025-03-14T04:20:44.6425543Z remote: Compressing objects: 92% (557/605) 2025-03-14T04:20:44.6425829Z remote: Compressing objects: 93% (563/605) 2025-03-14T04:20:44.6433141Z remote: Compressing objects: 94% (569/605) 2025-03-14T04:20:44.6433590Z remote: Compressing objects: 95% (575/605) 2025-03-14T04:20:44.6441327Z remote: Compressing objects: 96% (581/605) 2025-03-14T04:20:44.6446064Z remote: Compressing objects: 97% (587/605) 2025-03-14T04:20:44.6447837Z remote: Compressing objects: 98% (593/605) 2025-03-14T04:20:44.6448149Z remote: Compressing objects: 99% (599/605) 2025-03-14T04:20:44.6448473Z remote: Compressing objects: 100% (605/605) 2025-03-14T04:20:44.6448802Z remote: Compressing objects: 100% (605/605), done. 2025-03-14T04:20:44.6511704Z Receiving objects: 0% (1/35366) 2025-03-14T04:20:44.6564013Z Receiving objects: 1% (354/35366) 2025-03-14T04:20:44.6610939Z Receiving objects: 2% (708/35366) 2025-03-14T04:20:44.6641155Z Receiving objects: 3% (1061/35366) 2025-03-14T04:20:44.6672051Z Receiving objects: 4% (1415/35366) 2025-03-14T04:20:44.6712210Z Receiving objects: 5% (1769/35366) 2025-03-14T04:20:44.6730983Z Receiving objects: 6% (2122/35366) 2025-03-14T04:20:44.6763383Z Receiving objects: 7% (2476/35366) 2025-03-14T04:20:44.6794320Z Receiving objects: 8% (2830/35366) 2025-03-14T04:20:44.6839288Z Receiving objects: 9% (3183/35366) 2025-03-14T04:20:44.6888779Z Receiving objects: 10% (3537/35366) 2025-03-14T04:20:44.6954790Z Receiving objects: 11% (3891/35366) 2025-03-14T04:20:44.7054183Z Receiving objects: 12% (4244/35366) 2025-03-14T04:20:44.7186600Z Receiving objects: 13% (4598/35366) 2025-03-14T04:20:44.7249893Z Receiving objects: 14% (4952/35366) 2025-03-14T04:20:44.7290806Z Receiving objects: 15% (5305/35366) 2025-03-14T04:20:44.7330223Z Receiving objects: 16% (5659/35366) 2025-03-14T04:20:44.7354789Z Receiving objects: 17% (6013/35366) 2025-03-14T04:20:44.7382629Z Receiving objects: 18% (6366/35366) 2025-03-14T04:20:44.7402547Z Receiving objects: 19% (6720/35366) 2025-03-14T04:20:44.9565547Z Receiving objects: 20% (7074/35366) 2025-03-14T04:20:45.6449497Z Receiving objects: 21% (7427/35366) 2025-03-14T04:20:45.9843662Z Receiving objects: 21% (7674/35366), 97.01 MiB | 97.00 MiB/s 2025-03-14T04:20:46.0531388Z Receiving objects: 22% (7781/35366), 97.01 MiB | 97.00 MiB/s 2025-03-14T04:20:46.1201932Z Receiving objects: 23% (8135/35366), 97.01 MiB | 97.00 MiB/s 2025-03-14T04:20:46.1874214Z Receiving objects: 24% (8488/35366), 97.01 MiB | 97.00 MiB/s 2025-03-14T04:20:46.2528202Z Receiving objects: 25% (8842/35366), 138.48 MiB | 92.31 MiB/s 2025-03-14T04:20:46.3191736Z Receiving objects: 26% (9196/35366), 138.48 MiB | 92.31 MiB/s 2025-03-14T04:20:46.3860359Z Receiving objects: 27% (9549/35366), 138.48 MiB | 92.31 MiB/s 2025-03-14T04:20:46.4521376Z Receiving objects: 28% (9903/35366), 138.48 MiB | 92.31 MiB/s 2025-03-14T04:20:46.6449915Z Receiving objects: 29% (10257/35366), 138.48 MiB | 92.31 MiB/s 2025-03-14T04:20:46.6697943Z Receiving objects: 29% (10579/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:46.6812552Z Receiving objects: 30% (10610/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:46.9313134Z Receiving objects: 31% (10964/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.0994895Z Receiving objects: 32% (11318/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1006461Z Receiving objects: 33% (11671/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1023085Z Receiving objects: 34% (12025/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1039431Z Receiving objects: 35% (12379/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1039781Z Receiving objects: 36% (12732/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1056805Z Receiving objects: 37% (13086/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1070213Z Receiving objects: 38% (13440/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1070671Z Receiving objects: 39% (13793/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1086965Z Receiving objects: 40% (14147/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1100743Z Receiving objects: 41% (14501/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1279435Z Receiving objects: 42% (14854/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1282456Z Receiving objects: 43% (15208/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1284309Z Receiving objects: 44% (15562/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1297818Z Receiving objects: 45% (15915/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1309944Z Receiving objects: 46% (16269/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1326533Z Receiving objects: 47% (16623/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1332133Z Receiving objects: 48% (16976/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1448483Z Receiving objects: 49% (17330/35366), 183.06 MiB | 91.53 MiB/s 2025-03-14T04:20:47.1450620Z Receiving objects: 50% (17683/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.1463520Z Receiving objects: 51% (18037/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.1681105Z Receiving objects: 52% (18391/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2040502Z Receiving objects: 53% (18744/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2043579Z Receiving objects: 54% (19098/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2062075Z Receiving objects: 55% (19452/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2066962Z Receiving objects: 56% (19805/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2077068Z Receiving objects: 57% (20159/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2095953Z Receiving objects: 58% (20513/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2104957Z Receiving objects: 59% (20866/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2111075Z Receiving objects: 60% (21220/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2297311Z Receiving objects: 61% (21574/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2317436Z Receiving objects: 62% (21927/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2333268Z Receiving objects: 63% (22281/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2342350Z Receiving objects: 64% (22635/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2380640Z Receiving objects: 65% (22988/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2487003Z Receiving objects: 66% (23342/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2491395Z Receiving objects: 67% (23696/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2503586Z Receiving objects: 68% (24049/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2512189Z Receiving objects: 69% (24403/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2516371Z Receiving objects: 70% (24757/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2606432Z Receiving objects: 71% (25110/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2617349Z Receiving objects: 72% (25464/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2627377Z Receiving objects: 73% (25818/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2643647Z Receiving objects: 74% (26171/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2670891Z Receiving objects: 75% (26525/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2685398Z Receiving objects: 76% (26879/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2703730Z Receiving objects: 77% (27232/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2718509Z Receiving objects: 78% (27586/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2738908Z Receiving objects: 79% (27940/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2820732Z Receiving objects: 80% (28293/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2831210Z Receiving objects: 81% (28647/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2843603Z Receiving objects: 82% (29001/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2877885Z Receiving objects: 83% (29354/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2949347Z Receiving objects: 84% (29708/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2957364Z Receiving objects: 85% (30062/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2957806Z Receiving objects: 86% (30415/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2959975Z Receiving objects: 87% (30769/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2964672Z Receiving objects: 88% (31123/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2965111Z Receiving objects: 89% (31476/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2967320Z Receiving objects: 90% (31830/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2971733Z Receiving objects: 91% (32184/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2980989Z Receiving objects: 92% (32537/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2985909Z Receiving objects: 93% (32891/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.2991409Z Receiving objects: 94% (33245/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.3004985Z Receiving objects: 95% (33598/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.3062501Z Receiving objects: 96% (33952/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.3075547Z Receiving objects: 97% (34306/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.3109463Z Receiving objects: 98% (34659/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.3148938Z Receiving objects: 99% (35013/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.3152907Z remote: Total 35366 (delta 5141), reused 4845 (delta 4838), pack-reused 29923 (from 2) 2025-03-14T04:20:47.3160772Z Receiving objects: 100% (35366/35366), 224.64 MiB | 89.85 MiB/s 2025-03-14T04:20:47.3165352Z Receiving objects: 100% (35366/35366), 233.84 MiB | 87.55 MiB/s, done. 2025-03-14T04:20:47.3198484Z Resolving deltas: 0% (0/19971) 2025-03-14T04:20:47.3237423Z Resolving deltas: 1% (202/19971) 2025-03-14T04:20:47.3246477Z Resolving deltas: 2% (400/19971) 2025-03-14T04:20:47.3351894Z Resolving deltas: 3% (600/19971) 2025-03-14T04:20:47.3365020Z Resolving deltas: 4% (799/19971) 2025-03-14T04:20:47.3368003Z Resolving deltas: 5% (999/19971) 2025-03-14T04:20:47.3380465Z Resolving deltas: 6% (1199/19971) 2025-03-14T04:20:47.3389311Z Resolving deltas: 7% (1398/19971) 2025-03-14T04:20:47.3393306Z Resolving deltas: 8% (1598/19971) 2025-03-14T04:20:47.3400570Z Resolving deltas: 9% (1798/19971) 2025-03-14T04:20:47.3407658Z Resolving deltas: 10% (1998/19971) 2025-03-14T04:20:47.3413859Z Resolving deltas: 11% (2197/19971) 2025-03-14T04:20:47.3419793Z Resolving deltas: 12% (2397/19971) 2025-03-14T04:20:47.3425064Z Resolving deltas: 13% (2597/19971) 2025-03-14T04:20:47.3430601Z Resolving deltas: 14% (2796/19971) 2025-03-14T04:20:47.3434567Z Resolving deltas: 15% (2996/19971) 2025-03-14T04:20:47.3440616Z Resolving deltas: 16% (3196/19971) 2025-03-14T04:20:47.3447709Z Resolving deltas: 17% (3396/19971) 2025-03-14T04:20:47.3454837Z Resolving deltas: 18% (3595/19971) 2025-03-14T04:20:47.3462250Z Resolving deltas: 19% (3795/19971) 2025-03-14T04:20:47.3470191Z Resolving deltas: 20% (3995/19971) 2025-03-14T04:20:47.3477088Z Resolving deltas: 21% (4194/19971) 2025-03-14T04:20:47.3480950Z Resolving deltas: 22% (4394/19971) 2025-03-14T04:20:47.3489010Z Resolving deltas: 23% (4594/19971) 2025-03-14T04:20:47.3490440Z Resolving deltas: 24% (4794/19971) 2025-03-14T04:20:47.3517977Z Resolving deltas: 25% (4993/19971) 2025-03-14T04:20:47.3526411Z Resolving deltas: 26% (5193/19971) 2025-03-14T04:20:47.3526768Z Resolving deltas: 27% (5393/19971) 2025-03-14T04:20:47.3533848Z Resolving deltas: 28% (5592/19971) 2025-03-14T04:20:47.3539273Z Resolving deltas: 29% (5795/19971) 2025-03-14T04:20:47.3545268Z Resolving deltas: 30% (5992/19971) 2025-03-14T04:20:47.3551744Z Resolving deltas: 31% (6193/19971) 2025-03-14T04:20:47.3558860Z Resolving deltas: 32% (6391/19971) 2025-03-14T04:20:47.3574206Z Resolving deltas: 33% (6591/19971) 2025-03-14T04:20:47.3587528Z Resolving deltas: 34% (6791/19971) 2025-03-14T04:20:47.3587832Z Resolving deltas: 35% (6991/19971) 2025-03-14T04:20:47.3590706Z Resolving deltas: 36% (7190/19971) 2025-03-14T04:20:47.3615955Z Resolving deltas: 37% (7392/19971) 2025-03-14T04:20:47.3623428Z Resolving deltas: 38% (7589/19971) 2025-03-14T04:20:47.3629565Z Resolving deltas: 39% (7789/19971) 2025-03-14T04:20:47.3635440Z Resolving deltas: 40% (7989/19971) 2025-03-14T04:20:47.3643080Z Resolving deltas: 41% (8189/19971) 2025-03-14T04:20:47.3652082Z Resolving deltas: 42% (8388/19971) 2025-03-14T04:20:47.3655860Z Resolving deltas: 43% (8589/19971) 2025-03-14T04:20:47.3673054Z Resolving deltas: 44% (8788/19971) 2025-03-14T04:20:47.3673322Z Resolving deltas: 45% (8988/19971) 2025-03-14T04:20:47.3683810Z Resolving deltas: 46% (9187/19971) 2025-03-14T04:20:47.3687788Z Resolving deltas: 47% (9387/19971) 2025-03-14T04:20:47.3705740Z Resolving deltas: 48% (9587/19971) 2025-03-14T04:20:47.3708227Z Resolving deltas: 49% (9795/19971) 2025-03-14T04:20:47.3710492Z Resolving deltas: 50% (9986/19971) 2025-03-14T04:20:47.3717057Z Resolving deltas: 51% (10186/19971) 2025-03-14T04:20:47.3771613Z Resolving deltas: 52% (10385/19971) 2025-03-14T04:20:47.3784054Z Resolving deltas: 53% (10585/19971) 2025-03-14T04:20:47.3797324Z Resolving deltas: 54% (10785/19971) 2025-03-14T04:20:47.3801605Z Resolving deltas: 55% (10985/19971) 2025-03-14T04:20:47.3826648Z Resolving deltas: 56% (11184/19971) 2025-03-14T04:20:47.3831596Z Resolving deltas: 57% (11384/19971) 2025-03-14T04:20:47.3837815Z Resolving deltas: 58% (11584/19971) 2025-03-14T04:20:47.3846257Z Resolving deltas: 59% (11783/19971) 2025-03-14T04:20:47.3854770Z Resolving deltas: 60% (11983/19971) 2025-03-14T04:20:47.3868299Z Resolving deltas: 61% (12183/19971) 2025-03-14T04:20:47.3873558Z Resolving deltas: 62% (12383/19971) 2025-03-14T04:20:47.3882793Z Resolving deltas: 63% (12582/19971) 2025-03-14T04:20:47.3887246Z Resolving deltas: 64% (12783/19971) 2025-03-14T04:20:47.3912085Z Resolving deltas: 65% (12982/19971) 2025-03-14T04:20:47.3914940Z Resolving deltas: 66% (13181/19971) 2025-03-14T04:20:47.3924475Z Resolving deltas: 67% (13381/19971) 2025-03-14T04:20:47.3930292Z Resolving deltas: 68% (13581/19971) 2025-03-14T04:20:47.3936598Z Resolving deltas: 69% (13781/19971) 2025-03-14T04:20:47.3944418Z Resolving deltas: 70% (13980/19971) 2025-03-14T04:20:47.3950710Z Resolving deltas: 71% (14180/19971) 2025-03-14T04:20:47.3957436Z Resolving deltas: 72% (14380/19971) 2025-03-14T04:20:47.3970431Z Resolving deltas: 73% (14579/19971) 2025-03-14T04:20:47.3982931Z Resolving deltas: 74% (14779/19971) 2025-03-14T04:20:47.3992881Z Resolving deltas: 75% (14979/19971) 2025-03-14T04:20:47.3996703Z Resolving deltas: 76% (15178/19971) 2025-03-14T04:20:47.4005630Z Resolving deltas: 77% (15378/19971) 2025-03-14T04:20:47.4017917Z Resolving deltas: 78% (15578/19971) 2025-03-14T04:20:47.4027164Z Resolving deltas: 79% (15778/19971) 2025-03-14T04:20:47.4037078Z Resolving deltas: 80% (15977/19971) 2025-03-14T04:20:47.4043754Z Resolving deltas: 81% (16177/19971) 2025-03-14T04:20:47.4050649Z Resolving deltas: 82% (16378/19971) 2025-03-14T04:20:47.4062269Z Resolving deltas: 83% (16576/19971) 2025-03-14T04:20:47.4075238Z Resolving deltas: 84% (16777/19971) 2025-03-14T04:20:47.4086134Z Resolving deltas: 85% (16976/19971) 2025-03-14T04:20:47.4101844Z Resolving deltas: 86% (17176/19971) 2025-03-14T04:20:47.4108090Z Resolving deltas: 87% (17375/19971) 2025-03-14T04:20:47.4116697Z Resolving deltas: 88% (17575/19971) 2025-03-14T04:20:47.4127141Z Resolving deltas: 89% (17775/19971) 2025-03-14T04:20:47.4139063Z Resolving deltas: 90% (17974/19971) 2025-03-14T04:20:47.4147118Z Resolving deltas: 91% (18174/19971) 2025-03-14T04:20:47.4154833Z Resolving deltas: 92% (18374/19971) 2025-03-14T04:20:47.4158692Z Resolving deltas: 93% (18574/19971) 2025-03-14T04:20:47.4166439Z Resolving deltas: 94% (18773/19971) 2025-03-14T04:20:47.4168288Z Resolving deltas: 95% (18974/19971) 2025-03-14T04:20:47.4172064Z Resolving deltas: 96% (19173/19971) 2025-03-14T04:20:47.4181215Z Resolving deltas: 97% (19372/19971) 2025-03-14T04:20:47.4196930Z Resolving deltas: 98% (19572/19971) 2025-03-14T04:20:47.4269410Z Resolving deltas: 99% (19772/19971) 2025-03-14T04:20:47.4269922Z Resolving deltas: 100% (19971/19971) 2025-03-14T04:20:47.4270288Z Resolving deltas: 100% (19971/19971), done. 2025-03-14T04:20:48.3811682Z + pushd torchbench 2025-03-14T04:20:48.3812021Z ~/workspace/torchbench ~/workspace 2025-03-14T04:20:48.3812319Z + git checkout 373ffb19dc470f4423a3176a4133f8f4b3cdb5bd 2025-03-14T04:20:48.4091987Z Note: switching to '373ffb19dc470f4423a3176a4133f8f4b3cdb5bd'. 2025-03-14T04:20:48.4092274Z 2025-03-14T04:20:48.4092478Z You are in 'detached HEAD' state. You can look around, make experimental 2025-03-14T04:20:48.4092871Z changes and commit them, and you can discard any commits you make in this 2025-03-14T04:20:48.4093287Z state without impacting any branches by switching back to a branch. 2025-03-14T04:20:48.4093534Z 2025-03-14T04:20:48.4093694Z If you want to create a new branch to retain commits you create, you may 2025-03-14T04:20:48.4094113Z do so (now or later) by using -c with the switch command. Example: 2025-03-14T04:20:48.4094346Z 2025-03-14T04:20:48.4094463Z git switch -c 2025-03-14T04:20:48.4094627Z 2025-03-14T04:20:48.4094736Z Or undo this operation with: 2025-03-14T04:20:48.4094924Z 2025-03-14T04:20:48.4095011Z git switch - 2025-03-14T04:20:48.4095132Z 2025-03-14T04:20:48.4095293Z Turn off this advice by setting config variable advice.detachedHead to false 2025-03-14T04:20:48.4095553Z 2025-03-14T04:20:48.4095723Z HEAD is now at 373ffb19 Copy model before benchmark warmup runs (#145858) 2025-03-14T04:20:48.4096014Z + '[' '' ']' 2025-03-14T04:20:48.4096243Z + python install.py --continue_on_fail 2025-03-14T04:20:53.0107972Z checking packages numpy, torch, torchvision, torchaudio are installed, generating constaints...OK 2025-03-14T04:21:15.6722832Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/BERT_pytorch...OK 2025-03-14T04:21:26.1231395Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/Background_Matting...OK 2025-03-14T04:21:36.7990460Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/LearningToPaint...OK 2025-03-14T04:21:47.2725340Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/Super_SloMo...OK 2025-03-14T04:21:56.4797067Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/alexnet...OK 2025-03-14T04:22:11.1250017Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/basic_gnn_edgecnn...OK 2025-03-14T04:22:22.2286891Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/basic_gnn_gcn...OK 2025-03-14T04:22:33.3035946Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/basic_gnn_gin...OK 2025-03-14T04:22:44.4192012Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/basic_gnn_sage...OK 2025-03-14T04:22:44.4198086Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/cm3leon_generate...SKIP - No install.py is found 2025-03-14T04:22:54.4363852Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/dcgan...OK 2025-03-14T04:23:05.4231432Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs...OK 2025-03-14T04:23:14.5190156Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/densenet121...OK 2025-03-14T04:23:52.1809646Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_101_c4...OK 2025-03-14T04:24:09.0427573Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_101_dc5...OK 2025-03-14T04:24:24.7376292Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_101_fpn...OK 2025-03-14T04:24:40.5285472Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_50_c4...OK 2025-03-14T04:24:57.8121002Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_50_dc5...OK 2025-03-14T04:25:13.3759114Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_50_fpn...OK 2025-03-14T04:25:29.0084003Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fcos_r_50_fpn...OK 2025-03-14T04:25:44.3807231Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn...OK 2025-03-14T04:25:59.9833020Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn_r_101_c4...OK 2025-03-14T04:26:15.8539249Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn_r_101_fpn...OK 2025-03-14T04:26:31.0098660Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn_r_50_c4...OK 2025-03-14T04:26:46.8207101Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn_r_50_fpn...OK 2025-03-14T04:26:57.0978936Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/dlrm...OK 2025-03-14T04:27:22.2944797Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/doctr_det_predictor...OK 2025-03-14T04:27:37.2538149Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/doctr_reco_predictor...OK 2025-03-14T04:27:50.6857077Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/drq...OK 2025-03-14T04:28:07.6759774Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/fastNLP_Bert...OK 2025-03-14T04:28:18.1497301Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/functorch_dp_cifar10...OK 2025-03-14T04:28:28.8283792Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/functorch_maml_omniglot...OK 2025-03-14T04:28:44.0583391Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Albert...OK 2025-03-14T04:28:59.5232447Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Bart...OK 2025-03-14T04:29:13.8897284Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Bert...OK 2025-03-14T04:29:29.6952266Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Bert_large...OK 2025-03-14T04:29:44.2826471Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_BigBird...OK 2025-03-14T04:29:58.7673399Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_DistilBert...OK 2025-03-14T04:30:14.1177364Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_GPT2...OK 2025-03-14T04:30:35.4550131Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_GPT2_large...OK 2025-03-14T04:30:51.0975448Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Longformer...OK 2025-03-14T04:31:04.7861036Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Reformer...OK 2025-03-14T04:31:22.1400577Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Roberta_base...OK 2025-03-14T04:31:36.3499360Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_T5...OK 2025-03-14T04:31:51.9734387Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_T5_base...OK 2025-03-14T04:31:51.9735142Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_T5_generate...SKIP - No install.py is found 2025-03-14T04:32:11.7814960Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_T5_large...OK 2025-03-14T04:32:24.6446001Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Whisper...OK 2025-03-14T04:32:24.6449352Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_clip...SKIP - No install.py is found 2025-03-14T04:32:40.6054683Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_distil_whisper...OK 2025-03-14T04:32:50.9827692Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/lennard_jones...OK 2025-03-14T04:33:01.4129765Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/llama...OK 2025-03-14T04:33:40.0985913Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/llama_v2_7b_16h...OK 2025-03-14T04:34:46.4758270Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/llava...OK 2025-03-14T04:34:55.9961224Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/maml...OK 2025-03-14T04:35:06.7549154Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/maml_omniglot...OK 2025-03-14T04:35:06.7552078Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/microbench_unbacked_tolist_sum...SKIP - No install.py is found 2025-03-14T04:35:16.2618337Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/mnasnet1_0...OK 2025-03-14T04:35:25.8112065Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/mobilenet_v2...OK 2025-03-14T04:35:35.3196050Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/mobilenet_v2_quantized_qat...OK 2025-03-14T04:35:44.9032233Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/mobilenet_v3_large...OK 2025-03-14T04:35:54.4250255Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/moco...OK 2025-03-14T04:36:18.9123731Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/moondream...OK 2025-03-14T04:36:18.9125916Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/nanogpt...SKIP - No install.py is found 2025-03-14T04:36:29.5488435Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/nvidia_deeprecommender...OK 2025-03-14T04:36:41.0611932Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/opacus_cifar10...OK 2025-03-14T04:36:50.5298903Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/phlippe_densenet...OK 2025-03-14T04:37:00.0100354Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/phlippe_resnet...OK 2025-03-14T04:37:09.4540187Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pyhpc_equation_of_state...OK 2025-03-14T04:37:18.9646773Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pyhpc_isoneutral_mixing...OK 2025-03-14T04:37:28.5126758Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pyhpc_turbulent_kinetic_energy...OK 2025-03-14T04:37:42.9310084Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pytorch_CycleGAN_and_pix2pix...OK 2025-03-14T04:37:53.5535623Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pytorch_stargan...OK 2025-03-14T04:38:05.9846815Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pytorch_unet...OK 2025-03-14T04:38:15.4406409Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnet152...OK 2025-03-14T04:38:24.8853232Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnet18...OK 2025-03-14T04:38:34.2841176Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnet50...OK 2025-03-14T04:38:43.7606599Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnet50_quantized_qat...OK 2025-03-14T04:38:53.3704681Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnext50_32x4d...OK 2025-03-14T04:39:11.2273588Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/sam...OK 2025-03-14T04:39:29.7984131Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/sam_fast...OK 2025-03-14T04:39:39.2024375Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/shufflenet_v2_x1_0...OK 2025-03-14T04:39:39.2031355Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/simple_gpt...SKIP - No install.py is found 2025-03-14T04:39:39.2032113Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/simple_gpt_tp_manual...SKIP - No install.py is found 2025-03-14T04:39:50.9522440Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/soft_actor_critic...OK 2025-03-14T04:40:02.0127625Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/speech_transformer...OK 2025-03-14T04:40:11.3676389Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/squeezenet1_1...OK 2025-03-14T04:40:42.6632264Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/stable_diffusion_text_encoder...OK 2025-03-14T04:40:57.1318435Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/stable_diffusion_unet...OK 2025-03-14T04:41:11.7022331Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/tacotron2...OK 2025-03-14T04:41:27.4103593Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_efficientdet...OK 2025-03-14T04:41:36.7466737Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_efficientnet...OK 2025-03-14T04:41:46.0306980Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_nfnet...OK 2025-03-14T04:41:55.3290616Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_regnet...OK 2025-03-14T04:42:04.7070289Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_resnest...OK 2025-03-14T04:42:14.0287912Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_vision_transformer...OK 2025-03-14T04:42:23.2954271Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_vision_transformer_large...OK 2025-03-14T04:42:32.6491687Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_vovnet...OK 2025-03-14T04:42:46.7019523Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/torch_multimodal_clip...OK 2025-03-14T04:43:00.1619319Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/tts_angular...OK 2025-03-14T04:43:09.4609265Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/vgg16...OK 2025-03-14T04:43:20.2155837Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/vision_maskrcnn...OK 2025-03-14T04:43:31.1307286Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/yolov3...OK 2025-03-14T04:43:35.7570189Z installed torchbench with package constraints: {'numpy': '1.22.4', 'torch': '2.8.0a0+gitaed0b7a', 'torchvision': '0.19.0a0+d23a6e1', 'torchaudio': '2.6.0a0+c670ad8'} 2025-03-14T04:43:35.9861755Z + pip install transformers==4.38.1 2025-03-14T04:43:36.3328796Z Collecting transformers==4.38.1 2025-03-14T04:43:36.3437266Z Downloading transformers-4.38.1-py3-none-any.whl.metadata (131 kB) 2025-03-14T04:43:36.4835701Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (3.16.1) 2025-03-14T04:43:36.4841118Z Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (0.29.3) 2025-03-14T04:43:36.4846469Z Requirement already satisfied: numpy>=1.17 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (1.22.4) 2025-03-14T04:43:36.4848422Z Requirement already satisfied: packaging>=20.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (24.2) 2025-03-14T04:43:36.4849503Z Requirement already satisfied: pyyaml>=5.1 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (6.0.2) 2025-03-14T04:43:36.4850135Z Requirement already satisfied: regex!=2019.12.17 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (2024.11.6) 2025-03-14T04:43:36.4850892Z Requirement already satisfied: requests in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (2.32.3) 2025-03-14T04:43:36.5778083Z Collecting tokenizers<0.19,>=0.14 (from transformers==4.38.1) 2025-03-14T04:43:36.5789497Z Using cached tokenizers-0.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB) 2025-03-14T04:43:36.5812689Z Requirement already satisfied: safetensors>=0.4.1 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (0.5.3) 2025-03-14T04:43:36.5813372Z Requirement already satisfied: tqdm>=4.27 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (4.67.1) 2025-03-14T04:43:36.5966342Z Requirement already satisfied: fsspec>=2023.5.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.19.3->transformers==4.38.1) (2024.10.0) 2025-03-14T04:43:36.5971826Z Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.19.3->transformers==4.38.1) (4.12.2) 2025-03-14T04:43:36.6097522Z Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from requests->transformers==4.38.1) (3.4.1) 2025-03-14T04:43:36.6103657Z Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from requests->transformers==4.38.1) (3.10) 2025-03-14T04:43:36.6105733Z Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from requests->transformers==4.38.1) (1.26.20) 2025-03-14T04:43:36.6106473Z Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from requests->transformers==4.38.1) (2025.1.31) 2025-03-14T04:43:36.6437601Z Downloading transformers-4.38.1-py3-none-any.whl (8.5 MB) 2025-03-14T04:43:36.6981235Z [?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/8.5 MB ? eta -:--:-- 2025-03-14T04:43:36.6982002Z  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.5/8.5 MB 167.0 MB/s eta 0:00:00 2025-03-14T04:43:36.6984645Z [?25hUsing cached tokenizers-0.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB) 2025-03-14T04:43:37.4590765Z Installing collected packages: tokenizers, transformers 2025-03-14T04:43:37.4591102Z Attempting uninstall: tokenizers 2025-03-14T04:43:37.4603455Z Found existing installation: tokenizers 0.19.1 2025-03-14T04:43:37.4633423Z Uninstalling tokenizers-0.19.1: 2025-03-14T04:43:37.4639847Z Successfully uninstalled tokenizers-0.19.1 2025-03-14T04:43:37.5275311Z Attempting uninstall: transformers 2025-03-14T04:43:37.5289473Z Found existing installation: transformers 4.44.2 2025-03-14T04:43:37.6342600Z Uninstalling transformers-4.44.2: 2025-03-14T04:43:37.6525476Z Successfully uninstalled transformers-4.44.2 2025-03-14T04:43:40.6620687Z Successfully installed tokenizers-0.15.2 transformers-4.38.1 2025-03-14T04:43:40.7746417Z + echo 'Print all dependencies after TorchBench is installed' 2025-03-14T04:43:40.7746943Z Print all dependencies after TorchBench is installed 2025-03-14T04:43:40.7747340Z + python -mpip freeze 2025-03-14T04:43:41.0996091Z absl-py==2.1.0 2025-03-14T04:43:41.0996425Z accelerate==1.5.1 2025-03-14T04:43:41.0996619Z aiohappyeyeballs==2.6.1 2025-03-14T04:43:41.0996820Z aiohttp==3.11.13 2025-03-14T04:43:41.0996996Z aiosignal==1.3.2 2025-03-14T04:43:41.0997159Z alabaster==0.7.16 2025-03-14T04:43:41.0997340Z annotated-types==0.7.0 2025-03-14T04:43:41.0997545Z antlr4-python3-runtime==4.9.3 2025-03-14T04:43:41.0997754Z anyascii==0.3.2 2025-03-14T04:43:41.0997925Z astroid==3.3.9 2025-03-14T04:43:41.0998452Z asttokens==3.0.0 2025-03-14T04:43:41.0998642Z astunparse==1.6.3 2025-03-14T04:43:41.0998820Z async-timeout==5.0.1 2025-03-14T04:43:41.0999005Z attrs==23.1.0 2025-03-14T04:43:41.0999174Z audioread==3.0.1 2025-03-14T04:43:41.0999459Z babel==2.17.0 2025-03-14T04:43:41.0999623Z backcall==0.2.0 2025-03-14T04:43:41.0999797Z beautifulsoup4==4.13.3 2025-03-14T04:43:41.1000361Z -e git+https://github.com/pytorch/benchmark@373ffb19dc470f4423a3176a4133f8f4b3cdb5bd#egg=bert_pytorch&subdirectory=torchbenchmark/models/BERT_pytorch 2025-03-14T04:43:41.1000848Z black==25.1.0 2025-03-14T04:43:41.1001004Z blinker==1.9.0 2025-03-14T04:43:41.1001173Z blis==1.2.0 2025-03-14T04:43:41.1001335Z blobfile==3.0.0 2025-03-14T04:43:41.1001505Z bokeh==3.4.3 2025-03-14T04:43:41.1001664Z boto3==1.35.42 2025-03-14T04:43:41.1001831Z botocore==1.35.99 2025-03-14T04:43:41.1002000Z breathe==4.34.0 2025-03-14T04:43:41.1002162Z bs4==0.0.1 2025-03-14T04:43:41.1002324Z cachetools==5.5.2 2025-03-14T04:43:41.1002502Z cardboardlint==1.3.1 2025-03-14T04:43:41.1002680Z catalogue==2.0.10 2025-03-14T04:43:41.1002848Z certifi==2025.1.31 2025-03-14T04:43:41.1003016Z cffi==1.17.1 2025-03-14T04:43:41.1003184Z charset-normalizer==3.4.1 2025-03-14T04:43:41.1003379Z click==8.1.8 2025-03-14T04:43:41.1003545Z cloudpathlib==0.21.0 2025-03-14T04:43:41.1003725Z cloudpickle==3.1.1 2025-03-14T04:43:41.1003895Z colorama==0.4.6 2025-03-14T04:43:41.1004061Z comm==0.2.2 2025-03-14T04:43:41.1004217Z confection==0.1.5 2025-03-14T04:43:41.1004386Z contourpy==1.2.1 2025-03-14T04:43:41.1004558Z coremltools==5.0b5 2025-03-14T04:43:41.1004733Z cryptography==44.0.2 2025-03-14T04:43:41.1004905Z csvw==3.5.1 2025-03-14T04:43:41.1005060Z cycler==0.12.1 2025-03-14T04:43:41.1005222Z cymem==2.0.11 2025-03-14T04:43:41.1005383Z Cython==3.0.12 2025-03-14T04:43:41.1005538Z DALL-E==0.1 2025-03-14T04:43:41.1005705Z dataclasses-json==0.6.7 2025-03-14T04:43:41.1005888Z datasets==3.3.2 2025-03-14T04:43:41.1006054Z debugpy==1.8.13 2025-03-14T04:43:41.1006219Z decorator==5.2.1 2025-03-14T04:43:41.1006401Z defusedxml==0.7.1 2025-03-14T04:43:41.1006568Z Deprecated==1.2.18 2025-03-14T04:43:41.1006910Z detectron2 @ git+https://github.com/facebookresearch/detectron2.git@0df2d73d0013db7de629602c23cc120219b4f2b8 2025-03-14T04:43:41.1007291Z diffusers==0.30.3 2025-03-14T04:43:41.1007460Z dill==0.3.8 2025-03-14T04:43:41.1007618Z diskcache==5.6.3 2025-03-14T04:43:41.1007785Z distro==1.9.0 2025-03-14T04:43:41.1007948Z dlinfo==2.0.0 2025-03-14T04:43:41.1008113Z dnspython==2.7.0 2025-03-14T04:43:41.1008282Z docker-pycreds==0.4.0 2025-03-14T04:43:41.1008458Z docutils==0.16 2025-03-14T04:43:41.1008617Z dominate==2.9.1 2025-03-14T04:43:41.1008951Z effdet @ git+https://github.com/rwightman/efficientdet-pytorch.git@d43c9e34cd62d22b4205831bb735f6dd83b8e881 2025-03-14T04:43:41.1009311Z einops==0.8.1 2025-03-14T04:43:41.1014349Z eval_type_backport==0.2.2 2025-03-14T04:43:41.1014582Z exceptiongroup==1.2.2 2025-03-14T04:43:41.1014766Z execnet==2.1.1 2025-03-14T04:43:41.1014942Z executing==2.2.0 2025-03-14T04:43:41.1015129Z exhale==0.2.3 2025-03-14T04:43:41.1015293Z expecttest==0.3.0 2025-03-14T04:43:41.1015470Z fastjsonschema==2.21.1 2025-03-14T04:43:41.1015651Z FastNLP==0.6.0 2025-03-14T04:43:41.1015831Z fbscribelogger==0.1.7 2025-03-14T04:43:41.1016013Z ffmpeg-python==0.2.0 2025-03-14T04:43:41.1016192Z filelock==3.16.1 2025-03-14T04:43:41.1016357Z Flask==3.1.0 2025-03-14T04:43:41.1016521Z flatbuffers==2.0 2025-03-14T04:43:41.1016691Z fonttools==4.56.0 2025-03-14T04:43:41.1016858Z frozenlist==1.5.0 2025-03-14T04:43:41.1017025Z fsspec==2024.10.0 2025-03-14T04:43:41.1017185Z ftfy==6.3.1 2025-03-14T04:43:41.1017504Z functorch @ git+https://github.com/pytorch/functorch.git@b71aa0b4387b86c278132209b99538be48ef4c74 2025-03-14T04:43:41.1017848Z future==1.0.0 2025-03-14T04:43:41.1018016Z fvcore==0.1.5.post20221221 2025-03-14T04:43:41.1018198Z gdown==5.2.0 2025-03-14T04:43:41.1018353Z ghstack==0.8.0 2025-03-14T04:43:41.1018511Z gitdb==4.0.12 2025-03-14T04:43:41.1018662Z GitPython==3.1.44 2025-03-14T04:43:41.1018961Z google-auth==2.38.0 2025-03-14T04:43:41.1019154Z google-auth-oauthlib==1.0.0 2025-03-14T04:43:41.1019353Z greenlet==3.1.1 2025-03-14T04:43:41.1019518Z grpcio==1.71.0 2025-03-14T04:43:41.1019681Z gym==0.26.2 2025-03-14T04:43:41.1019895Z gym-notices==0.0.8 2025-03-14T04:43:41.1020064Z h5py==3.13.0 2025-03-14T04:43:41.1020224Z higher==0.2.1 2025-03-14T04:43:41.1020391Z huggingface-hub==0.29.3 2025-03-14T04:43:41.1020571Z hydra-core==1.3.2 2025-03-14T04:43:41.1020739Z hypothesis==5.35.1 2025-03-14T04:43:41.1020907Z idna==3.10 2025-03-14T04:43:41.1021055Z imageio==2.37.0 2025-03-14T04:43:41.1021218Z imagesize==1.4.1 2025-03-14T04:43:41.1021391Z importlib_metadata==8.6.1 2025-03-14T04:43:41.1021576Z inflect==7.5.0 2025-03-14T04:43:41.1021737Z iniconfig==2.0.0 2025-03-14T04:43:41.1021901Z iopath==0.1.9 2025-03-14T04:43:41.1022060Z ipykernel==6.29.5 2025-03-14T04:43:41.1022222Z ipython==8.12.0 2025-03-14T04:43:41.1022380Z isodate==0.7.2 2025-03-14T04:43:41.1022534Z isort==6.0.1 2025-03-14T04:43:41.1022696Z itsdangerous==2.2.0 2025-03-14T04:43:41.1022863Z jedi==0.19.2 2025-03-14T04:43:41.1023016Z Jinja2==3.1.6 2025-03-14T04:43:41.1023171Z jmespath==1.0.1 2025-03-14T04:43:41.1023324Z joblib==1.4.2 2025-03-14T04:43:41.1023478Z jsonpatch==1.33 2025-03-14T04:43:41.1023644Z jsonpointer==3.0.0 2025-03-14T04:43:41.1023812Z jsonschema==4.23.0 2025-03-14T04:43:41.1023999Z jsonschema-specifications==2024.10.1 2025-03-14T04:43:41.1024217Z junitparser==2.1.1 2025-03-14T04:43:41.1024388Z jupyter-cache==0.6.1 2025-03-14T04:43:41.1024569Z jupyter_client==8.6.3 2025-03-14T04:43:41.1024749Z jupyter_core==5.7.2 2025-03-14T04:43:41.1024916Z kaldi-io==0.9.8 2025-03-14T04:43:41.1025079Z kiwisolver==1.4.7 2025-03-14T04:43:41.1025239Z kornia==0.8.0 2025-03-14T04:43:41.1025395Z kornia_rs==0.1.8 2025-03-14T04:43:41.1025548Z lameenc==1.8.1 2025-03-14T04:43:41.1025704Z langcodes==3.5.0 2025-03-14T04:43:41.1025865Z langdetect==1.0.9 2025-03-14T04:43:41.1026030Z language-tags==1.2.0 2025-03-14T04:43:41.1026202Z language_data==1.3.0 2025-03-14T04:43:41.1026371Z lark==0.12.0 2025-03-14T04:43:41.1026526Z lazy_loader==0.4 2025-03-14T04:43:41.1026686Z libcst==1.7.0 2025-03-14T04:43:41.1026840Z librosa==0.9.2 2025-03-14T04:43:41.1026999Z lintrunner==0.12.7 2025-03-14T04:43:41.1027164Z llvmlite==0.38.1 2025-03-14T04:43:41.1027324Z lxml==5.3.0 2025-03-14T04:43:41.1027479Z marisa-trie==1.2.1 2025-03-14T04:43:41.1027637Z Markdown==3.7 2025-03-14T04:43:41.1027801Z markdown-it-py==2.2.0 2025-03-14T04:43:41.1027980Z MarkupSafe==3.0.2 2025-03-14T04:43:41.1028148Z marshmallow==3.26.1 2025-03-14T04:43:41.1028317Z matplotlib==3.5.3 2025-03-14T04:43:41.1028584Z matplotlib-inline==0.1.7 2025-03-14T04:43:41.1028770Z mccabe==0.7.0 2025-03-14T04:43:41.1028936Z mdit-py-plugins==0.3.5 2025-03-14T04:43:41.1029108Z mdurl==0.1.2 2025-03-14T04:43:41.1029268Z ml_dtypes==0.5.1 2025-03-14T04:43:41.1029435Z MonkeyType==23.3.0 2025-03-14T04:43:41.1029637Z more-itertools==10.6.0 2025-03-14T04:43:41.1029809Z mpmath==1.3.0 2025-03-14T04:43:41.1029970Z msgpack==1.1.0 2025-03-14T04:43:41.1030136Z multidict==6.1.0 2025-03-14T04:43:41.1030308Z multiprocess==0.70.16 2025-03-14T04:43:41.1030486Z murmurhash==1.0.12 2025-03-14T04:43:41.1030653Z musdb==0.4.2 2025-03-14T04:43:41.1030811Z museval==0.4.1 2025-03-14T04:43:41.1030974Z mypy==1.14.0 2025-03-14T04:43:41.1031137Z mypy-extensions==1.0.0 2025-03-14T04:43:41.1031311Z myst-nb==0.17.2 2025-03-14T04:43:41.1031482Z myst-parser==0.18.1 2025-03-14T04:43:41.1031654Z nbclient==0.7.4 2025-03-14T04:43:41.1031819Z nbformat==5.10.4 2025-03-14T04:43:41.1031992Z nest-asyncio==1.6.0 2025-03-14T04:43:41.1032162Z networkx==2.8.8 2025-03-14T04:43:41.1032321Z ninja==1.10.2 2025-03-14T04:43:41.1032480Z nose==1.3.7 2025-03-14T04:43:41.1032637Z numba==0.55.2 2025-03-14T04:43:41.1032795Z numpy==1.22.4 2025-03-14T04:43:41.1032969Z nvidia-cublas-cu12==12.4.5.8 2025-03-14T04:43:41.1033180Z nvidia-cuda-cupti-cu12==12.4.127 2025-03-14T04:43:41.1033399Z nvidia-cuda-nvrtc-cu12==12.4.127 2025-03-14T04:43:41.1033615Z nvidia-cuda-runtime-cu12==12.4.127 2025-03-14T04:43:41.1033882Z nvidia-cudnn-cu12==9.1.0.70 2025-03-14T04:43:41.1034089Z nvidia-cufft-cu12==11.2.1.3 2025-03-14T04:43:41.1034292Z nvidia-curand-cu12==10.3.5.147 2025-03-14T04:43:41.1034499Z nvidia-cusolver-cu12==11.6.1.9 2025-03-14T04:43:41.1034776Z nvidia-cusparse-cu12==12.3.1.170 2025-03-14T04:43:41.1034991Z nvidia-cusparselt-cu12==0.6.2 2025-03-14T04:43:41.1035194Z nvidia-ml-py==12.570.86 2025-03-14T04:43:41.1035386Z nvidia-nccl-cu12==2.21.5 2025-03-14T04:43:41.1035586Z nvidia-nvjitlink-cu12==12.4.127 2025-03-14T04:43:41.1035797Z nvidia-nvtx-cu12==12.4.127 2025-03-14T04:43:41.1035986Z oauthlib==3.2.2 2025-03-14T04:43:41.1036157Z omegaconf==2.3.0 2025-03-14T04:43:41.1036327Z onnx==1.17.0 2025-03-14T04:43:41.1036491Z onnxscript==0.2.2 2025-03-14T04:43:41.1036652Z opacus==1.5.3 2025-03-14T04:43:41.1036822Z opencv-python==4.8.0.74 2025-03-14T04:43:41.1037008Z opt-einsum==3.3.0 2025-03-14T04:43:41.1037176Z optree==0.13.0 2025-03-14T04:43:41.1037343Z packaging==24.2 2025-03-14T04:43:41.1037518Z pandas==2.0.3 2025-03-14T04:43:41.1037685Z parameterized==0.8.1 2025-03-14T04:43:41.1037864Z parso==0.8.4 2025-03-14T04:43:41.1038026Z patch==1.16 2025-03-14T04:43:41.1038186Z pathspec==0.12.1 2025-03-14T04:43:41.1038355Z pexpect==4.9.0 2025-03-14T04:43:41.1038525Z phonemizer==3.3.0 2025-03-14T04:43:41.1038699Z pickleshare==0.7.5 2025-03-14T04:43:41.1038870Z pillow==11.0.0 2025-03-14T04:43:41.1039029Z platformdirs==4.3.6 2025-03-14T04:43:41.1039201Z pluggy==1.5.0 2025-03-14T04:43:41.1039364Z ply==3.11 2025-03-14T04:43:41.1039522Z pooch==1.8.2 2025-03-14T04:43:41.1039689Z portalocker==3.1.1 2025-03-14T04:43:41.1039859Z preshed==3.0.9 2025-03-14T04:43:41.1040028Z prettytable==3.15.1 2025-03-14T04:43:41.1040203Z prompt_toolkit==3.0.50 2025-03-14T04:43:41.1040385Z propcache==0.3.0 2025-03-14T04:43:41.1040553Z protobuf==3.20.2 2025-03-14T04:43:41.1040723Z psutil==7.0.0 2025-03-14T04:43:41.1040884Z ptyprocess==0.7.0 2025-03-14T04:43:41.1041055Z PuLP==2.9.0 2025-03-14T04:43:41.1041208Z pure_eval==0.2.3 2025-03-14T04:43:41.1041376Z pwlf==2.2.1 2025-03-14T04:43:41.1041544Z py-cpuinfo==9.0.0 2025-03-14T04:43:41.1041711Z pyaml==25.1.0 2025-03-14T04:43:41.1041871Z pyarrow==19.0.1 2025-03-14T04:43:41.1042037Z pyasn1==0.6.1 2025-03-14T04:43:41.1042215Z pyasn1_modules==0.4.1 2025-03-14T04:43:41.1042394Z pyclipper==1.3.0.post6 2025-03-14T04:43:41.1042569Z pycocotools==2.0.8 2025-03-14T04:43:41.1042734Z pycparser==2.22 2025-03-14T04:43:41.1042899Z pycryptodomex==3.21.0 2025-03-14T04:43:41.1043074Z pydantic==2.10.6 2025-03-14T04:43:41.1043241Z pydantic_core==2.27.2 2025-03-14T04:43:41.1043399Z pyDOE==0.3.8 2025-03-14T04:43:41.1043552Z pydot==3.0.4 2025-03-14T04:43:41.1043708Z pygame==2.6.1 2025-03-14T04:43:41.1043863Z PyGithub==2.3.0 2025-03-14T04:43:41.1044024Z Pygments==2.15.0 2025-03-14T04:43:41.1044186Z PyJWT==2.10.1 2025-03-14T04:43:41.1044340Z pylint==3.3.5 2025-03-14T04:43:41.1044494Z PyNaCl==1.5.0 2025-03-14T04:43:41.1044649Z pynvml==12.0.0 2025-03-14T04:43:41.1044807Z pyparsing==3.2.1 2025-03-14T04:43:41.1044969Z pypdfium2==4.30.1 2025-03-14T04:43:41.1045130Z pysbd==0.3.4 2025-03-14T04:43:41.1045279Z PySocks==1.7.1 2025-03-14T04:43:41.1045427Z pytest==8.3.5 2025-03-14T04:43:41.1045588Z pytest-benchmark==5.1.0 2025-03-14T04:43:41.1045766Z pytest-cpp==2.3.0 2025-03-14T04:43:41.1045945Z pytest-flakefinder==1.1.0 2025-03-14T04:43:41.1046141Z pytest-rerunfailures==14.0 2025-03-14T04:43:41.1046332Z pytest-subtests==0.13.1 2025-03-14T04:43:41.1046510Z pytest-xdist==3.3.1 2025-03-14T04:43:41.1046686Z python-dateutil==2.9.0.post0 2025-03-14T04:43:41.1046878Z python-doctr==0.10.0 2025-03-14T04:43:41.1047046Z python-etcd==0.4.5 2025-03-14T04:43:41.1047474Z pytorch-labs-segment-anything-fast @ git+https://github.com/pytorch-labs/segment-anything-fast.git@e6aadeb86f3ae1f58c3f98e2a91e251716e0f2aa 2025-03-14T04:43:41.1048127Z -e git+https://github.com/pytorch/pytorch_sphinx_theme.git@4125c834e1aa0945fde6ef58ff2f77f7abedc460#egg=pytorch_sphinx_theme 2025-03-14T04:43:41.1048514Z pytz==2025.1 2025-03-14T04:43:41.1048671Z PyWavelets==1.4.1 2025-03-14T04:43:41.1048881Z PyYAML==6.0.2 2025-03-14T04:43:41.1049040Z pyzmq==26.3.0 2025-03-14T04:43:41.1049185Z pyzstd==0.16.2 2025-03-14T04:43:41.1049343Z RapidFuzz==3.12.2 2025-03-14T04:43:41.1049502Z rdflib==7.1.3 2025-03-14T04:43:41.1049658Z redis==5.2.1 2025-03-14T04:43:41.1049857Z referencing==0.36.2 2025-03-14T04:43:41.1050021Z regex==2024.11.6 2025-03-14T04:43:41.1050185Z requests==2.32.3 2025-03-14T04:43:41.1050358Z requests-oauthlib==2.0.0 2025-03-14T04:43:41.1050542Z resampy==0.4.3 2025-03-14T04:43:41.1050702Z rfc3986==1.5.0 2025-03-14T04:43:41.1050859Z rich==13.9.4 2025-03-14T04:43:41.1051015Z rpds-py==0.23.1 2025-03-14T04:43:41.1051178Z rsa==4.9 2025-03-14T04:43:41.1051326Z s3transfer==0.10.4 2025-03-14T04:43:41.1051621Z safetensors==0.5.3 2025-03-14T04:43:41.1051816Z scikit-image==0.19.3 2025-03-14T04:43:41.1051996Z scikit-learn==1.6.1 2025-03-14T04:43:41.1052180Z scipy==1.10.1 2025-03-14T04:43:41.1052353Z segments==2.3.0 2025-03-14T04:43:41.1052536Z sentencepiece==0.2.0 2025-03-14T04:43:41.1052725Z sentry-sdk==2.22.0 2025-03-14T04:43:41.1052915Z setproctitle==1.3.5 2025-03-14T04:43:41.1053101Z shapely==2.0.7 2025-03-14T04:43:41.1053285Z shellingham==1.5.4 2025-03-14T04:43:41.1053457Z simplejson==3.20.1 2025-03-14T04:43:41.1053620Z six==1.17.0 2025-03-14T04:43:41.1053781Z smart-open==7.1.0 2025-03-14T04:43:41.1053952Z smmap==5.0.2 2025-03-14T04:43:41.1054117Z snowballstemmer==2.2.0 2025-03-14T04:43:41.1054301Z sortedcontainers==2.4.0 2025-03-14T04:43:41.1054480Z soundfile==0.13.1 2025-03-14T04:43:41.1054645Z soupsieve==2.6 2025-03-14T04:43:41.1054809Z soxr==0.5.0.post1 2025-03-14T04:43:41.1054972Z spacy==3.8.3 2025-03-14T04:43:41.1055134Z spacy-legacy==3.0.12 2025-03-14T04:43:41.1055312Z spacy-loggers==1.0.5 2025-03-14T04:43:41.1055480Z Sphinx==5.3.0 2025-03-14T04:43:41.1055650Z sphinx-copybutton==0.5.0 2025-03-14T04:43:41.1055840Z sphinx-panels==0.4.1 2025-03-14T04:43:41.1056037Z sphinxcontrib-applehelp==2.0.0 2025-03-14T04:43:41.1056234Z sphinxcontrib-devhelp==2.0.0 2025-03-14T04:43:41.1056433Z sphinxcontrib-htmlhelp==2.1.0 2025-03-14T04:43:41.1056634Z sphinxcontrib-jsmath==1.0.1 2025-03-14T04:43:41.1056827Z sphinxcontrib-katex==0.8.6 2025-03-14T04:43:41.1057018Z sphinxcontrib-qthelp==2.0.0 2025-03-14T04:43:41.1057231Z sphinxcontrib-serializinghtml==2.0.0 2025-03-14T04:43:41.1057447Z SQLAlchemy==2.0.39 2025-03-14T04:43:41.1057610Z srsly==2.5.1 2025-03-14T04:43:41.1057771Z stack-data==0.6.3 2025-03-14T04:43:41.1057935Z stempeg==0.2.3 2025-03-14T04:43:41.1058099Z submitit==1.5.2 2025-03-14T04:43:41.1058259Z sympy==1.13.3 2025-03-14T04:43:41.1058419Z tabulate==0.9.0 2025-03-14T04:43:41.1058586Z tb-nightly==2.13.0a20230426 2025-03-14T04:43:41.1058772Z tensorboard==2.13.0 2025-03-14T04:43:41.1058950Z tensorboard-data-server==0.7.2 2025-03-14T04:43:41.1059142Z tensorboardX==2.6.2.2 2025-03-14T04:43:41.1059313Z termcolor==2.5.0 2025-03-14T04:43:41.1059473Z thinc==8.3.4 2025-03-14T04:43:41.1059633Z threadpoolctl==3.6.0 2025-03-14T04:43:41.1059799Z thriftpy2==0.5.2 2025-03-14T04:43:41.1059962Z tifffile==2024.8.30 2025-03-14T04:43:41.1060306Z timm @ git+https://github.com/huggingface/pytorch-image-models.git@730b907b4d45a4713cbc425cbf224c46089fd514 2025-03-14T04:43:41.1061907Z tlparse==0.3.30 2025-03-14T04:43:41.1062129Z tokenizers==0.15.2 2025-03-14T04:43:41.1062320Z tomli==2.2.1 2025-03-14T04:43:41.1062486Z tomlkit==0.13.2 2025-03-14T04:43:41.1063008Z torch @ file:///var/lib/jenkins/workspace/dist/torch-2.8.0a0%2Bgitaed0b7a-cp39-cp39-linux_x86_64.whl#sha256=70b47dc351bf5a859f8225ee88934d219f3ed496ecea95a101a28f8ac92d2f63 2025-03-14T04:43:41.1063695Z torch_geometric @ git+https://github.com/pyg-team/pytorch_geometric.git@cabcd4097442ba60aa1efa11e1619dd9bb8fb527 2025-03-14T04:43:41.1064169Z torchao @ git+https://github.com/pytorch/ao.git@9259584f98db0760b27492a63050a2915c753dbe 2025-03-14T04:43:41.1064607Z torchaudio @ git+https://github.com/pytorch/audio.git@c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:43:41.1065110Z torchmultimodal @ git+https://github.com/facebookresearch/multimodal.git@6569fcc03450c2360b50d772bf9b18ec3487fcf4 2025-03-14T04:43:41.1066558Z torchvision @ git+https://github.com/pytorch/vision.git@d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:43:41.1066897Z tornado==6.4.2 2025-03-14T04:43:41.1067056Z tqdm==4.67.1 2025-03-14T04:43:41.1067291Z traitlets==5.14.3 2025-03-14T04:43:41.1067462Z transformers==4.38.1 2025-03-14T04:43:41.1067634Z treetable==0.2.5 2025-03-14T04:43:41.1067830Z triton @ file:///var/lib/jenkins/triton/python 2025-03-14T04:43:41.1068056Z typeguard==4.4.2 2025-03-14T04:43:41.1068222Z typer==0.15.2 2025-03-14T04:43:41.1068388Z typing-inspect==0.9.0 2025-03-14T04:43:41.1068574Z typing_extensions==4.12.2 2025-03-14T04:43:41.1068756Z tzdata==2025.1 2025-03-14T04:43:41.1068914Z Unidecode==1.3.8 2025-03-14T04:43:41.1069091Z unittest-xml-reporting==3.2.0 2025-03-14T04:43:41.1069284Z uritemplate==4.1.1 2025-03-14T04:43:41.1069448Z urllib3==1.26.20 2025-03-14T04:43:41.1069601Z visdom==0.2.4 2025-03-14T04:43:41.1069757Z wandb==0.19.8 2025-03-14T04:43:41.1069913Z wasabi==1.1.3 2025-03-14T04:43:41.1070076Z wcwidth==0.2.13 2025-03-14T04:43:41.1070238Z weasel==0.4.1 2025-03-14T04:43:41.1070402Z websocket-client==1.8.0 2025-03-14T04:43:41.1070584Z Werkzeug==3.1.3 2025-03-14T04:43:41.1070746Z wrapt==1.17.2 2025-03-14T04:43:41.1070906Z xdoctest==1.1.0 2025-03-14T04:43:41.1071065Z xxhash==3.5.0 2025-03-14T04:43:41.1071235Z xyzservices==2025.1.0 2025-03-14T04:43:41.1071398Z yacs==0.1.8 2025-03-14T04:43:41.1071544Z yarl==1.18.3 2025-03-14T04:43:41.1071688Z z3-solver==4.12.6.0 2025-03-14T04:43:41.1071844Z zipp==3.21.0 2025-03-14T04:43:41.1397035Z + popd 2025-03-14T04:43:41.1397319Z ~/workspace 2025-03-14T04:43:41.1397541Z + [[ dynamic_cpu_inductor_torchbench != *cpu* ]] 2025-03-14T04:43:41.1397792Z ++ pwd 2025-03-14T04:43:41.1398002Z + PYTHONPATH=/var/lib/jenkins/workspace/torchbench 2025-03-14T04:43:41.1398266Z + test_dynamo_benchmark torchbench 0 2025-03-14T04:43:41.1403967Z ++ pwd 2025-03-14T04:43:41.1404423Z + TEST_REPORTS_DIR=/var/lib/jenkins/workspace/test/test-reports 2025-03-14T04:43:41.1404760Z + local suite=torchbench 2025-03-14T04:43:41.1404964Z + shift 2025-03-14T04:43:41.1405127Z + local shard_id=0 2025-03-14T04:43:41.1405297Z + shift 2025-03-14T04:43:41.1405504Z + [[ dynamic_cpu_inductor_torchbench == *perf_compare* ]] 2025-03-14T04:43:41.1405786Z + [[ dynamic_cpu_inductor_torchbench == *perf* ]] 2025-03-14T04:43:41.1406045Z + [[ dynamic_cpu_inductor_torchbench == *cpu* ]] 2025-03-14T04:43:41.1406274Z + local dt=float32 2025-03-14T04:43:41.1406473Z + [[ dynamic_cpu_inductor_torchbench == *amp* ]] 2025-03-14T04:43:41.1406739Z + [[ dynamic_cpu_inductor_torchbench == *freezing* ]] 2025-03-14T04:43:41.1407066Z + test_single_dynamo_benchmark inference torchbench 0 --inference --float32 2025-03-14T04:43:41.1408641Z ++ pwd 2025-03-14T04:43:41.1410389Z + TEST_REPORTS_DIR=/var/lib/jenkins/workspace/test/test-reports 2025-03-14T04:43:41.1410733Z + mkdir -p /var/lib/jenkins/workspace/test/test-reports 2025-03-14T04:43:41.1430159Z + local name=inference 2025-03-14T04:43:41.1430566Z + shift 2025-03-14T04:43:41.1430855Z + local suite=torchbench 2025-03-14T04:43:41.1431235Z + shift 2025-03-14T04:43:41.1431473Z + local shard_id=0 2025-03-14T04:43:41.1431750Z + shift 2025-03-14T04:43:41.1432788Z + partition_flags=() 2025-03-14T04:43:41.1433358Z + local partition_flags 2025-03-14T04:43:41.1433717Z + [[ -n 2 ]] 2025-03-14T04:43:41.1434049Z + [[ -n 0 ]] 2025-03-14T04:43:41.1434443Z + partition_flags=(--total-partitions "$NUM_TEST_SHARDS" --partition-id "$shard_id") 2025-03-14T04:43:41.1434937Z + [[ dynamic_cpu_inductor_torchbench == *perf_compare* ]] 2025-03-14T04:43:41.1435222Z + [[ dynamic_cpu_inductor_torchbench == *perf* ]] 2025-03-14T04:43:41.1435512Z + [[ dynamic_cpu_inductor_torchbench == *_avx2* ]] 2025-03-14T04:43:41.1435800Z + [[ dynamic_cpu_inductor_torchbench == *_avx512* ]] 2025-03-14T04:43:41.1437681Z + python benchmarks/dynamo/torchbench.py --ci --accuracy --timing --explain --print-compilation-time --inductor --dynamic-shapes --dynamic-batch-only --device cpu --inference --float32 --total-partitions 2 --partition-id 0 --output /var/lib/jenkins/workspace/test/test-reports/inference_torchbench.csv 2025-03-14T04:43:45.8889871Z 2025-03-14T04:43:47.6036369Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:43:47.6039924Z loading model: 0it [00:01, ?it/s] 2025-03-14T04:43:47.6048863Z cpu eval BERT_pytorch 2025-03-14T04:43:48.1845391Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:43:48.3988929Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:43:48.6229676Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:44:22.7212397Z Compilation time (from dynamo_timed): 32.833837008 2025-03-14T04:44:22.7244936Z pass 2025-03-14T04:44:22.7245369Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:44:22.7246300Z TIMING: _recursive_pre_grad_passes:0.00792 _recursive_joint_graph_passes:0.55176 _recursive_post_grad_passes:0.32438 async_compile.wait:1.30748 code_gen:12.46208 inductor_compile:16.71513 backend_compile:27.91458 entire_frame_compile:32.83384 gc:0.00015 total_wall_time:32.83384 2025-03-14T04:44:22.7247305Z STATS: call_* op count: 543 | FakeTensor.__torch_dispatch__:1438 | FakeTensorMode.__torch_dispatch__:25321 | attempt fast:1494 | fast is_contiguous:1494 | ProxyTorchDispatchMode.__torch_dispatch__:6318 2025-03-14T04:44:22.7247872Z Dynamo produced 1 graphs covering 543 ops with 0 graph breaks (0 unique) 2025-03-14T04:44:28.1298009Z 2025-03-14T04:44:31.0752088Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:44:31.0756809Z loading model: 0it [00:02, ?it/s] 2025-03-14T04:44:31.0763230Z cpu eval Background_Matting 2025-03-14T04:44:31.1065585Z Compilation time (from dynamo_timed): 0 2025-03-14T04:44:31.1066714Z pass_due_to_skip 2025-03-14T04:44:31.1067276Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:44:31.1067728Z TIMING: total_wall_time:0 2025-03-14T04:44:31.1068435Z STATS: call_* op count: 0 2025-03-14T04:44:31.1068912Z Dynamo produced 0 graphs covering 0 ops with 0 graph breaks (0 unique) 2025-03-14T04:44:34.2274876Z 2025-03-14T04:44:36.1046491Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:44:36.1047525Z loading model: 0it [00:01, ?it/s] 2025-03-14T04:44:36.1092136Z cpu eval LearningToPaint 2025-03-14T04:44:36.2565119Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:44:36.2910332Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:44:36.4532092Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:44:50.5788387Z Compilation time (from dynamo_timed): 13.266598857 2025-03-14T04:44:50.5788690Z pass 2025-03-14T04:44:50.5789682Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:44:50.5790542Z TIMING: _recursive_pre_grad_passes:0.0044 _recursive_joint_graph_passes:0.10685 _recursive_post_grad_passes:0.03399 async_compile.wait:1.37595 code_gen:8.28623 inductor_compile:9.23391 backend_compile:11.53251 entire_frame_compile:13.2666 gc:0.00045 total_wall_time:13.2666 2025-03-14T04:44:50.5791537Z STATS: call_* op count: 71 | FakeTensorMode.__torch_dispatch__:6381 | attempt fast:368 | fast is_contiguous:368 | ProxyTorchDispatchMode.__torch_dispatch__:1906 | FakeTensor.__torch_dispatch__:590 2025-03-14T04:44:50.5792115Z Dynamo produced 1 graphs covering 71 ops with 0 graph breaks (0 unique) 2025-03-14T04:44:54.8675391Z 2025-03-14T04:44:55.7173514Z loading model: 0it [00:00, ?it/s]Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /var/lib/jenkins/.cache/torch/hub/checkpoints/vgg16-397923af.pth 2025-03-14T04:44:55.7433342Z 2025-03-14T04:44:55.7433718Z 2025-03-14T04:44:55.8437036Z 0% 0.00/528M [00:00, code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:50:31.8663373Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:50:31.8663517Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:50:31.8663581Z 2025-03-14T04:50:31.8664083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:50:31.8664241Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_193.view(4, -1, 4, 73, 75); x_193 = None 2025-03-14T04:50:31.8664419Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:50:31.8664638Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:50:31.8664709Z 2025-03-14T04:50:31.8665108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:50:31.8665317Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:50:31.8665379Z 2025-03-14T04:50:31.8665817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:50:31.8665962Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:50:31.8666115Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:50:31.8666251Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:50:31.8666317Z 2025-03-14T04:50:31.8666691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:50:31.8666863Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:50:31.8666925Z 2025-03-14T04:50:31.8667246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:50:31.8667383Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:50:31.8667454Z 2025-03-14T04:50:31.8667766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:50:31.8667901Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:50:31.8668024Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:50:31.8668174Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:50:31.8668237Z 2025-03-14T04:50:31.8668560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:50:31.8668679Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:50:31.8668803Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:50:31.8668948Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:50:31.8669019Z 2025-03-14T04:50:31.8669325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:50:31.8669449Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:50:31.8669535Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:50:31.8669663Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:50:31.8669724Z 2025-03-14T04:50:31.8670070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:50:31.8670215Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:50:31.8670338Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:50:31.8670464Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:50:31.8670534Z 2025-03-14T04:50:31.8670883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:50:31.8671042Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:50:31.8671161Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:50:31.8671223Z 2025-03-14T04:50:31.8671532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:50:31.8671680Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:50:31.8671798Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:50:31.8671860Z 2025-03-14T04:50:31.8672157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:50:31.8672306Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:50:31.8672429Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:50:31.8672487Z 2025-03-14T04:50:31.8672785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:50:31.8672964Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:50:31.8673077Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:50:31.8673139Z 2025-03-14T04:50:31.8673481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:50:31.8673618Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:50:31.8673685Z 2025-03-14T04:50:31.8674012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:50:31.8674150Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:50:31.8674210Z 2025-03-14T04:50:31.8674558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:50:31.8674695Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:50:31.8674824Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:50:31.8674971Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:50:31.8675116Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:50:31.8675179Z 2025-03-14T04:50:31.8675533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:50:31.8675695Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:50:31.8675824Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:50:31.8675971Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:50:31.8676141Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:50:31.8676205Z 2025-03-14T04:50:31.8676543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:50:31.8676657Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:50:31.8676821Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:50:31.8676955Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:50:31.8677015Z 2025-03-14T04:50:31.8677353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:50:31.8677466Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:50:31.8677638Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:50:31.8677766Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:50:31.8677838Z 2025-03-14T04:50:31.8678147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:50:31.8678248Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:50:31.8678362Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:50:31.8678429Z 2025-03-14T04:50:31.8678735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:50:31.8678827Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:50:31.8678940Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:50:31.8679010Z 2025-03-14T04:50:31.8679309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:50:31.8679427Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:50:31.8679549Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:50:31.8679616Z 2025-03-14T04:50:31.8679921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:50:31.8680036Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:50:31.8680157Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:50:31.8680227Z 2025-03-14T04:50:31.8680570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:50:31.8680755Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:50:31.8680816Z 2025-03-14T04:50:31.8681155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:50:31.8681312Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:50:31.8681407Z 2025-03-14T04:50:31.8681786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:50:31.8681991Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:50:31.8682053Z 2025-03-14T04:50:31.8682542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:50:31.8682673Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:50:31.8682741Z 2025-03-14T04:50:31.8683035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:31.8683180Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:50:31.8683240Z 2025-03-14T04:50:31.8683678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:50:31.8683790Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:50:31.8683900Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:50:31.8684011Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:50:31.8684079Z 2025-03-14T04:50:31.8684539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:50:31.8684709Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:50:31.8684947Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:50:31.8685010Z 2025-03-14T04:50:31.8685470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:50:31.8685631Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:50:31.8685698Z 2025-03-14T04:50:31.8685989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:31.8686144Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:50:31.8686204Z 2025-03-14T04:50:31.8686586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:50:31.8686732Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:50:31.8686798Z 2025-03-14T04:50:31.8687088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:50:31.8687236Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:50:31.8687297Z 2025-03-14T04:50:31.8687674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:50:31.8687845Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:50:31.8687912Z 2025-03-14T04:50:31.8688396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:50:31.8688565Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:50:31.8688680Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:50:31.8688838Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:50:31.8688964Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:50:31.8689034Z 2025-03-14T04:50:31.8689400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:50:31.8689522Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:50:31.8689587Z 2025-03-14T04:50:31.8690137Z 2025-03-14T04:50:31.8690239Z class GraphModule(torch.nn.Module): 2025-03-14T04:50:31.8788636Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:50:31.8789570Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:50:31.8789918Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8790323Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8790706Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8791071Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8791430Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8791795Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8792214Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8792614Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8793029Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8793400Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8793757Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8794161Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8794570Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8794957Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8795312Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8795698Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8796106Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8796530Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8796918Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8797304Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8797676Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:50:31.8798116Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8798538Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8798943Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8799335Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8799652Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8800062Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8800453Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8800859Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8801223Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8801542Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8801958Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8802347Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8802736Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8803097Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8803465Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8803872Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8804322Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8804711Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8805078Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8805399Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8805812Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8806191Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8806551Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8806915Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8807235Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8807633Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8808013Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8808385Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8808746Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8809062Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8809460Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8809844Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8810214Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8810598Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8810925Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8811349Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8811778Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8812155Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8812554Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8812933Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8813324Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8813710Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8814074Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8814434Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8814751Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8815146Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8815597Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8815955Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8816321Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8816654Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:50:31.8817057Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8817445Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8817860Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8818228Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8818582Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8818968Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8819351Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8819715Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8820062Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8820385Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8820762Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8821151Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8821507Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8821860Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8822188Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8822565Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8822949Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8823310Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8823651Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8823960Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8824336Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8824696Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8825075Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8825421Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8825764Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8826156Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8826541Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8826895Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8827228Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8827546Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8827915Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8828283Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8828638Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8828985Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8829307Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8829686Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8830069Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8830422Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8830777Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8831094Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8831480Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8831903Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8832264Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8832648Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8832962Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8833345Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8833723Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8834087Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8834431Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8834753Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8835137Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8835521Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8835872Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8836208Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8836521Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8836885Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8837262Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8837605Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8837950Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8838260Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8838625Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8839039Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8839387Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8839763Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8840089Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:50:31.8840479Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8840868Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8841240Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8841601Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8841906Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8842284Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8842649Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8843003Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8843351Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8843663Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8844032Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8844405Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8844769Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8845122Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8845446Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8845856Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8846242Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8846629Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8846995Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8847319Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8847700Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8848082Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8848443Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8848797Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8849111Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8849500Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8849873Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8850239Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8850589Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8850907Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8851306Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8851812Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8852251Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8852655Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8852986Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8853400Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8854141Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8854508Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8854854Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8855182Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8855562Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8855949Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8856305Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8856663Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8856980Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8857368Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8857755Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8858114Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8858475Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8858793Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8859180Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8859554Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8859916Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8860261Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8860763Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8861161Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8861597Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8861945Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8862272Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8862583Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8862941Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8863280Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8863590Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8863906Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8864215Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8864551Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8864886Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8865198Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8865527Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8865829Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8866192Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8866550Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8866893Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8867259Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8867557Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8867935Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8868270Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8868596Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8868907Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8869198Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8869536Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8869877Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8870197Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8870507Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8870797Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8871140Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8871482Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8871801Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8872123Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8872406Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8872755Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8873096Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8873418Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8873785Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8874071Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8874447Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8874781Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8875108Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8875419Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8875712Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8876060Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8876395Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8876720Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8877036Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8877353Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8877710Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8878072Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8878415Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8878749Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8879058Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8879417Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8879789Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8880158Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8880497Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8880842Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8881210Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8881582Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8881927Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8882260Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8882562Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8882925Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8883292Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8883642Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8883972Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8884282Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8884637Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8884996Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8885342Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8885667Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8885975Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8886330Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8886703Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8887082Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8887420Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8887755Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8888125Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8888500Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8888841Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8889179Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8889489Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8889860Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8890218Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8890571Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8890905Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8891227Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8891710Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8892110Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8892501Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8892851Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8893175Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8893551Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8893947Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8894289Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8894659Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8894969Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8895333Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8895694Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8896032Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8896373Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8896673Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8897042Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8897380Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8897705Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8898022Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8898309Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8898656Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8898991Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8899321Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8899635Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8899925Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8900292Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8900640Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8900995Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8901307Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8901597Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8901938Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8902281Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8902607Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8902926Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8903212Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8903558Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8903900Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8904222Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8904537Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8904824Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8905172Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8905507Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8905839Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8906146Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8906439Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8906814Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8907151Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8907518Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8907830Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8908125Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8908467Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8908818Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8909138Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8909455Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8909748Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8910091Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8910441Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8910758Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8911075Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8911363Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8911712Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8912052Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8912379Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8912696Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8913013Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8913364Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8913744Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8914097Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8914421Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8914726Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8915064Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8915412Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8915736Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8916046Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8916347Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8916689Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8917029Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8917347Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8917665Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8917947Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8918293Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8918640Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8918957Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8919299Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8919590Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8919973Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8920315Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8920652Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8920973Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8921267Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8921629Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8921977Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8922313Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8922629Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8922928Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8923277Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8923627Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8923954Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8924272Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8924570Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8924917Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8925269Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8925672Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8926048Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8926385Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8926815Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8927199Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8927581Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8927963Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8928279Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8928690Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8929087Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8929472Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8929811Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8930126Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8930501Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8930875Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8931233Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8931684Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8932046Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8932447Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8932926Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8933318Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8933659Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8933995Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8934375Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8934750Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8935101Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8935443Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8935757Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8936133Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8936500Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8936849Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8937184Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8937505Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8937886Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8938255Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8938602Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8938931Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8939236Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8939607Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8940012Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8940364Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8940737Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8941030Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8941367Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8941711Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8942029Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8942346Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8942630Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8942976Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8943313Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8943641Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8943956Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8944242Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8944591Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8944924Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8945249Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8945558Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8945850Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8946216Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8946563Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8946913Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8947223Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8947517Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8947860Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8948205Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8948529Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8948845Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8949139Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8949481Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8949821Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8950145Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8950459Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8950745Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.8951095Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8951430Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8951761Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8952074Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8952354Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.8952725Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8953091Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8953416Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8953728Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8954022Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.8954365Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.8954710Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.8955035Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.8955341Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.8955698Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:50:31.8956015Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:50:31.8956336Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:50:31.8956706Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:50:31.8957071Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:50:31.8957421Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:50:31.8957769Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:50:31.8957843Z 2025-03-14T04:50:31.8958140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8958609Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.8958672Z 2025-03-14T04:50:31.8958989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.8960458Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.8960673Z 2025-03-14T04:50:31.8960963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:50:31.8961112Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:50:31.8961187Z 2025-03-14T04:50:31.8961549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:50:31.8961794Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:50:31.8961858Z 2025-03-14T04:50:31.8962121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8962548Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.8962619Z 2025-03-14T04:50:31.8962891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.8964450Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.8964524Z 2025-03-14T04:50:31.8964814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.8964961Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:50:31.8965021Z 2025-03-14T04:50:31.8965281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8965799Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.8965876Z 2025-03-14T04:50:31.8966155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.8967854Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.8967929Z 2025-03-14T04:50:31.8968229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.8968386Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:50:31.8968451Z 2025-03-14T04:50:31.8968723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8969213Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.8969294Z 2025-03-14T04:50:31.8969587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.8971275Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.8971353Z 2025-03-14T04:50:31.8971678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8972427Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:50:31.8972516Z 2025-03-14T04:50:31.8972819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.8974451Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.8974579Z 2025-03-14T04:50:31.8974860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.8975005Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:50:31.8975073Z 2025-03-14T04:50:31.8975349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.8975504Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:50:31.8975564Z 2025-03-14T04:50:31.8975818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8976230Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.8976298Z 2025-03-14T04:50:31.8976557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.8978065Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.8978139Z 2025-03-14T04:50:31.8978418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.8978563Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:50:31.8978626Z 2025-03-14T04:50:31.8978877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8979304Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.8979374Z 2025-03-14T04:50:31.8979642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.8981196Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.8981303Z 2025-03-14T04:50:31.8981591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.8981736Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:50:31.8981802Z 2025-03-14T04:50:31.8982059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8982487Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.8982558Z 2025-03-14T04:50:31.8982819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.8984359Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.8984431Z 2025-03-14T04:50:31.8984709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.8984867Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:50:31.8984927Z 2025-03-14T04:50:31.8985215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.8985359Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:50:31.8985428Z 2025-03-14T04:50:31.8985675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8986100Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.8986161Z 2025-03-14T04:50:31.8986460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.8988007Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.8988092Z 2025-03-14T04:50:31.8988383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.8988522Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:50:31.8988590Z 2025-03-14T04:50:31.8988837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8989266Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.8989327Z 2025-03-14T04:50:31.8989600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.8991153Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.8991219Z 2025-03-14T04:50:31.8991512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.8991647Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:50:31.8991718Z 2025-03-14T04:50:31.8991964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8992402Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.8992466Z 2025-03-14T04:50:31.8992736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.8994310Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.8994408Z 2025-03-14T04:50:31.8994698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.8994851Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:50:31.8994925Z 2025-03-14T04:50:31.8995207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.8995367Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:50:31.8995428Z 2025-03-14T04:50:31.8995686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8996125Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.8996186Z 2025-03-14T04:50:31.8996454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.8998017Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.8998088Z 2025-03-14T04:50:31.8998370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.8998524Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:50:31.8998584Z 2025-03-14T04:50:31.8998839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.8999288Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.8999377Z 2025-03-14T04:50:31.8999646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9001214Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9001283Z 2025-03-14T04:50:31.9001563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9001713Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:50:31.9001773Z 2025-03-14T04:50:31.9002027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9002465Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9002527Z 2025-03-14T04:50:31.9002797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9004334Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9004407Z 2025-03-14T04:50:31.9004665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9005114Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:50:31.9005185Z 2025-03-14T04:50:31.9005444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9007125Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9007233Z 2025-03-14T04:50:31.9007526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9007685Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:50:31.9007752Z 2025-03-14T04:50:31.9008064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9008225Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:50:31.9008304Z 2025-03-14T04:50:31.9008567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9009060Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9009135Z 2025-03-14T04:50:31.9009442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9011132Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9011217Z 2025-03-14T04:50:31.9011601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9011762Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:50:31.9011838Z 2025-03-14T04:50:31.9012113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9012599Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9012666Z 2025-03-14T04:50:31.9012968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9014658Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9014766Z 2025-03-14T04:50:31.9015086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9015231Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:50:31.9015302Z 2025-03-14T04:50:31.9015564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9016021Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9016085Z 2025-03-14T04:50:31.9016367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9017990Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9018063Z 2025-03-14T04:50:31.9018360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9018524Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:50:31.9018594Z 2025-03-14T04:50:31.9018887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9019049Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:50:31.9019112Z 2025-03-14T04:50:31.9019379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9019823Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9019897Z 2025-03-14T04:50:31.9020202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9021848Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9021951Z 2025-03-14T04:50:31.9022257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9022417Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:50:31.9022486Z 2025-03-14T04:50:31.9022758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9023222Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9023298Z 2025-03-14T04:50:31.9023581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9025147Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9025221Z 2025-03-14T04:50:31.9025512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9025662Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:50:31.9025730Z 2025-03-14T04:50:31.9025987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9026423Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9026495Z 2025-03-14T04:50:31.9026763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9028361Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9028465Z 2025-03-14T04:50:31.9028743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9028903Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:50:31.9028982Z 2025-03-14T04:50:31.9029273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9029419Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:50:31.9029488Z 2025-03-14T04:50:31.9029734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9030168Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9030229Z 2025-03-14T04:50:31.9030498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9032056Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9032119Z 2025-03-14T04:50:31.9032408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9032548Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:50:31.9032615Z 2025-03-14T04:50:31.9032860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9033298Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9033395Z 2025-03-14T04:50:31.9033667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9035211Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9035298Z 2025-03-14T04:50:31.9035587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9035724Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:50:31.9035793Z 2025-03-14T04:50:31.9036038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9036472Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9036540Z 2025-03-14T04:50:31.9036804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9038332Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9038398Z 2025-03-14T04:50:31.9038679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9038848Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:50:31.9038917Z 2025-03-14T04:50:31.9039195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9039346Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:50:31.9039408Z 2025-03-14T04:50:31.9039672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9040120Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9040183Z 2025-03-14T04:50:31.9040482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9042007Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9042079Z 2025-03-14T04:50:31.9042358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9042497Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:50:31.9042558Z 2025-03-14T04:50:31.9042812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9043238Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9043301Z 2025-03-14T04:50:31.9043568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9045117Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9045185Z 2025-03-14T04:50:31.9045475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9045606Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:50:31.9045674Z 2025-03-14T04:50:31.9045916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9046343Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9046432Z 2025-03-14T04:50:31.9046700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9048256Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9048324Z 2025-03-14T04:50:31.9048581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9049017Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:50:31.9049088Z 2025-03-14T04:50:31.9049350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9051033Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9051109Z 2025-03-14T04:50:31.9051406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9051624Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:50:31.9051698Z 2025-03-14T04:50:31.9052023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9052180Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:50:31.9052253Z 2025-03-14T04:50:31.9052532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9052992Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9053056Z 2025-03-14T04:50:31.9053382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9055005Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9055108Z 2025-03-14T04:50:31.9055416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9055556Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:50:31.9055629Z 2025-03-14T04:50:31.9055889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9056341Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9056403Z 2025-03-14T04:50:31.9056690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9058297Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9058372Z 2025-03-14T04:50:31.9058680Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9058818Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:50:31.9058890Z 2025-03-14T04:50:31.9059153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9059607Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9059671Z 2025-03-14T04:50:31.9059954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9061666Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9061778Z 2025-03-14T04:50:31.9062061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9062209Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:50:31.9062278Z 2025-03-14T04:50:31.9062558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9062706Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:50:31.9062769Z 2025-03-14T04:50:31.9063020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9063429Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9063500Z 2025-03-14T04:50:31.9063761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9065294Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9065363Z 2025-03-14T04:50:31.9065639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9065779Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:50:31.9065839Z 2025-03-14T04:50:31.9066089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9066504Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9066570Z 2025-03-14T04:50:31.9066857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9068386Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9068485Z 2025-03-14T04:50:31.9068768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9068904Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:50:31.9068965Z 2025-03-14T04:50:31.9069218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9069636Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9069705Z 2025-03-14T04:50:31.9069964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9071490Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9071562Z 2025-03-14T04:50:31.9071841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9071991Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:50:31.9072054Z 2025-03-14T04:50:31.9072336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9072473Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:50:31.9072541Z 2025-03-14T04:50:31.9072785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9073229Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9073291Z 2025-03-14T04:50:31.9073562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9075125Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9075187Z 2025-03-14T04:50:31.9075477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9075609Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:50:31.9075677Z 2025-03-14T04:50:31.9075926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9076352Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9076414Z 2025-03-14T04:50:31.9076683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9078209Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9078273Z 2025-03-14T04:50:31.9078564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9078697Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:50:31.9078772Z 2025-03-14T04:50:31.9079019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9079448Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9079511Z 2025-03-14T04:50:31.9079814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9081344Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9081464Z 2025-03-14T04:50:31.9081750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9081893Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:50:31.9081964Z 2025-03-14T04:50:31.9082248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9082395Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:50:31.9082456Z 2025-03-14T04:50:31.9082705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9083115Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9083183Z 2025-03-14T04:50:31.9083451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9085018Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9085088Z 2025-03-14T04:50:31.9085372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9085512Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:50:31.9085574Z 2025-03-14T04:50:31.9085830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9086281Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9086344Z 2025-03-14T04:50:31.9086632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9088295Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9088369Z 2025-03-14T04:50:31.9088663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9088807Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:50:31.9088871Z 2025-03-14T04:50:31.9089139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9089603Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9089667Z 2025-03-14T04:50:31.9089951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9091617Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9091699Z 2025-03-14T04:50:31.9091995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9092156Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:50:31.9092225Z 2025-03-14T04:50:31.9092547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9092705Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:50:31.9092774Z 2025-03-14T04:50:31.9093059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9093564Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9093667Z 2025-03-14T04:50:31.9093945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9095572Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9095649Z 2025-03-14T04:50:31.9095944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9096083Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:50:31.9096147Z 2025-03-14T04:50:31.9096408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9096859Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9096930Z 2025-03-14T04:50:31.9097206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9098817Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9098891Z 2025-03-14T04:50:31.9099186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9099326Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:50:31.9099390Z 2025-03-14T04:50:31.9099654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9100119Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9100192Z 2025-03-14T04:50:31.9100473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9102076Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9102144Z 2025-03-14T04:50:31.9102416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9102566Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:50:31.9102629Z 2025-03-14T04:50:31.9102916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9103050Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:50:31.9103118Z 2025-03-14T04:50:31.9103361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9103775Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9103839Z 2025-03-14T04:50:31.9104105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9105622Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9105693Z 2025-03-14T04:50:31.9105979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9106107Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:50:31.9106176Z 2025-03-14T04:50:31.9106422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9106876Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9106973Z 2025-03-14T04:50:31.9107243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9108751Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9108823Z 2025-03-14T04:50:31.9109111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9109238Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:50:31.9109305Z 2025-03-14T04:50:31.9109549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9109973Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9110035Z 2025-03-14T04:50:31.9110300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9111829Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9111892Z 2025-03-14T04:50:31.9112176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9112316Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:50:31.9112384Z 2025-03-14T04:50:31.9112661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9112805Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:50:31.9112865Z 2025-03-14T04:50:31.9113148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9113563Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9113658Z 2025-03-14T04:50:31.9113927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9115505Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9115578Z 2025-03-14T04:50:31.9115874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9116012Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:50:31.9116072Z 2025-03-14T04:50:31.9116329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9116745Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9116818Z 2025-03-14T04:50:31.9117079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9118600Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9118696Z 2025-03-14T04:50:31.9118976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9119111Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:50:31.9119172Z 2025-03-14T04:50:31.9119426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9119873Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9119976Z 2025-03-14T04:50:31.9120234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9121786Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9121858Z 2025-03-14T04:50:31.9122132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9122279Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:50:31.9122339Z 2025-03-14T04:50:31.9122623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9122758Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:50:31.9122825Z 2025-03-14T04:50:31.9123070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9123494Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9123556Z 2025-03-14T04:50:31.9123818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9125363Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9125427Z 2025-03-14T04:50:31.9125709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9125840Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:50:31.9125907Z 2025-03-14T04:50:31.9126180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9126608Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9126696Z 2025-03-14T04:50:31.9126967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9128514Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9128581Z 2025-03-14T04:50:31.9128871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9129008Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:50:31.9129080Z 2025-03-14T04:50:31.9129325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9129769Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9129843Z 2025-03-14T04:50:31.9130106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9131786Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9131865Z 2025-03-14T04:50:31.9132184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9132352Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:50:31.9132427Z 2025-03-14T04:50:31.9132735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9132934Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:50:31.9132996Z 2025-03-14T04:50:31.9133256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9133761Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9133829Z 2025-03-14T04:50:31.9134132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9135817Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9135897Z 2025-03-14T04:50:31.9136215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9136370Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:50:31.9136437Z 2025-03-14T04:50:31.9136721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9137197Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9137267Z 2025-03-14T04:50:31.9137564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9139249Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9139328Z 2025-03-14T04:50:31.9139646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9139776Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:50:31.9139841Z 2025-03-14T04:50:31.9140127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9140564Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9140655Z 2025-03-14T04:50:31.9140927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9142473Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9142547Z 2025-03-14T04:50:31.9142832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9142983Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:50:31.9143052Z 2025-03-14T04:50:31.9143334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9143480Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:50:31.9143543Z 2025-03-14T04:50:31.9143806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9144229Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9144302Z 2025-03-14T04:50:31.9144567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9146123Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9146199Z 2025-03-14T04:50:31.9146486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9146687Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:50:31.9146750Z 2025-03-14T04:50:31.9147014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9147478Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9147545Z 2025-03-14T04:50:31.9147809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9149359Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9149431Z 2025-03-14T04:50:31.9149718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9149857Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:50:31.9149920Z 2025-03-14T04:50:31.9150177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9150609Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9150680Z 2025-03-14T04:50:31.9150940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9152501Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9152572Z 2025-03-14T04:50:31.9152851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9153007Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:50:31.9153068Z 2025-03-14T04:50:31.9153383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9153522Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:50:31.9153619Z 2025-03-14T04:50:31.9153867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9154289Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9154348Z 2025-03-14T04:50:31.9154614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9156152Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9156226Z 2025-03-14T04:50:31.9156511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9156638Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:50:31.9156706Z 2025-03-14T04:50:31.9156944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9157354Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9157415Z 2025-03-14T04:50:31.9157675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9159171Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9159234Z 2025-03-14T04:50:31.9159552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9159680Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:50:31.9159747Z 2025-03-14T04:50:31.9159988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9160433Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9160493Z 2025-03-14T04:50:31.9160845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9162352Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9162416Z 2025-03-14T04:50:31.9162694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9162845Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:50:31.9162914Z 2025-03-14T04:50:31.9163194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9163350Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:50:31.9163409Z 2025-03-14T04:50:31.9163661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9164065Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9164135Z 2025-03-14T04:50:31.9164390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9165938Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9166012Z 2025-03-14T04:50:31.9166291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9166466Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:50:31.9166524Z 2025-03-14T04:50:31.9166770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9167179Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9167251Z 2025-03-14T04:50:31.9167521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9169058Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9169130Z 2025-03-14T04:50:31.9169410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9169545Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:50:31.9169607Z 2025-03-14T04:50:31.9169872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9170325Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9170388Z 2025-03-14T04:50:31.9170668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9172362Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9172446Z 2025-03-14T04:50:31.9172789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9172941Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:50:31.9173032Z 2025-03-14T04:50:31.9173330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9173481Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:50:31.9173543Z 2025-03-14T04:50:31.9173820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9174264Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9174336Z 2025-03-14T04:50:31.9174613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9176256Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9176327Z 2025-03-14T04:50:31.9176623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9176769Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:50:31.9176832Z 2025-03-14T04:50:31.9177098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9177544Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9177615Z 2025-03-14T04:50:31.9177891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9179547Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9179619Z 2025-03-14T04:50:31.9179919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9180101Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:50:31.9180165Z 2025-03-14T04:50:31.9180428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9180849Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9180916Z 2025-03-14T04:50:31.9181179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9182750Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9182826Z 2025-03-14T04:50:31.9183117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9183278Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:50:31.9183343Z 2025-03-14T04:50:31.9183642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9183783Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:50:31.9183854Z 2025-03-14T04:50:31.9184112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9184535Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9184600Z 2025-03-14T04:50:31.9184868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9186451Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9186546Z 2025-03-14T04:50:31.9186839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9186971Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:50:31.9187043Z 2025-03-14T04:50:31.9187289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9187719Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9187781Z 2025-03-14T04:50:31.9188049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9189581Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9189651Z 2025-03-14T04:50:31.9189939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9190072Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:50:31.9190144Z 2025-03-14T04:50:31.9190392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9190825Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9190887Z 2025-03-14T04:50:31.9191158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9192743Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9192805Z 2025-03-14T04:50:31.9193088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9193294Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:50:31.9193363Z 2025-03-14T04:50:31.9193641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9193783Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:50:31.9193844Z 2025-03-14T04:50:31.9194099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9194512Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9194584Z 2025-03-14T04:50:31.9194842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9196376Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9196445Z 2025-03-14T04:50:31.9196724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9196862Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:50:31.9196923Z 2025-03-14T04:50:31.9197174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9197598Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9197671Z 2025-03-14T04:50:31.9197938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9199629Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9199729Z 2025-03-14T04:50:31.9200023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9200160Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:50:31.9200222Z 2025-03-14T04:50:31.9200492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9200947Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9201019Z 2025-03-14T04:50:31.9201296Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9202946Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9203022Z 2025-03-14T04:50:31.9203315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9203476Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:50:31.9203540Z 2025-03-14T04:50:31.9203842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9203984Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:50:31.9204053Z 2025-03-14T04:50:31.9204318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9204769Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9204841Z 2025-03-14T04:50:31.9205122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9206810Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9206917Z 2025-03-14T04:50:31.9207222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9207360Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:50:31.9207431Z 2025-03-14T04:50:31.9207694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9208148Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9208223Z 2025-03-14T04:50:31.9208496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9210144Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9210212Z 2025-03-14T04:50:31.9210516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9210655Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:50:31.9210723Z 2025-03-14T04:50:31.9210983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9211525Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9211618Z 2025-03-14T04:50:31.9211922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9213774Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9213871Z 2025-03-14T04:50:31.9214173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9214333Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:50:31.9214399Z 2025-03-14T04:50:31.9214703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9214850Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:50:31.9214923Z 2025-03-14T04:50:31.9215182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9215638Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9215702Z 2025-03-14T04:50:31.9215986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9217634Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9217709Z 2025-03-14T04:50:31.9218012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9218149Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:50:31.9218223Z 2025-03-14T04:50:31.9218480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9218939Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9219001Z 2025-03-14T04:50:31.9219282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9220926Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9221023Z 2025-03-14T04:50:31.9221310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9221442Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:50:31.9221512Z 2025-03-14T04:50:31.9221762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9222195Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9222262Z 2025-03-14T04:50:31.9222532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9224114Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9224191Z 2025-03-14T04:50:31.9224477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9224625Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:50:31.9224696Z 2025-03-14T04:50:31.9224977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9225125Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:50:31.9225190Z 2025-03-14T04:50:31.9225449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9225866Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9225936Z 2025-03-14T04:50:31.9226199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9227772Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9227869Z 2025-03-14T04:50:31.9228153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9228298Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:50:31.9228360Z 2025-03-14T04:50:31.9228613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9229044Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9229113Z 2025-03-14T04:50:31.9229373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9230924Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9230997Z 2025-03-14T04:50:31.9231279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9231426Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:50:31.9231488Z 2025-03-14T04:50:31.9231742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9232177Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9232246Z 2025-03-14T04:50:31.9232503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9234081Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9234176Z 2025-03-14T04:50:31.9234459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9234621Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:50:31.9234682Z 2025-03-14T04:50:31.9234969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9235117Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:50:31.9235184Z 2025-03-14T04:50:31.9235440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9235866Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9235927Z 2025-03-14T04:50:31.9236197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9237772Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9237835Z 2025-03-14T04:50:31.9238123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9238256Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:50:31.9238327Z 2025-03-14T04:50:31.9238574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9239004Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9239064Z 2025-03-14T04:50:31.9239335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9240918Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9241007Z 2025-03-14T04:50:31.9241304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9241436Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:50:31.9241509Z 2025-03-14T04:50:31.9241761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9242190Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9242252Z 2025-03-14T04:50:31.9242529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9244070Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9244135Z 2025-03-14T04:50:31.9244426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9244594Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:50:31.9244662Z 2025-03-14T04:50:31.9244941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9245088Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:50:31.9245146Z 2025-03-14T04:50:31.9245401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9245819Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9245908Z 2025-03-14T04:50:31.9246179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9247764Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9247834Z 2025-03-14T04:50:31.9248118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9248264Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:50:31.9248324Z 2025-03-14T04:50:31.9248580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9249013Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9249073Z 2025-03-14T04:50:31.9249372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9251032Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9251105Z 2025-03-14T04:50:31.9251419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9251622Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:50:31.9251695Z 2025-03-14T04:50:31.9251967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9252433Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9252494Z 2025-03-14T04:50:31.9252802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9254361Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9254458Z 2025-03-14T04:50:31.9254745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9254900Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:50:31.9254973Z 2025-03-14T04:50:31.9255258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9255409Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:50:31.9255481Z 2025-03-14T04:50:31.9255728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9256139Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9256205Z 2025-03-14T04:50:31.9256463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9258041Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9258112Z 2025-03-14T04:50:31.9258400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9258542Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:50:31.9258603Z 2025-03-14T04:50:31.9258858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9259318Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9259390Z 2025-03-14T04:50:31.9259651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9261346Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9261418Z 2025-03-14T04:50:31.9261704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9261842Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:50:31.9261903Z 2025-03-14T04:50:31.9262156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9262581Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9262651Z 2025-03-14T04:50:31.9262911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9264472Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9264542Z 2025-03-14T04:50:31.9264816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9264979Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:50:31.9265043Z 2025-03-14T04:50:31.9265327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9265465Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:50:31.9265532Z 2025-03-14T04:50:31.9265777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9266252Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9266353Z 2025-03-14T04:50:31.9266622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9268172Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9268234Z 2025-03-14T04:50:31.9268532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9268664Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:50:31.9268734Z 2025-03-14T04:50:31.9268980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9269417Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9269483Z 2025-03-14T04:50:31.9269754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9271291Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9271356Z 2025-03-14T04:50:31.9271648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9271779Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:50:31.9271850Z 2025-03-14T04:50:31.9272101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9272567Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9272632Z 2025-03-14T04:50:31.9272940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9274460Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9274524Z 2025-03-14T04:50:31.9274802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9274950Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:50:31.9275017Z 2025-03-14T04:50:31.9275292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9275440Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:50:31.9275501Z 2025-03-14T04:50:31.9275949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:50:31.9276102Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:50:31.9276173Z 2025-03-14T04:50:31.9276467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:31.9276612Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:50:31.9276673Z 2025-03-14T04:50:31.9277120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:50:31.9277278Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:50:31.9277339Z 2025-03-14T04:50:31.9277636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:31.9277774Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:50:31.9277840Z 2025-03-14T04:50:31.9278210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:50:31.9278398Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:50:31.9278493Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:50:31.9278617Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:50:31.9278677Z 2025-03-14T04:50:31.9279043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:50:31.9279206Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:50:31.9279273Z 2025-03-14T04:50:31.9279596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:50:31.9279718Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:50:31.9279780Z 2025-03-14T04:50:31.9280162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:50:31.9280374Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:50:31.9280444Z 2025-03-14T04:50:31.9280854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:50:31.9280987Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:50:31.9281415Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:50:31.9281541Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:50:31.9281649Z x_190: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:50:31.9281718Z 2025-03-14T04:50:31.9282011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:50:31.9282138Z tensor: "f32[82125, 4][4, 1]cpu" = x_190.to(torch.float32); x_190 = None 2025-03-14T04:50:31.9282200Z 2025-03-14T04:50:31.9282450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9283207Z x_191: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_119 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:50:31.9283278Z 2025-03-14T04:50:31.9283547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:50:31.9283727Z x_192: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_191, inplace = False); x_191 = None 2025-03-14T04:50:31.9283798Z 2025-03-14T04:50:31.9284167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:50:31.9285029Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:50:31.9285092Z 2025-03-14T04:50:31.9285453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:50:31.9286286Z x_193: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_192 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:50:31.9286353Z 2025-03-14T04:50:31.9286693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:50:31.9286838Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:50:31.9286978Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:50:31.9287036Z 2025-03-14T04:50:31.9287451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:50:31.9287601Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_193.view(4, -1, 4, 73, 75); x_193 = None 2025-03-14T04:50:31.9287773Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:50:31.9287945Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:50:31.9288011Z 2025-03-14T04:50:31.9288409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:50:31.9288619Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:50:31.9288680Z 2025-03-14T04:50:31.9289116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:50:31.9289260Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:50:31.9289411Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:50:31.9289549Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:50:31.9289618Z 2025-03-14T04:50:31.9289988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:50:31.9290165Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:50:31.9290226Z 2025-03-14T04:50:31.9290547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:50:31.9290693Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:50:31.9290763Z 2025-03-14T04:50:31.9291147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:50:31.9291291Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:50:31.9291420Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:50:31.9291670Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:50:31.9291738Z 2025-03-14T04:50:31.9292079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:50:31.9292214Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:50:31.9292345Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:50:31.9292496Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:50:31.9292557Z 2025-03-14T04:50:31.9292874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:50:31.9292997Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:50:31.9293098Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:50:31.9293225Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:50:31.9293296Z 2025-03-14T04:50:31.9293618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:50:31.9293779Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:50:31.9293866Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:50:31.9293995Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:50:31.9294059Z 2025-03-14T04:50:31.9294421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:50:31.9294571Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:50:31.9294694Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:50:31.9294755Z 2025-03-14T04:50:31.9295061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:50:31.9295210Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:50:31.9295323Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:50:31.9295382Z 2025-03-14T04:50:31.9295683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:50:31.9295833Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:50:31.9295950Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:50:31.9296013Z 2025-03-14T04:50:31.9296321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:50:31.9296503Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:50:31.9296619Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:50:31.9296681Z 2025-03-14T04:50:31.9297020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:50:31.9297183Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:50:31.9297252Z 2025-03-14T04:50:31.9297583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:50:31.9297751Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:50:31.9297811Z 2025-03-14T04:50:31.9298163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:50:31.9298299Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:50:31.9298428Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:50:31.9298587Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:50:31.9298724Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:50:31.9298794Z 2025-03-14T04:50:31.9299138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:50:31.9299282Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:50:31.9299399Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:50:31.9299551Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:50:31.9299683Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:50:31.9299753Z 2025-03-14T04:50:31.9300081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:50:31.9300201Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:50:31.9300359Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:50:31.9300492Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:50:31.9300552Z 2025-03-14T04:50:31.9300888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:50:31.9301000Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:50:31.9301167Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:50:31.9301297Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:50:31.9301364Z 2025-03-14T04:50:31.9301668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:50:31.9301769Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:50:31.9301881Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:50:31.9301947Z 2025-03-14T04:50:31.9302251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:50:31.9302345Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:50:31.9302452Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:50:31.9302518Z 2025-03-14T04:50:31.9302841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:50:31.9302960Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:50:31.9303119Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:50:31.9303189Z 2025-03-14T04:50:31.9303485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:50:31.9303599Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:50:31.9303721Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:50:31.9303789Z 2025-03-14T04:50:31.9304138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:50:31.9304323Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:50:31.9304383Z 2025-03-14T04:50:31.9304723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:50:31.9304880Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:50:31.9304948Z 2025-03-14T04:50:31.9305325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:50:31.9305502Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:50:31.9305564Z 2025-03-14T04:50:31.9306051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:50:31.9306185Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:50:31.9306254Z 2025-03-14T04:50:31.9306544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:31.9306684Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:50:31.9306744Z 2025-03-14T04:50:31.9307182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:50:31.9307302Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:50:31.9307404Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:50:31.9307528Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:50:31.9307596Z 2025-03-14T04:50:31.9308106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:50:31.9308265Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:50:31.9308503Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:50:31.9308565Z 2025-03-14T04:50:31.9309058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:50:31.9309223Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:50:31.9309325Z 2025-03-14T04:50:31.9309616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:31.9309766Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:50:31.9309827Z 2025-03-14T04:50:31.9310213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:50:31.9310354Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:50:31.9310420Z 2025-03-14T04:50:31.9310714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:50:31.9310866Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:50:31.9310931Z 2025-03-14T04:50:31.9311308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:50:31.9311443Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:50:31.9311511Z 2025-03-14T04:50:31.9311988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:50:31.9312129Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:50:31.9312245Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:50:31.9312403Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:50:31.9312536Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:50:31.9312603Z 2025-03-14T04:50:31.9312966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:50:31.9313086Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:50:31.9313147Z 2025-03-14T04:50:31.9313162Z 2025-03-14T04:50:31.9313250Z class GraphModule(torch.nn.Module): 2025-03-14T04:50:31.9405205Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:50:31.9406421Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:50:31.9406777Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9407193Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9407597Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9407941Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9408296Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9408608Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9409018Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9409420Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9409843Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9410222Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9410578Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9410996Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9411398Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9411805Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9412201Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9412554Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9412946Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9413350Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9413721Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9414066Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9414436Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:50:31.9414847Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9415254Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9415656Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9416046Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9416361Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9416775Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9417201Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9417605Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9418002Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9418316Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9418707Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9419081Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9419436Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9419788Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9420112Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9420481Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9420912Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9421267Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9421588Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9421871Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9422204Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9422539Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9422852Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9423163Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9423440Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9423782Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9424142Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9424484Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9424796Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9425066Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9425404Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9425738Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9426066Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9426376Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9426666Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9427013Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9427347Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9427682Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9427992Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9428279Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9428617Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9428957Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9429273Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9429588Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9429874Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9430243Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9430589Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9430941Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9431257Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9431558Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:50:31.9431920Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9432273Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9432605Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9432927Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9433203Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9433543Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9433869Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9434187Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9434487Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9434771Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9435106Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9435450Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9435773Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9436081Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9436403Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9436744Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9437115Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9437433Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9437747Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9438030Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9438375Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9438717Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9439034Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9439351Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9439629Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9439972Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9440306Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9440631Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9440939Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9441227Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9441572Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9441910Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9442234Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9442542Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9442856Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9443194Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9443570Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9443889Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9444209Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9444497Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9444833Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9445177Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9445493Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9445807Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9446091Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9446439Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9446793Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9447135Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9447466Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9447767Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9448133Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9448485Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9448828Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9449183Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9449493Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9449901Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9450288Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9450653Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9451010Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9451332Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9451789Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9452199Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9452571Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9452922Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9453220Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:50:31.9453579Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9453932Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9454268Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9454602Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9454889Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9455238Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9455576Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9455901Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9456241Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9456559Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9456905Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9457238Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9457568Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9457875Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9458165Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9458505Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9458834Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9459144Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9459451Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9459734Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9460063Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9460396Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9460828Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9461156Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9461447Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9461808Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9462138Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9462523Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9462836Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9463151Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9463493Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9463820Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9464145Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9464450Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9464736Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9465072Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9465408Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9465735Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9466040Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9466331Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9466663Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9467003Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9467324Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9467646Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9467932Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9468280Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9468656Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9468976Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9469334Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9469610Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9469947Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9470274Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9470591Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9470897Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9471180Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9471517Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9471848Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9472166Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9472468Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9472749Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9473078Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9473412Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9473730Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9474056Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9474338Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9474673Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9475059Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9475376Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9475721Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9476008Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9476357Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9476698Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9477026Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9477347Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9477636Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9477985Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9478324Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9478656Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9478965Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9479256Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9479596Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9479946Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9480279Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9480592Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9480882Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9481252Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9481598Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9481955Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9482278Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9482557Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9482907Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9483255Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9483578Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9483901Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9484186Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9484532Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9484870Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9485202Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9485514Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9485814Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9486204Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9486571Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9486917Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9487257Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9487578Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9488007Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9488407Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9488794Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9489156Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9489484Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9489890Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9490278Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9490615Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9490948Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9491249Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9491699Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9492083Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9492447Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9492794Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9493094Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9493458Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9493814Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9494158Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9494499Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9494840Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9495206Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9495602Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9495946Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9496271Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9496579Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9496937Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9497301Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9497633Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9497965Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9498267Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9498631Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9498993Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9499328Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9499664Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9499971Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9500344Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9500704Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9501052Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9501381Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9501726Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9502103Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9502505Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9502850Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9503181Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9503494Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9503858Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9504217Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9504559Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9504905Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9505220Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9505588Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9505951Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9506294Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9506636Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9506941Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9507311Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9507675Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9508019Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9508385Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9508690Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9509096Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9509447Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9509793Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9510133Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9510459Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9510851Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9511206Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9511546Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9511875Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9512187Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9512552Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9512896Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9513219Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9513540Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9513835Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9514184Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9514531Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9514880Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9515195Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9515513Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9515881Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9516235Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9516567Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9516886Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9517174Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9517539Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9517902Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9518229Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9518552Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9518880Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9519255Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9519599Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9519939Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9520277Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9520584Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9520943Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9521338Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9521674Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9522035Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9522322Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9522669Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9523036Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9523388Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9523732Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9524042Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9524418Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9524788Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9525147Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9525478Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9525799Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9526174Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9526557Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9526916Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9527253Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9527571Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9527938Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9528356Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9528705Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9529068Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9529387Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9529753Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9530140Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9530493Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9530827Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9531138Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9531593Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9531969Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9532334Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9532669Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9532967Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9533334Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9533688Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9534036Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9534364Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9534672Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9535077Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9535444Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9535819Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9536129Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9536419Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9536759Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9537100Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9537421Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9537738Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9538021Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9538384Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9538729Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9539049Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9539363Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9539646Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9539993Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9540334Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9540663Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9540970Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9541286Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9541637Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9542003Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9542332Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9542642Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9542934Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9543273Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9543617Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9543933Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9544248Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9544541Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9544881Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9545225Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9545542Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9545854Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9546139Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9546485Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9546824Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9547151Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9547468Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9547781Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9548160Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9548498Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9548823Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9549136Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9549430Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9549775Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9550127Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9550444Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9550748Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9551032Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9551366Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9551700Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9552064Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9552435Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9552735Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9553118Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9553469Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9554100Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9554466Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9554790Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9555197Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9555557Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9555970Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9556304Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9556641Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9557003Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9557380Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9557779Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9558107Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9558451Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9558802Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9559178Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9559537Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9559906Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9560214Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9560700Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9561097Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9561610Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9562000Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9562369Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:50:31.9562776Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9563135Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9563528Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9563893Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9564628Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:50:31.9565880Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9566341Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9566795Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9567151Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9567526Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:50:31.9567898Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:50:31.9568312Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:50:31.9568706Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:50:31.9569067Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:50:31.9569491Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:50:31.9569845Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:50:31.9570283Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:50:31.9570675Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:50:31.9571171Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:50:31.9571698Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:50:31.9572096Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:50:31.9572213Z 2025-03-14T04:50:31.9572538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9573114Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9573201Z 2025-03-14T04:50:31.9573526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9575034Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9575141Z 2025-03-14T04:50:31.9575514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:50:31.9575677Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:50:31.9575787Z 2025-03-14T04:50:31.9576178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:50:31.9576460Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:50:31.9576569Z 2025-03-14T04:50:31.9576887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9577346Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9577462Z 2025-03-14T04:50:31.9577761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9579487Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9579657Z 2025-03-14T04:50:31.9579986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9580179Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:50:31.9580262Z 2025-03-14T04:50:31.9580588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9581068Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9581182Z 2025-03-14T04:50:31.9600545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9602238Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9602325Z 2025-03-14T04:50:31.9602663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9602821Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:50:31.9602885Z 2025-03-14T04:50:31.9603171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9603630Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9603704Z 2025-03-14T04:50:31.9603991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9605665Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9605783Z 2025-03-14T04:50:31.9606045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9606507Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:50:31.9606575Z 2025-03-14T04:50:31.9606871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9608600Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9608671Z 2025-03-14T04:50:31.9608978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9609135Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:50:31.9609206Z 2025-03-14T04:50:31.9609511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9609678Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:50:31.9609741Z 2025-03-14T04:50:31.9610016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9610474Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9610548Z 2025-03-14T04:50:31.9610827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9612683Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9612806Z 2025-03-14T04:50:31.9613109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9613271Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:50:31.9613335Z 2025-03-14T04:50:31.9613608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9614062Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9614138Z 2025-03-14T04:50:31.9614433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9616130Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9616209Z 2025-03-14T04:50:31.9616515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9616677Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:50:31.9616745Z 2025-03-14T04:50:31.9617022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9617497Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9617574Z 2025-03-14T04:50:31.9617857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9619592Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9619698Z 2025-03-14T04:50:31.9620011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9620177Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:50:31.9620240Z 2025-03-14T04:50:31.9620534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9620683Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:50:31.9620759Z 2025-03-14T04:50:31.9621010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9621450Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9621519Z 2025-03-14T04:50:31.9621782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9623354Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9623418Z 2025-03-14T04:50:31.9623708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9623848Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:50:31.9623919Z 2025-03-14T04:50:31.9624168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9624615Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9624686Z 2025-03-14T04:50:31.9624950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9626537Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9626627Z 2025-03-14T04:50:31.9626919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9627055Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:50:31.9627123Z 2025-03-14T04:50:31.9627373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9627816Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9627889Z 2025-03-14T04:50:31.9628156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9629727Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9629794Z 2025-03-14T04:50:31.9630085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9630250Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:50:31.9630315Z 2025-03-14T04:50:31.9630608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9630767Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:50:31.9630839Z 2025-03-14T04:50:31.9631094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9631536Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9631601Z 2025-03-14T04:50:31.9631874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9633457Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9633550Z 2025-03-14T04:50:31.9633834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9633973Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:50:31.9634041Z 2025-03-14T04:50:31.9634285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9634714Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9634776Z 2025-03-14T04:50:31.9635043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9636550Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9636619Z 2025-03-14T04:50:31.9636906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9637044Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:50:31.9637111Z 2025-03-14T04:50:31.9637357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9637785Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9637847Z 2025-03-14T04:50:31.9638112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9639677Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9639774Z 2025-03-14T04:50:31.9640029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9640475Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:50:31.9640545Z 2025-03-14T04:50:31.9640805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9642407Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9642474Z 2025-03-14T04:50:31.9642744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9642897Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:50:31.9642957Z 2025-03-14T04:50:31.9643246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9643394Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:50:31.9643461Z 2025-03-14T04:50:31.9643708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9644149Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9644212Z 2025-03-14T04:50:31.9644481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9646064Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9646190Z 2025-03-14T04:50:31.9646479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9646619Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:50:31.9646689Z 2025-03-14T04:50:31.9646935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9647378Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9647445Z 2025-03-14T04:50:31.9647722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9649347Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9649419Z 2025-03-14T04:50:31.9649728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9649878Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:50:31.9649954Z 2025-03-14T04:50:31.9650215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9650680Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9650750Z 2025-03-14T04:50:31.9651034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9652896Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9653018Z 2025-03-14T04:50:31.9653344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9653519Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:50:31.9653593Z 2025-03-14T04:50:31.9653888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9654052Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:50:31.9654123Z 2025-03-14T04:50:31.9654395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9654849Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9654928Z 2025-03-14T04:50:31.9655206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9656837Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9656913Z 2025-03-14T04:50:31.9657208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9657362Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:50:31.9657426Z 2025-03-14T04:50:31.9657696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9658154Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9658229Z 2025-03-14T04:50:31.9658502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9660166Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9660268Z 2025-03-14T04:50:31.9660710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9660876Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:50:31.9660952Z 2025-03-14T04:50:31.9661226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9661667Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9661738Z 2025-03-14T04:50:31.9662002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9663556Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9663628Z 2025-03-14T04:50:31.9663898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9664061Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:50:31.9664138Z 2025-03-14T04:50:31.9664418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9664577Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:50:31.9664638Z 2025-03-14T04:50:31.9664892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9665322Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9665392Z 2025-03-14T04:50:31.9665652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9667331Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9667475Z 2025-03-14T04:50:31.9667759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9667911Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:50:31.9667972Z 2025-03-14T04:50:31.9668225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9668658Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9668728Z 2025-03-14T04:50:31.9668987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9670535Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9670607Z 2025-03-14T04:50:31.9670887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9671032Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:50:31.9671094Z 2025-03-14T04:50:31.9671346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9671776Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9671847Z 2025-03-14T04:50:31.9672107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9673675Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9673780Z 2025-03-14T04:50:31.9674058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9674218Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:50:31.9674280Z 2025-03-14T04:50:31.9674569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9674718Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:50:31.9674788Z 2025-03-14T04:50:31.9675038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9675472Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9675534Z 2025-03-14T04:50:31.9675803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9677361Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9677426Z 2025-03-14T04:50:31.9677714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9677853Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:50:31.9677920Z 2025-03-14T04:50:31.9678166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9678603Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9678664Z 2025-03-14T04:50:31.9678932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9680517Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9680605Z 2025-03-14T04:50:31.9680894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9681028Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:50:31.9681096Z 2025-03-14T04:50:31.9681343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9681780Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9681841Z 2025-03-14T04:50:31.9682110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9683625Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9683689Z 2025-03-14T04:50:31.9683937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9684373Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:50:31.9684442Z 2025-03-14T04:50:31.9684702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9686327Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9686423Z 2025-03-14T04:50:31.9686703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9686851Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:50:31.9686913Z 2025-03-14T04:50:31.9687203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9687344Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:50:31.9687412Z 2025-03-14T04:50:31.9687665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9688092Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9688157Z 2025-03-14T04:50:31.9688428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9689958Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9690022Z 2025-03-14T04:50:31.9690310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9690441Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:50:31.9690511Z 2025-03-14T04:50:31.9690760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9691187Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9691260Z 2025-03-14T04:50:31.9691574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9693181Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9693268Z 2025-03-14T04:50:31.9693557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9693687Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:50:31.9693755Z 2025-03-14T04:50:31.9694001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9694435Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9694508Z 2025-03-14T04:50:31.9694775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9696317Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9696381Z 2025-03-14T04:50:31.9696664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9696810Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:50:31.9696882Z 2025-03-14T04:50:31.9697161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9697307Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:50:31.9697371Z 2025-03-14T04:50:31.9697621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9698039Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9698101Z 2025-03-14T04:50:31.9698365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9699926Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9700025Z 2025-03-14T04:50:31.9700319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9700449Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:50:31.9700517Z 2025-03-14T04:50:31.9700771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9701194Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9701259Z 2025-03-14T04:50:31.9701530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9703066Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9703136Z 2025-03-14T04:50:31.9703427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9703554Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:50:31.9703620Z 2025-03-14T04:50:31.9703871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9704300Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9704364Z 2025-03-14T04:50:31.9704635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9706189Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9706290Z 2025-03-14T04:50:31.9706574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9706721Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:50:31.9706788Z 2025-03-14T04:50:31.9707068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9707214Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:50:31.9707275Z 2025-03-14T04:50:31.9707530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9707947Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9708015Z 2025-03-14T04:50:31.9708277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9709806Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9709876Z 2025-03-14T04:50:31.9710155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9710292Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:50:31.9710354Z 2025-03-14T04:50:31.9710608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9711034Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9711103Z 2025-03-14T04:50:31.9711366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9712920Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9713016Z 2025-03-14T04:50:31.9713298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9713435Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:50:31.9713494Z 2025-03-14T04:50:31.9713752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9714173Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9714244Z 2025-03-14T04:50:31.9714505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9716040Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9716111Z 2025-03-14T04:50:31.9716388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9716537Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:50:31.9716602Z 2025-03-14T04:50:31.9716909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9717052Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:50:31.9717122Z 2025-03-14T04:50:31.9717387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9717838Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9717900Z 2025-03-14T04:50:31.9718172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9719746Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9719838Z 2025-03-14T04:50:31.9720134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9720267Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:50:31.9720335Z 2025-03-14T04:50:31.9720578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9721006Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9721066Z 2025-03-14T04:50:31.9721332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9722858Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9722922Z 2025-03-14T04:50:31.9723209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9723339Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:50:31.9723409Z 2025-03-14T04:50:31.9723658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9724087Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9724150Z 2025-03-14T04:50:31.9724417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9725987Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9726077Z 2025-03-14T04:50:31.9726363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9726503Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:50:31.9726572Z 2025-03-14T04:50:31.9726853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9726997Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:50:31.9727059Z 2025-03-14T04:50:31.9727311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9727726Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9727795Z 2025-03-14T04:50:31.9728054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9729591Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9729662Z 2025-03-14T04:50:31.9729942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9730077Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:50:31.9730136Z 2025-03-14T04:50:31.9730390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9730811Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9730877Z 2025-03-14T04:50:31.9731135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9732824Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9732925Z 2025-03-14T04:50:31.9733207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9733349Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:50:31.9733411Z 2025-03-14T04:50:31.9733664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9734087Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9734157Z 2025-03-14T04:50:31.9734417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9735961Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9736034Z 2025-03-14T04:50:31.9736310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9736461Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:50:31.9736525Z 2025-03-14T04:50:31.9736813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9736954Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:50:31.9737022Z 2025-03-14T04:50:31.9737266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9737684Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9737754Z 2025-03-14T04:50:31.9738052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9739545Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9739635Z 2025-03-14T04:50:31.9739924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9740055Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:50:31.9740130Z 2025-03-14T04:50:31.9740375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9740789Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9740861Z 2025-03-14T04:50:31.9741118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9742602Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9742668Z 2025-03-14T04:50:31.9742955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9743083Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:50:31.9743157Z 2025-03-14T04:50:31.9743404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9743824Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9743893Z 2025-03-14T04:50:31.9744150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9745673Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9745769Z 2025-03-14T04:50:31.9746044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9746192Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:50:31.9746253Z 2025-03-14T04:50:31.9746533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9746669Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:50:31.9746735Z 2025-03-14T04:50:31.9746978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9747386Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9747445Z 2025-03-14T04:50:31.9747707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9749198Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9749271Z 2025-03-14T04:50:31.9749553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9749682Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:50:31.9749747Z 2025-03-14T04:50:31.9749984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9750401Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9750461Z 2025-03-14T04:50:31.9750749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9752223Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9752317Z 2025-03-14T04:50:31.9752599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9752724Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:50:31.9752793Z 2025-03-14T04:50:31.9753030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9753448Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9753507Z 2025-03-14T04:50:31.9753769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9755252Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9755321Z 2025-03-14T04:50:31.9755594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9755732Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:50:31.9755800Z 2025-03-14T04:50:31.9756071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9756210Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:50:31.9756269Z 2025-03-14T04:50:31.9756515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9756921Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9757014Z 2025-03-14T04:50:31.9757269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9758823Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9758892Z 2025-03-14T04:50:31.9759180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9759321Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:50:31.9759379Z 2025-03-14T04:50:31.9759625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9760033Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9760096Z 2025-03-14T04:50:31.9760353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9761987Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9762065Z 2025-03-14T04:50:31.9762347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9762493Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:50:31.9762553Z 2025-03-14T04:50:31.9762804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9763229Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9763297Z 2025-03-14T04:50:31.9763638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9765172Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9765277Z 2025-03-14T04:50:31.9765561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9765721Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:50:31.9765785Z 2025-03-14T04:50:31.9766073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9766210Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:50:31.9766278Z 2025-03-14T04:50:31.9766523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9766949Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9767012Z 2025-03-14T04:50:31.9767282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9768835Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9768896Z 2025-03-14T04:50:31.9769187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9769319Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:50:31.9769385Z 2025-03-14T04:50:31.9769632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9770122Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9770183Z 2025-03-14T04:50:31.9770454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9772084Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9772155Z 2025-03-14T04:50:31.9772467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9772617Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:50:31.9772685Z 2025-03-14T04:50:31.9772937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9773370Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9773431Z 2025-03-14T04:50:31.9773705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9775272Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9775339Z 2025-03-14T04:50:31.9775629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9775776Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:50:31.9775845Z 2025-03-14T04:50:31.9776117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9776258Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:50:31.9776317Z 2025-03-14T04:50:31.9776564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9777011Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9777104Z 2025-03-14T04:50:31.9777361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9778914Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9778986Z 2025-03-14T04:50:31.9779263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9779398Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:50:31.9779457Z 2025-03-14T04:50:31.9779708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9780123Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9780190Z 2025-03-14T04:50:31.9780456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9781968Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9782037Z 2025-03-14T04:50:31.9782314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9782451Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:50:31.9782511Z 2025-03-14T04:50:31.9782759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9783209Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9783270Z 2025-03-14T04:50:31.9783528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9785060Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9785130Z 2025-03-14T04:50:31.9785400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9785551Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:50:31.9785611Z 2025-03-14T04:50:31.9785892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9786033Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:50:31.9786092Z 2025-03-14T04:50:31.9786339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9786744Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9786812Z 2025-03-14T04:50:31.9787066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9788593Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9788661Z 2025-03-14T04:50:31.9788933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9789068Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:50:31.9789126Z 2025-03-14T04:50:31.9789374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9789816Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9789911Z 2025-03-14T04:50:31.9790165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9791656Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9791728Z 2025-03-14T04:50:31.9792002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9792139Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:50:31.9792198Z 2025-03-14T04:50:31.9792451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9792876Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9792948Z 2025-03-14T04:50:31.9793208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9794748Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9794822Z 2025-03-14T04:50:31.9795095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9795246Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:50:31.9795307Z 2025-03-14T04:50:31.9795594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9795729Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:50:31.9795840Z 2025-03-14T04:50:31.9796097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9796528Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9796623Z 2025-03-14T04:50:31.9796895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9798437Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9798514Z 2025-03-14T04:50:31.9798809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9798949Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:50:31.9799022Z 2025-03-14T04:50:31.9799276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9799716Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9799783Z 2025-03-14T04:50:31.9800056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9801617Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9801684Z 2025-03-14T04:50:31.9801977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9802112Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:50:31.9802182Z 2025-03-14T04:50:31.9802461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9802890Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9802984Z 2025-03-14T04:50:31.9803252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9804784Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9804851Z 2025-03-14T04:50:31.9805133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9805279Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:50:31.9805346Z 2025-03-14T04:50:31.9805623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9805770Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:50:31.9805831Z 2025-03-14T04:50:31.9806085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9806500Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9806571Z 2025-03-14T04:50:31.9806830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9808457Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9808532Z 2025-03-14T04:50:31.9808829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9809006Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:50:31.9809072Z 2025-03-14T04:50:31.9809343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9809817Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9809889Z 2025-03-14T04:50:31.9810162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9811871Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9811958Z 2025-03-14T04:50:31.9812276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9812426Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:50:31.9812494Z 2025-03-14T04:50:31.9812793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9813242Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9813318Z 2025-03-14T04:50:31.9813599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9815310Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9815386Z 2025-03-14T04:50:31.9815678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9815841Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:50:31.9815907Z 2025-03-14T04:50:31.9816249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9816396Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:50:31.9816499Z 2025-03-14T04:50:31.9816759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9817207Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9817282Z 2025-03-14T04:50:31.9817554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9819189Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9819256Z 2025-03-14T04:50:31.9819562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9819702Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:50:31.9819776Z 2025-03-14T04:50:31.9820036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9820487Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9820557Z 2025-03-14T04:50:31.9820833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9822408Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9822473Z 2025-03-14T04:50:31.9822762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9822939Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:50:31.9823010Z 2025-03-14T04:50:31.9823261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9823722Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9823793Z 2025-03-14T04:50:31.9824057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9825643Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9825715Z 2025-03-14T04:50:31.9825988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9826145Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:50:31.9826206Z 2025-03-14T04:50:31.9826492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9826633Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:50:31.9826701Z 2025-03-14T04:50:31.9826946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9827368Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9827430Z 2025-03-14T04:50:31.9827703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9829268Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9829341Z 2025-03-14T04:50:31.9829660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9829794Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:50:31.9829890Z 2025-03-14T04:50:31.9830137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9830566Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9830626Z 2025-03-14T04:50:31.9830893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9832430Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9832503Z 2025-03-14T04:50:31.9832794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9832923Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:50:31.9832994Z 2025-03-14T04:50:31.9833241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9833671Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9833744Z 2025-03-14T04:50:31.9834007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9835518Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9835589Z 2025-03-14T04:50:31.9835893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9836036Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:50:31.9836102Z 2025-03-14T04:50:31.9836400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9836541Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:50:31.9836600Z 2025-03-14T04:50:31.9836847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9837259Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9837330Z 2025-03-14T04:50:31.9837585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9839123Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9839192Z 2025-03-14T04:50:31.9839471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9839612Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:50:31.9839673Z 2025-03-14T04:50:31.9839926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9840349Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9840417Z 2025-03-14T04:50:31.9840687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9842228Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9842301Z 2025-03-14T04:50:31.9842580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9842746Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:50:31.9842806Z 2025-03-14T04:50:31.9843054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9843464Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9843531Z 2025-03-14T04:50:31.9843786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9845299Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9845369Z 2025-03-14T04:50:31.9845636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9845792Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:50:31.9845856Z 2025-03-14T04:50:31.9846142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9846280Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:50:31.9846348Z 2025-03-14T04:50:31.9846590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9847012Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9847084Z 2025-03-14T04:50:31.9847343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9848932Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9849023Z 2025-03-14T04:50:31.9849315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9849448Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:50:31.9849515Z 2025-03-14T04:50:31.9849760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9850201Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9850262Z 2025-03-14T04:50:31.9850528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9852165Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9852235Z 2025-03-14T04:50:31.9852544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9852687Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:50:31.9852757Z 2025-03-14T04:50:31.9853003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9853433Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9853506Z 2025-03-14T04:50:31.9853764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9855354Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9855419Z 2025-03-14T04:50:31.9855706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9855887Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:50:31.9855959Z 2025-03-14T04:50:31.9856241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9856388Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:50:31.9856448Z 2025-03-14T04:50:31.9856699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9857127Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9857189Z 2025-03-14T04:50:31.9857458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9858979Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9859052Z 2025-03-14T04:50:31.9859331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9859475Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:50:31.9859544Z 2025-03-14T04:50:31.9859789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9860222Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9860285Z 2025-03-14T04:50:31.9860649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9862262Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9862384Z 2025-03-14T04:50:31.9862685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9862824Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:50:31.9862891Z 2025-03-14T04:50:31.9863139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9863581Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9863644Z 2025-03-14T04:50:31.9863915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9865464Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9865536Z 2025-03-14T04:50:31.9865817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9865969Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:50:31.9866038Z 2025-03-14T04:50:31.9866311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9866460Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:50:31.9866518Z 2025-03-14T04:50:31.9866767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9867177Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9867246Z 2025-03-14T04:50:31.9867504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9869109Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9869212Z 2025-03-14T04:50:31.9869492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9869631Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:50:31.9869690Z 2025-03-14T04:50:31.9869941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9870355Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9870422Z 2025-03-14T04:50:31.9870680Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9872184Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9872252Z 2025-03-14T04:50:31.9872530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9872669Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:50:31.9872730Z 2025-03-14T04:50:31.9872986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9873415Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9873486Z 2025-03-14T04:50:31.9873741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9875290Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9875383Z 2025-03-14T04:50:31.9875655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9875819Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:50:31.9875880Z 2025-03-14T04:50:31.9876161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9876302Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:50:31.9876370Z 2025-03-14T04:50:31.9876613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9877033Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9877093Z 2025-03-14T04:50:31.9877356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9878896Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9878961Z 2025-03-14T04:50:31.9879250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9879384Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:50:31.9879456Z 2025-03-14T04:50:31.9879709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9880137Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9880200Z 2025-03-14T04:50:31.9880461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9882005Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9882096Z 2025-03-14T04:50:31.9882387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9882529Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:50:31.9882600Z 2025-03-14T04:50:31.9882849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9883292Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9883355Z 2025-03-14T04:50:31.9883616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9885151Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9885216Z 2025-03-14T04:50:31.9885496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9885653Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:50:31.9885723Z 2025-03-14T04:50:31.9886005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9886154Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:50:31.9886219Z 2025-03-14T04:50:31.9886470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9886887Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9886956Z 2025-03-14T04:50:31.9887216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9888845Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9888947Z 2025-03-14T04:50:31.9889245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9889395Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:50:31.9889460Z 2025-03-14T04:50:31.9889727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9890177Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9890249Z 2025-03-14T04:50:31.9890534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9892212Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9892292Z 2025-03-14T04:50:31.9892590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9892739Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:50:31.9892812Z 2025-03-14T04:50:31.9893063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9893497Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9893558Z 2025-03-14T04:50:31.9893829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9895399Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9895497Z 2025-03-14T04:50:31.9895774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9895937Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:50:31.9895999Z 2025-03-14T04:50:31.9896285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9896435Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:50:31.9896496Z 2025-03-14T04:50:31.9896748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9897168Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:50:31.9897236Z 2025-03-14T04:50:31.9897503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9899036Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9899108Z 2025-03-14T04:50:31.9899394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9899536Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:50:31.9899600Z 2025-03-14T04:50:31.9899852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9900273Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:50:31.9900341Z 2025-03-14T04:50:31.9900601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9902166Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9902264Z 2025-03-14T04:50:31.9902553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9902698Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:50:31.9902767Z 2025-03-14T04:50:31.9903021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9903456Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:50:31.9903527Z 2025-03-14T04:50:31.9903792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:50:31.9905341Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:50:31.9905415Z 2025-03-14T04:50:31.9905694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:50:31.9905859Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:50:31.9905923Z 2025-03-14T04:50:31.9906211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:50:31.9906359Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:50:31.9906432Z 2025-03-14T04:50:31.9906878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:50:31.9907048Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:50:31.9907117Z 2025-03-14T04:50:31.9907469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:31.9907613Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:50:31.9908097Z 2025-03-14T04:50:31.9908562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:50:31.9908742Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:50:31.9908805Z 2025-03-14T04:50:31.9909106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:31.9909246Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:50:31.9909321Z 2025-03-14T04:50:31.9909720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:50:31.9909929Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:50:31.9910028Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:50:31.9910162Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:50:31.9910227Z 2025-03-14T04:50:31.9910573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:50:31.9910703Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:50:31.9910777Z 2025-03-14T04:50:31.9911114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:50:31.9911246Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:50:31.9911309Z 2025-03-14T04:50:31.9911712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:50:31.9911930Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:50:31.9912001Z 2025-03-14T04:50:31.9912450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:50:31.9912577Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:50:31.9913026Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:50:31.9913152Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:50:31.9913279Z x_190: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:50:31.9913342Z 2025-03-14T04:50:31.9913658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:50:31.9913785Z tensor: "f32[82125, 4][4, 1]cpu" = x_190.to(torch.float32); x_190 = None 2025-03-14T04:50:31.9913853Z 2025-03-14T04:50:31.9914144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:31.9914968Z x_191: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_119 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:50:31.9915060Z 2025-03-14T04:50:31.9915349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:50:31.9915543Z x_192: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_191, inplace = False); x_191 = None 2025-03-14T04:50:31.9915614Z 2025-03-14T04:50:31.9916022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:50:31.9916919Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:50:31.9916992Z 2025-03-14T04:50:31.9917361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:50:31.9918216Z x_193: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_192 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:50:31.9918282Z 2025-03-14T04:50:31.9918637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:50:31.9918793Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:50:31.9918943Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:50:31.9919006Z 2025-03-14T04:50:31.9919455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:50:31.9919618Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_193.view(4, -1, 4, 73, 75); x_193 = None 2025-03-14T04:50:31.9919799Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:50:31.9919997Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:50:31.9920055Z 2025-03-14T04:50:31.9920450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:50:31.9920648Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:50:31.9920751Z 2025-03-14T04:50:31.9921169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:50:31.9921345Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:50:31.9921483Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:50:31.9921624Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:50:31.9921685Z 2025-03-14T04:50:31.9922052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:50:31.9922218Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:50:31.9922286Z 2025-03-14T04:50:31.9922591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:50:31.9922734Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:50:31.9922793Z 2025-03-14T04:50:31.9923102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:50:31.9923226Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:50:31.9923352Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:50:31.9923491Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:50:31.9923557Z 2025-03-14T04:50:31.9923867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:50:31.9923992Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:50:31.9924106Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:50:31.9924253Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:50:31.9924313Z 2025-03-14T04:50:31.9924618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:50:31.9924732Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:50:31.9924824Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:50:31.9924940Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:50:31.9925009Z 2025-03-14T04:50:31.9925309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:50:31.9925456Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:50:31.9925541Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:50:31.9925669Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:50:31.9925727Z 2025-03-14T04:50:31.9926087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:50:31.9926239Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:50:31.9926361Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:50:31.9926422Z 2025-03-14T04:50:31.9926756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:50:31.9926917Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:50:31.9927055Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:50:31.9927127Z 2025-03-14T04:50:31.9927430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:50:31.9927591Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:50:31.9927702Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:50:31.9927785Z 2025-03-14T04:50:31.9928087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:50:31.9928278Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:50:31.9928392Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:50:31.9928460Z 2025-03-14T04:50:31.9928805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:50:31.9928952Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:50:31.9929014Z 2025-03-14T04:50:31.9929361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:50:31.9929501Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:50:31.9929572Z 2025-03-14T04:50:31.9929939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:50:31.9930093Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:50:31.9930227Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:50:31.9930387Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:50:31.9930529Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:50:31.9930599Z 2025-03-14T04:50:31.9930951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:50:31.9931099Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:50:31.9931220Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:50:31.9931385Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:50:31.9931593Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:50:31.9931674Z 2025-03-14T04:50:31.9932030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:50:31.9932161Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:50:31.9932327Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:50:31.9932509Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:50:31.9932576Z 2025-03-14T04:50:31.9932929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:50:31.9933073Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:50:31.9933242Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:50:31.9933366Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:50:31.9933434Z 2025-03-14T04:50:31.9933735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:50:31.9933833Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:50:31.9933957Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:50:31.9934016Z 2025-03-14T04:50:31.9934320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:50:31.9934413Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:50:31.9934528Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:50:31.9934591Z 2025-03-14T04:50:31.9934900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:50:31.9935014Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:50:31.9935143Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:50:31.9935204Z 2025-03-14T04:50:31.9935515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:50:31.9935623Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:50:31.9935752Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:50:31.9935815Z 2025-03-14T04:50:31.9936163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:50:31.9936338Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:50:31.9936408Z 2025-03-14T04:50:31.9936782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:50:31.9936951Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:50:31.9937011Z 2025-03-14T04:50:31.9937400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:50:31.9937574Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:50:31.9937642Z 2025-03-14T04:50:31.9938121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:50:31.9938258Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:50:31.9938319Z 2025-03-14T04:50:31.9938651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:31.9938793Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:50:31.9938898Z 2025-03-14T04:50:31.9939340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:50:31.9939461Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:50:31.9939566Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:50:31.9939690Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:50:31.9939751Z 2025-03-14T04:50:31.9940238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:50:31.9940398Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:50:31.9940645Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:50:31.9940707Z 2025-03-14T04:50:31.9941171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:50:31.9941339Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:50:31.9941399Z 2025-03-14T04:50:31.9941697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:31.9941846Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:50:31.9941915Z 2025-03-14T04:50:31.9942291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:50:31.9942443Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:50:31.9942504Z 2025-03-14T04:50:31.9942804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:50:31.9942942Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:50:31.9943011Z 2025-03-14T04:50:31.9943389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:50:31.9943532Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:50:31.9943596Z 2025-03-14T04:50:31.9944079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:50:31.9944211Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:50:31.9944337Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:50:31.9944487Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:50:31.9944619Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:50:31.9944680Z 2025-03-14T04:50:31.9945082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:50:31.9945225Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:50:31.9945297Z 2025-03-14T04:50:48.5066461Z 2025-03-14T04:50:48.5070873Z class GraphModule(torch.nn.Module): 2025-03-14T04:50:48.5072473Z def forward(self, L_features_res4_: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:50:48.5077767Z l_features_res4_ = L_features_res4_ 2025-03-14T04:50:48.5078907Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:50:48.5079487Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:50:48.5080036Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:50:48.5080580Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:50:48.5081181Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:50:48.5081758Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:50:48.5082318Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:50:48.5082685Z 2025-03-14T04:50:48.5083280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:50:48.5083960Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:50:48.5084238Z 2025-03-14T04:50:48.5084639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:48.5085145Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:50:48.5085407Z 2025-03-14T04:50:48.5085952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:50:48.5086616Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:50:48.5086887Z 2025-03-14T04:50:48.5087286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:48.5087786Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:50:48.5088050Z 2025-03-14T04:50:48.5089036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:50:48.5089664Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:50:48.5090111Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:50:48.5090389Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:50:48.5090627Z 2025-03-14T04:50:48.5091049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:50:48.5091682Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:50:48.5091940Z 2025-03-14T04:50:48.5092363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:50:48.5092893Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:50:48.5093142Z 2025-03-14T04:50:48.5093632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:50:48.5094308Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:50:48.5094655Z 2025-03-14T04:50:48.5095193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:50:48.5095809Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:50:48.5096316Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:50:48.5096831Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:50:48.5097129Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:50:48.5097366Z 2025-03-14T04:50:48.5097768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:50:48.5098257Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:50:48.5098505Z 2025-03-14T04:50:48.5098859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:48.5099837Z x_1: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(l_features_res4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res4_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:50:48.5100570Z 2025-03-14T04:50:48.5100932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:50:48.5101445Z x_2: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:50:48.5101746Z 2025-03-14T04:50:48.5102216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:50:48.5103359Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:50:48.5104156Z 2025-03-14T04:50:48.5104605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:50:48.5105631Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:50:48.5106345Z 2025-03-14T04:50:48.5106783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:50:48.5107357Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:50:48.5107721Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:50:48.5107991Z 2025-03-14T04:50:48.5108524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:50:48.5109154Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T04:50:48.5109540Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:50:48.5109950Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:50:48.5110244Z 2025-03-14T04:50:48.5110736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:50:48.5111466Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:50:48.5111785Z 2025-03-14T04:50:48.5112307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:50:48.5112947Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:50:48.5113312Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:50:48.5113666Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:50:48.5113940Z 2025-03-14T04:50:48.5114421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:50:48.5115047Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:50:48.5115348Z 2025-03-14T04:50:48.5115761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:50:48.5116286Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:50:48.5116558Z 2025-03-14T04:50:48.5117008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:50:48.5117534Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:50:48.5117862Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:50:48.5118224Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:50:48.5118492Z 2025-03-14T04:50:48.5118901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:50:48.5119433Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:50:48.5119742Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:50:48.5120075Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:50:48.5120345Z 2025-03-14T04:50:48.5120750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:50:48.5121260Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:50:48.5121536Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:50:48.5121809Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:50:48.5122071Z 2025-03-14T04:50:48.5122477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:50:48.5123003Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:50:48.5123298Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:50:48.5123572Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:50:48.5123825Z 2025-03-14T04:50:48.5124272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:50:48.5124801Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:50:48.5125135Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:50:48.5125375Z 2025-03-14T04:50:48.5125768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:50:48.5126290Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:50:48.5126617Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:50:48.5126883Z 2025-03-14T04:50:48.5127267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:50:48.5127770Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:50:48.5128096Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:50:48.5128325Z 2025-03-14T04:50:48.5128716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:50:48.5129261Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:50:48.5129618Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:50:48.5129855Z 2025-03-14T04:50:48.5130321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:50:48.5130863Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:50:48.5131130Z 2025-03-14T04:50:48.5131704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:50:48.5132285Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:50:48.5132568Z 2025-03-14T04:50:48.5133056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:50:48.5133591Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:50:48.5133908Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:50:48.5134242Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:50:48.5134590Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:50:48.5134852Z 2025-03-14T04:50:48.5135281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:50:48.5135813Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:50:48.5136126Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:50:48.5136450Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:50:48.5136792Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:50:48.5137045Z 2025-03-14T04:50:48.5137457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:50:48.5137956Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:50:48.5138280Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:50:48.5138626Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:50:48.5138879Z 2025-03-14T04:50:48.5139325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:50:48.5139838Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:50:48.5140173Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:50:48.5140522Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:50:48.5140770Z 2025-03-14T04:50:48.5141159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:50:48.5141613Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:50:48.5141871Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:50:48.5142103Z 2025-03-14T04:50:48.5142489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:50:48.5142936Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:50:48.5143194Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:50:48.5143423Z 2025-03-14T04:50:48.5143846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:50:48.5144319Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:50:48.5144645Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:50:48.5144903Z 2025-03-14T04:50:48.5145294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:50:48.5145773Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:50:48.5146062Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:50:48.5146312Z 2025-03-14T04:50:48.5146750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:50:48.5147331Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:50:48.5147633Z 2025-03-14T04:50:48.5148049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:50:48.5148598Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:50:48.5148885Z 2025-03-14T04:50:48.5149358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:50:48.5149968Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:50:48.5150262Z 2025-03-14T04:50:48.5150835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:50:48.5151518Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:50:48.5151775Z 2025-03-14T04:50:48.5152161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:48.5152657Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:50:48.5152919Z 2025-03-14T04:50:48.5153439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:50:48.5154051Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:50:48.5154324Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:50:48.5154600Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:50:48.5154842Z 2025-03-14T04:50:48.5155398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:50:48.5156083Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:50:48.5156541Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:50:48.5156895Z 2025-03-14T04:50:48.5157480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:50:48.5158150Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:50:48.5158463Z 2025-03-14T04:50:48.5158841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:48.5159338Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:50:48.5159601Z 2025-03-14T04:50:48.5160065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:50:48.5160971Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:50:48.5161256Z 2025-03-14T04:50:48.5161650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:50:48.5162168Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:50:48.5162430Z 2025-03-14T04:50:48.5162894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:50:48.5163464Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:50:48.5163720Z 2025-03-14T04:50:48.5164289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:50:48.5164955Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:50:48.5165260Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:50:48.5165586Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:50:48.5165917Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:50:48.5166167Z 2025-03-14T04:50:48.5166618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:50:48.5167156Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:50:48.5167397Z 2025-03-14T04:50:48.5167545Z 2025-03-14T04:50:48.5167641Z class GraphModule(torch.nn.Module): 2025-03-14T04:50:48.5169012Z def forward(self, L_features_res4_: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:50:48.5170371Z l_features_res4_ = L_features_res4_ 2025-03-14T04:50:48.5170805Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:50:48.5171553Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:50:48.5172111Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:50:48.5172788Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:50:48.5173433Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:50:48.5174026Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:50:48.5174599Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:50:48.5174976Z 2025-03-14T04:50:48.5175539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:50:48.5176217Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:50:48.5176507Z 2025-03-14T04:50:48.5176911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:48.5177424Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:50:48.5177689Z 2025-03-14T04:50:48.5178231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:50:48.5178900Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:50:48.5179179Z 2025-03-14T04:50:48.5179572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:48.5180077Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:50:48.5180342Z 2025-03-14T04:50:48.5180813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:50:48.5181444Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:50:48.5181785Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:50:48.5182060Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:50:48.5182305Z 2025-03-14T04:50:48.5182738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:50:48.5183268Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:50:48.5183515Z 2025-03-14T04:50:48.5183940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:50:48.5184458Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:50:48.5184706Z 2025-03-14T04:50:48.5185193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:50:48.5185847Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:50:48.5186221Z 2025-03-14T04:50:48.5186738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:50:48.5187387Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:50:48.5187912Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:50:48.5188413Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:50:48.5188718Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:50:48.5188962Z 2025-03-14T04:50:48.5189368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:50:48.5189859Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:50:48.5190112Z 2025-03-14T04:50:48.5190465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:50:48.5191420Z x_1: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(l_features_res4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res4_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:50:48.5192173Z 2025-03-14T04:50:48.5192551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:50:48.5193087Z x_2: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:50:48.5193404Z 2025-03-14T04:50:48.5193893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:50:48.5195009Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:50:48.5195800Z 2025-03-14T04:50:48.5196260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:50:48.5197328Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:50:48.5198052Z 2025-03-14T04:50:48.5198474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:50:48.5199037Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:50:48.5199399Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:50:48.5199667Z 2025-03-14T04:50:48.5200231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:50:48.5200877Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T04:50:48.5201317Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:50:48.5201736Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:50:48.5202041Z 2025-03-14T04:50:48.5202556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:50:48.5203252Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:50:48.5203590Z 2025-03-14T04:50:48.5204140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:50:48.5204810Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:50:48.5205178Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:50:48.5205537Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:50:48.5205803Z 2025-03-14T04:50:48.5206292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:50:48.5206918Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:50:48.5207232Z 2025-03-14T04:50:48.5207697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:50:48.5208281Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:50:48.5208566Z 2025-03-14T04:50:48.5209006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:50:48.5209576Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:50:48.5209917Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:50:48.5210272Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:50:48.5210565Z 2025-03-14T04:50:48.5211017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:50:48.5211632Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:50:48.5211985Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:50:48.5212355Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:50:48.5212660Z 2025-03-14T04:50:48.5213120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:50:48.5213662Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:50:48.5213957Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:50:48.5214249Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:50:48.5214568Z 2025-03-14T04:50:48.5215015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:50:48.5215618Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:50:48.5215943Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:50:48.5216241Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:50:48.5216511Z 2025-03-14T04:50:48.5216972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:50:48.5217519Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:50:48.5217877Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:50:48.5218132Z 2025-03-14T04:50:48.5218564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:50:48.5219123Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:50:48.5219484Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:50:48.5219738Z 2025-03-14T04:50:48.5220162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:50:48.5220717Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:50:48.5221071Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:50:48.5221328Z 2025-03-14T04:50:48.5221754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:50:48.5222343Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:50:48.5222731Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:50:48.5222987Z 2025-03-14T04:50:48.5223446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:50:48.5224025Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:50:48.5224306Z 2025-03-14T04:50:48.5224758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:50:48.5225357Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:50:48.5225638Z 2025-03-14T04:50:48.5226108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:50:48.5226703Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:50:48.5227054Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:50:48.5227421Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:50:48.5227808Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:50:48.5228096Z 2025-03-14T04:50:48.5228573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:50:48.5229250Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:50:48.5229612Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:50:48.5230014Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:50:48.5230402Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:50:48.5230688Z 2025-03-14T04:50:48.5231160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:50:48.5231716Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:50:48.5232078Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:50:48.5232466Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:50:48.5232747Z 2025-03-14T04:50:48.5233213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:50:48.5233771Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:50:48.5234120Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:50:48.5234492Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:50:48.5234760Z 2025-03-14T04:50:48.5235180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:50:48.5235661Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:50:48.5235934Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:50:48.5236178Z 2025-03-14T04:50:48.5236591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:50:48.5237073Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:50:48.5237343Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:50:48.5237587Z 2025-03-14T04:50:48.5237995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:50:48.5238489Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:50:48.5238795Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:50:48.5239052Z 2025-03-14T04:50:48.5239465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:50:48.5239946Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:50:48.5240234Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:50:48.5240491Z 2025-03-14T04:50:48.5240936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:50:48.5241547Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:50:48.5241846Z 2025-03-14T04:50:48.5242279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:50:48.5242908Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:50:48.5243207Z 2025-03-14T04:50:48.5243697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:50:48.5244363Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:50:48.5244662Z 2025-03-14T04:50:48.5245255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:50:48.5245994Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:50:48.5246271Z 2025-03-14T04:50:48.5246695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:48.5247251Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:50:48.5247551Z 2025-03-14T04:50:48.5248148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:50:48.5248835Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:50:48.5249144Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:50:48.5249453Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:50:48.5249714Z 2025-03-14T04:50:48.5250348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:50:48.5251125Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:50:48.5251727Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:50:48.5252141Z 2025-03-14T04:50:48.5252785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:50:48.5253579Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:50:48.5253907Z 2025-03-14T04:50:48.5254346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:48.5254921Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:50:48.5255228Z 2025-03-14T04:50:48.5255767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:50:48.5256429Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:50:48.5256731Z 2025-03-14T04:50:48.5257166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:50:48.5257727Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:50:48.5258025Z 2025-03-14T04:50:48.5258603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:50:48.5259250Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:50:48.5259583Z 2025-03-14T04:50:48.5260233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:50:48.5261139Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:50:48.5261503Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:50:48.5261875Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:50:48.5262264Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:50:48.5262555Z 2025-03-14T04:50:48.5263086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:50:48.5263691Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:50:48.5263949Z 2025-03-14T04:50:50.8734437Z 2025-03-14T04:50:50.8739718Z class GraphModule(torch.nn.Module): 2025-03-14T04:50:50.8744606Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 82125, 4][328500, 4, 1]cpu", L_anchors_0_tensor: "f32[82125, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 82125][82125, 1]cpu"): 2025-03-14T04:50:50.8749921Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T04:50:50.8754402Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T04:50:50.8759263Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T04:50:50.8763881Z 2025-03-14T04:50:50.8766335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:50:50.8767065Z pred_anchor_deltas_i: "f32[328500, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T04:50:50.8767455Z 2025-03-14T04:50:50.8768015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:50:50.8768712Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T04:50:50.8769113Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:50:50.8769466Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:50:50.8769734Z 2025-03-14T04:50:50.8770219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:50:50.8770826Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T04:50:50.8771113Z 2025-03-14T04:50:50.8771625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:50:50.8772160Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:50:50.8772425Z 2025-03-14T04:50:50.8772846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:50:50.8773719Z getitem: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:50:50.8774044Z getitem_1: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:50:50.8774381Z widths: "f32[328500][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T04:50:50.8774764Z 2025-03-14T04:50:50.8775184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:50:50.8775710Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:50:50.8776024Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:50:50.8776365Z heights: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:50:50.8776646Z 2025-03-14T04:50:50.8777068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:50:50.8777578Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:50:50.8777853Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:50:50.8778129Z ctr_x: "f32[328500][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T04:50:50.8778378Z 2025-03-14T04:50:50.8778795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:50:50.8779335Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:50:50.8779637Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:50:50.8779920Z ctr_y: "f32[328500][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T04:50:50.8780173Z 2025-03-14T04:50:50.8780644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:50:50.8781174Z getitem_6: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:50:50.8781518Z dx: "f32[328500, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T04:50:50.8781751Z 2025-03-14T04:50:50.8782148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:50:50.8782702Z getitem_7: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:50:50.8783024Z dy: "f32[328500, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T04:50:50.8783288Z 2025-03-14T04:50:50.8783683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:50:50.8784200Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:50:50.8784524Z dw: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:50:50.8784760Z 2025-03-14T04:50:50.8785152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:50:50.8785704Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:50:50.8786053Z dh: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:50:50.8786285Z 2025-03-14T04:50:50.8786721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:50:50.8787322Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:50:50.8787588Z 2025-03-14T04:50:50.8787996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:50:50.8788572Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:50:50.8788822Z 2025-03-14T04:50:50.8789254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:50:50.8789795Z getitem_10: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:50:50.8790115Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T04:50:50.8790452Z getitem_11: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:50:50.8790808Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T04:50:50.8791064Z 2025-03-14T04:50:50.8791495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:50:50.8792039Z getitem_12: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:50:50.8792355Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T04:50:50.8792684Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:50:50.8793028Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T04:50:50.8793285Z 2025-03-14T04:50:50.8793700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:50:50.8794196Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:50:50.8794523Z getitem_14: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:50:50.8794870Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T04:50:50.8795121Z 2025-03-14T04:50:50.8795541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:50:50.8796038Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:50:50.8796373Z getitem_15: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:50:50.8796726Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T04:50:50.8796983Z 2025-03-14T04:50:50.8797382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:50:50.8797846Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:50:50.8798111Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:50:50.8798348Z 2025-03-14T04:50:50.8798743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:50:50.8799193Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:50:50.8799450Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:50:50.8799684Z 2025-03-14T04:50:50.8800108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:50:50.8800581Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:50:50.8800871Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:50:50.8801153Z 2025-03-14T04:50:50.8801539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:50:50.8802004Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:50:50.8802290Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:50:50.8802537Z 2025-03-14T04:50:50.8802964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:50:50.8803542Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:50:50.8803833Z 2025-03-14T04:50:50.8804235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:50:50.8804782Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:50:50.8805058Z 2025-03-14T04:50:50.8805524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:50:50.8806127Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:50:50.8806410Z 2025-03-14T04:50:50.8806976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:50:50.8807652Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:50:50.8807899Z 2025-03-14T04:50:50.8808279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:50.8808754Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:50:50.8809000Z 2025-03-14T04:50:50.8809521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:50:50.8810178Z topk = l_pred_objectness_logits_0_.topk(6000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T04:50:50.8810508Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:50:50.8810774Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:50:50.8810998Z 2025-03-14T04:50:50.8811631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:50:50.8812337Z getitem_18: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:50:50.8812800Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_18, topk_idx)]; proposals_i_1 = getitem_18 = topk_idx = None 2025-03-14T04:50:50.8813152Z 2025-03-14T04:50:50.8813754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:50:50.8814446Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:50:50.8814728Z 2025-03-14T04:50:50.8815162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:50:50.8815667Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:50:50.8815936Z 2025-03-14T04:50:50.8816412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:50:50.8817004Z getitem_20: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:50:50.8817273Z 2025-03-14T04:50:50.8817658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:50:50.8818155Z tensor: "f32[6000, 4][4, 1]cpu" = getitem_20.to(torch.float32); getitem_20 = None 2025-03-14T04:50:50.8818427Z 2025-03-14T04:50:50.8818872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:50:50.8819425Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:50:50.8819681Z 2025-03-14T04:50:50.8820255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:50:50.8820919Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T04:50:50.8821222Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:50:50.8821541Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:50:50.8821876Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:50:50.8822133Z 2025-03-14T04:50:50.8822594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:50:50.8823129Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:50:50.8823363Z 2025-03-14T04:51:14.4911075Z 2025-03-14T04:51:14.4911981Z class GraphModule(torch.nn.Module): 2025-03-14T04:51:14.4913599Z def forward(self, L_stack0_: "f32[3261, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:51:14.4915052Z l_stack0_ = L_stack0_ 2025-03-14T04:51:14.4915458Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:51:14.4916048Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:51:14.4917776Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:51:14.4918459Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:51:14.4919071Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:51:14.4919495Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:51:14.4919904Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:51:14.4920311Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:51:14.4920615Z 2025-03-14T04:51:14.4921200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T04:51:14.4921870Z mean: "f32[3261, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T04:51:14.4922142Z 2025-03-14T04:51:14.4922656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:51:14.4923691Z scores: "f32[3261, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:51:14.4924444Z 2025-03-14T04:51:14.4924887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:51:14.4925922Z proposal_deltas: "f32[3261, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:51:14.4926665Z 2025-03-14T04:51:14.4927038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:14.4927503Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:14.4927754Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:51:14.4927982Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:51:14.4928250Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:14.4928509Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:51:14.4928767Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:51:14.4928988Z 2025-03-14T04:51:14.4929375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:51:14.4930372Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:51:14.4931114Z 2025-03-14T04:51:14.4931791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:51:14.4932481Z deltas: "f32[3261, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:51:14.4932791Z 2025-03-14T04:51:14.4933205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:51:14.4933761Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:51:14.4934024Z 2025-03-14T04:51:14.4934417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:51:14.4934911Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:51:14.4935215Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:14.4935551Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:51:14.4935822Z 2025-03-14T04:51:14.4936243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:51:14.4936759Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:51:14.4937055Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:51:14.4937382Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:51:14.4937653Z 2025-03-14T04:51:14.4938068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:51:14.4938593Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:14.4938871Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:51:14.4939148Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:51:14.4939396Z 2025-03-14T04:51:14.4939833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:51:14.4940387Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:51:14.4940680Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:51:14.4940994Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:51:14.4941241Z 2025-03-14T04:51:14.4941696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:51:14.4942231Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:51:14.4942575Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:51:14.4942832Z 2025-03-14T04:51:14.4943273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:51:14.4943932Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:51:14.4944293Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:51:14.4944551Z 2025-03-14T04:51:14.4945145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:51:14.4945674Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:51:14.4946007Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:51:14.4946244Z 2025-03-14T04:51:14.4946705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:51:14.4947274Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:51:14.4947680Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:51:14.4947918Z 2025-03-14T04:51:14.4948359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:51:14.4948914Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:51:14.4949185Z 2025-03-14T04:51:14.4949622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:51:14.4950385Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:51:14.4950659Z 2025-03-14T04:51:14.4951117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:51:14.4951694Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:51:14.4952028Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:51:14.4952375Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:51:14.4952734Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:51:14.4952999Z 2025-03-14T04:51:14.4953434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:51:14.4953974Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:51:14.4954285Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:51:14.4954614Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:51:14.4954949Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:51:14.4955203Z 2025-03-14T04:51:14.4955622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:51:14.4956180Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:51:14.4956559Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:51:14.4956902Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:51:14.4957148Z 2025-03-14T04:51:14.4957552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:51:14.4958068Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:51:14.4958411Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:51:14.4958856Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:51:14.4959212Z 2025-03-14T04:51:14.4959647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:51:14.4960124Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:51:14.4960464Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:51:14.4960959Z 2025-03-14T04:51:14.4961417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:51:14.4961989Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:51:14.4962246Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:51:14.4962476Z 2025-03-14T04:51:14.4962872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:51:14.4963363Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:51:14.4963647Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:51:14.4963893Z 2025-03-14T04:51:14.4964281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:51:14.4964743Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:51:14.4965028Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:51:14.4965268Z 2025-03-14T04:51:14.4965701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:51:14.4966281Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:51:14.4966571Z 2025-03-14T04:51:14.4966989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:51:14.4967539Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:51:14.4967824Z 2025-03-14T04:51:14.4968264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:51:14.4968887Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:51:14.4969269Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:51:14.4969556Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:51:14.4969862Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:51:14.4970194Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:51:14.4970462Z 2025-03-14T04:51:14.4970855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:14.4971428Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:51:14.4971895Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:51:14.4972170Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:51:14.4972573Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:51:14.4972935Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:51:14.4973179Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:51:14.4973402Z 2025-03-14T04:51:14.4973833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:51:14.4974471Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:51:14.4974767Z 2025-03-14T04:51:14.4975220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:51:14.4975871Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:51:14.4976236Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:51:14.4976533Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:51:14.4976837Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:51:14.4977154Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:51:14.4977419Z 2025-03-14T04:51:14.4977983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:51:14.4978699Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:51:14.4979046Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:51:14.4979385Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:51:14.4979727Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:51:14.4980020Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:51:14.4980262Z 2025-03-14T04:51:14.4980707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:51:14.4981240Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:51:14.4981473Z 2025-03-14T04:51:14.4981614Z 2025-03-14T04:51:14.4981711Z class GraphModule(torch.nn.Module): 2025-03-14T04:51:14.4983138Z def forward(self, L_stack0_: "f32[3261, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:51:14.4984484Z l_stack0_ = L_stack0_ 2025-03-14T04:51:14.4984862Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:51:14.4985425Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:51:14.4985981Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:51:14.4986537Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:51:14.4987015Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:51:14.4987411Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:51:14.4987831Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:51:14.4988221Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:51:14.4988537Z 2025-03-14T04:51:14.4989079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T04:51:14.4989716Z mean: "f32[3261, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T04:51:14.4989983Z 2025-03-14T04:51:14.4990382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:51:14.4991365Z scores: "f32[3261, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:51:14.4992094Z 2025-03-14T04:51:14.4992503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:51:14.4993532Z proposal_deltas: "f32[3261, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:51:14.4994316Z 2025-03-14T04:51:14.4994694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:14.4995163Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:14.4995432Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:51:14.4995707Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:51:14.4996002Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:14.4996282Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:51:14.4996542Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:51:14.4996774Z 2025-03-14T04:51:14.4997168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:51:14.4998163Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:51:14.4998927Z 2025-03-14T04:51:14.4999409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:51:14.5000018Z deltas: "f32[3261, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:51:14.5000293Z 2025-03-14T04:51:14.5000712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:51:14.5001266Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:51:14.5001561Z 2025-03-14T04:51:14.5002012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:51:14.5002529Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:51:14.5002843Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:14.5003201Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:51:14.5003472Z 2025-03-14T04:51:14.5003886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:51:14.5004394Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:51:14.5004696Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:51:14.5005019Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:51:14.5005285Z 2025-03-14T04:51:14.5005694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:51:14.5006198Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:14.5006466Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:51:14.5006731Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:51:14.5006975Z 2025-03-14T04:51:14.5007389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:51:14.5007968Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:51:14.5008353Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:51:14.5008743Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:51:14.5009044Z 2025-03-14T04:51:14.5009544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:51:14.5010108Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:51:14.5010479Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:51:14.5010738Z 2025-03-14T04:51:14.5011285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:51:14.5011940Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:51:14.5012306Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:51:14.5012569Z 2025-03-14T04:51:14.5013001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:51:14.5013535Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:51:14.5013871Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:51:14.5014113Z 2025-03-14T04:51:14.5014521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:51:14.5015077Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:51:14.5015437Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:51:14.5015677Z 2025-03-14T04:51:14.5016118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:51:14.5016734Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:51:14.5017006Z 2025-03-14T04:51:14.5017498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:51:14.5018077Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:51:14.5018337Z 2025-03-14T04:51:14.5018785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:51:14.5019349Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:51:14.5019675Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:51:14.5020017Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:51:14.5020377Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:51:14.5020630Z 2025-03-14T04:51:14.5021059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:51:14.5021587Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:51:14.5021894Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:51:14.5022212Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:51:14.5022547Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:51:14.5022797Z 2025-03-14T04:51:14.5023215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:51:14.5023711Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:51:14.5024035Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:51:14.5024373Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:51:14.5024611Z 2025-03-14T04:51:14.5025030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:51:14.5025529Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:51:14.5025857Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:51:14.5026205Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:51:14.5026455Z 2025-03-14T04:51:14.5026853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:51:14.5027314Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:51:14.5027568Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:51:14.5027797Z 2025-03-14T04:51:14.5028189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:51:14.5028639Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:51:14.5028891Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:51:14.5029119Z 2025-03-14T04:51:14.5029537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:51:14.5030023Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:51:14.5030481Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:51:14.5030734Z 2025-03-14T04:51:14.5031135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:51:14.5031600Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:51:14.5031884Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:51:14.5032126Z 2025-03-14T04:51:14.5032547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:51:14.5033130Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:51:14.5033425Z 2025-03-14T04:51:14.5033849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:51:14.5034416Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:51:14.5034708Z 2025-03-14T04:51:14.5035144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:51:14.5035747Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:51:14.5036100Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:51:14.5036386Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:51:14.5036679Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:51:14.5036993Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:51:14.5037253Z 2025-03-14T04:51:14.5037636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:14.5038200Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:51:14.5038551Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:51:14.5038796Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:51:14.5039164Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:51:14.5039513Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:51:14.5039760Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:51:14.5039982Z 2025-03-14T04:51:14.5040406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:51:14.5040974Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:51:14.5041259Z 2025-03-14T04:51:14.5041703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:51:14.5042313Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:51:14.5042677Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:51:14.5043000Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:51:14.5043303Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:51:14.5043652Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:51:14.5043911Z 2025-03-14T04:51:14.5044468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:51:14.5045173Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:51:14.5045510Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:51:14.5045846Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:51:14.5046192Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:51:14.5046487Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:51:14.5046725Z 2025-03-14T04:51:14.5047174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:51:14.5047702Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:51:14.5047937Z 2025-03-14T04:51:14.5048065Z 2025-03-14T04:51:14.5048163Z class GraphModule(torch.nn.Module): 2025-03-14T04:51:14.5049572Z def forward(self, L_stack0_: "f32[3261, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:51:14.5050936Z l_stack0_ = L_stack0_ 2025-03-14T04:51:14.5051332Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:51:14.5052055Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:51:14.5052695Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:51:14.5053319Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:51:14.5053809Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:51:14.5054256Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:51:14.5054689Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:51:14.5055120Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:51:14.5055438Z 2025-03-14T04:51:14.5056024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T04:51:14.5056767Z mean: "f32[3261, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T04:51:14.5057060Z 2025-03-14T04:51:14.5057501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:51:14.5058647Z scores: "f32[3261, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:51:14.5059838Z 2025-03-14T04:51:14.5060293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:51:14.5061557Z proposal_deltas: "f32[3261, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:51:14.5062311Z 2025-03-14T04:51:14.5062677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:14.5063130Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:14.5063378Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:51:14.5063604Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:51:14.5063874Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:14.5064134Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:51:14.5064374Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:51:14.5064591Z 2025-03-14T04:51:14.5064959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:51:14.5066225Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:51:14.5066941Z 2025-03-14T04:51:14.5067392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:51:14.5067961Z deltas: "f32[3261, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:51:14.5068225Z 2025-03-14T04:51:14.5068616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:51:14.5069132Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:51:14.5069412Z 2025-03-14T04:51:14.5069804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:51:14.5070288Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:51:14.5070589Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:14.5070900Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:51:14.5071158Z 2025-03-14T04:51:14.5071558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:51:14.5072156Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:51:14.5072458Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:51:14.5072834Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:51:14.5073103Z 2025-03-14T04:51:14.5073506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:51:14.5073994Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:14.5074249Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:51:14.5074509Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:51:14.5074745Z 2025-03-14T04:51:14.5075154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:51:14.5075650Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:51:14.5075926Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:51:14.5076187Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:51:14.5076420Z 2025-03-14T04:51:14.5076819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:51:14.5077322Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:51:14.5077641Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:51:14.5077872Z 2025-03-14T04:51:14.5078259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:51:14.5078760Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:51:14.5079081Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:51:14.5079318Z 2025-03-14T04:51:14.5079713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:51:14.5080206Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:51:14.5080520Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:51:14.5080744Z 2025-03-14T04:51:14.5081126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:51:14.5081665Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:51:14.5082015Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:51:14.5082258Z 2025-03-14T04:51:14.5082686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:51:14.5083215Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:51:14.5083472Z 2025-03-14T04:51:14.5083890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:51:14.5084416Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:51:14.5084668Z 2025-03-14T04:51:14.5085142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:51:14.5085685Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:51:14.5086042Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:51:14.5086373Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:51:14.5086725Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:51:14.5086992Z 2025-03-14T04:51:14.5087443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:51:14.5087994Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:51:14.5088315Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:51:14.5088650Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:51:14.5089007Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:51:14.5089269Z 2025-03-14T04:51:14.5089699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:51:14.5090229Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:51:14.5090574Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:51:14.5090929Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:51:14.5091198Z 2025-03-14T04:51:14.5091744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:51:14.5092282Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:51:14.5092628Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:51:14.5092997Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:51:14.5093261Z 2025-03-14T04:51:14.5093682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:51:14.5094165Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:51:14.5094437Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:51:14.5094681Z 2025-03-14T04:51:14.5095101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:51:14.5095561Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:51:14.5095827Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:51:14.5096064Z 2025-03-14T04:51:14.5096471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:51:14.5096965Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:51:14.5097263Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:51:14.5097518Z 2025-03-14T04:51:14.5097921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:51:14.5098467Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:51:14.5098765Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:51:14.5099020Z 2025-03-14T04:51:14.5099515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:51:14.5100123Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:51:14.5100427Z 2025-03-14T04:51:14.5100863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:51:14.5101442Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:51:14.5101736Z 2025-03-14T04:51:14.5102200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:51:14.5102841Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:51:14.5103226Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:51:14.5103525Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:51:14.5103839Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:51:14.5104167Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:51:14.5104434Z 2025-03-14T04:51:14.5104825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:14.5105406Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:51:14.5105767Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:51:14.5106014Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:51:14.5106386Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:51:14.5106746Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:51:14.5106997Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:51:14.5107222Z 2025-03-14T04:51:14.5107656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:51:14.5108233Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:51:14.5108533Z 2025-03-14T04:51:14.5108995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:51:14.5109626Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:51:14.5109985Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:51:14.5110272Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:51:14.5110567Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:51:14.5110884Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:51:14.5111137Z 2025-03-14T04:51:14.5111730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:51:14.5112421Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:51:14.5112759Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:51:14.5113135Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:51:14.5113474Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:51:14.5113763Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:51:14.5113996Z 2025-03-14T04:51:14.5114427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:51:14.5114941Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:51:14.5115169Z 2025-03-14T04:51:14.5115305Z 2025-03-14T04:51:14.5115393Z class GraphModule(torch.nn.Module): 2025-03-14T04:51:14.5116768Z def forward(self, L_stack0_: "f32[3261, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:51:14.5118120Z l_stack0_ = L_stack0_ 2025-03-14T04:51:14.5118513Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:51:14.5119083Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:51:14.5119656Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:51:14.5120218Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:51:14.5120696Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:51:14.5121092Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:51:14.5121479Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:51:14.5121868Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:51:14.5122149Z 2025-03-14T04:51:14.5122671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T04:51:14.5123301Z mean: "f32[3261, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T04:51:14.5123568Z 2025-03-14T04:51:14.5123961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:51:14.5124985Z scores: "f32[3261, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:51:14.5125728Z 2025-03-14T04:51:14.5126142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:51:14.5127212Z proposal_deltas: "f32[3261, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:51:14.5127970Z 2025-03-14T04:51:14.5128344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:14.5128808Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:14.5129066Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:51:14.5129299Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:51:14.5129570Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:14.5129839Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:51:14.5130085Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:51:14.5130304Z 2025-03-14T04:51:14.5130677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:51:14.5131738Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:51:14.5132483Z 2025-03-14T04:51:14.5132954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:51:14.5133544Z deltas: "f32[3261, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:51:14.5133822Z 2025-03-14T04:51:14.5134219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:51:14.5134748Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:51:14.5135028Z 2025-03-14T04:51:14.5135431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:51:14.5135934Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:51:14.5136241Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:14.5136559Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:51:14.5136826Z 2025-03-14T04:51:14.5137225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:51:14.5137724Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:51:14.5138028Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:51:14.5138361Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:51:14.5138632Z 2025-03-14T04:51:14.5139032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:51:14.5139571Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:14.5139833Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:51:14.5140095Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:51:14.5140374Z 2025-03-14T04:51:14.5140776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:51:14.5141292Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:51:14.5141582Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:51:14.5141847Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:51:14.5142091Z 2025-03-14T04:51:14.5142506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:51:14.5143027Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:51:14.5143359Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:51:14.5143600Z 2025-03-14T04:51:14.5143991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:51:14.5144505Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:51:14.5144833Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:51:14.5145066Z 2025-03-14T04:51:14.5145453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:51:14.5145967Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:51:14.5146290Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:51:14.5146525Z 2025-03-14T04:51:14.5146919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:51:14.5147468Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:51:14.5147819Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:51:14.5148049Z 2025-03-14T04:51:14.5148477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:51:14.5149017Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:51:14.5149276Z 2025-03-14T04:51:14.5149709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:51:14.5150246Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:51:14.5150501Z 2025-03-14T04:51:14.5150935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:51:14.5151484Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:51:14.5151806Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:51:14.5152133Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:51:14.5152506Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:51:14.5152766Z 2025-03-14T04:51:14.5153191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:51:14.5153752Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:51:14.5154055Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:51:14.5154369Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:51:14.5154702Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:51:14.5154948Z 2025-03-14T04:51:14.5155352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:51:14.5155851Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:51:14.5156168Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:51:14.5156506Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:51:14.5156750Z 2025-03-14T04:51:14.5157167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:51:14.5157665Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:51:14.5157986Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:51:14.5158331Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:51:14.5158585Z 2025-03-14T04:51:14.5158987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:51:14.5159450Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:51:14.5159710Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:51:14.5159943Z 2025-03-14T04:51:14.5160344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:51:14.5160991Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:51:14.5161254Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:51:14.5161487Z 2025-03-14T04:51:14.5161877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:51:14.5162361Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:51:14.5162654Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:51:14.5162904Z 2025-03-14T04:51:14.5163299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:51:14.5163777Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:51:14.5164069Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:51:14.5164309Z 2025-03-14T04:51:14.5164738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:51:14.5165311Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:51:14.5165680Z 2025-03-14T04:51:14.5166097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:51:14.5166725Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:51:14.5167019Z 2025-03-14T04:51:14.5167468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:51:14.5168099Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:51:14.5168481Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:51:14.5168786Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:51:14.5169107Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:51:14.5169439Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:51:14.5169738Z 2025-03-14T04:51:14.5170124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:14.5170690Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:51:14.5171040Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:51:14.5171281Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:51:14.5171721Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:51:14.5172113Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:51:14.5172383Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:51:14.5172627Z 2025-03-14T04:51:14.5173088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:51:14.5173742Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:51:14.5174036Z 2025-03-14T04:51:14.5174482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:51:14.5175091Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:51:14.5175455Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:51:14.5175743Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:51:14.5176048Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:51:14.5176359Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:51:14.5176616Z 2025-03-14T04:51:14.5177174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:51:14.5178209Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:51:14.5178598Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:51:14.5178940Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:51:14.5179284Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:51:14.5179628Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:51:14.5179871Z 2025-03-14T04:51:14.5180318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:51:14.5180878Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:51:14.5181115Z 2025-03-14T04:51:16.0210170Z 2025-03-14T04:51:16.0211009Z class GraphModule(torch.nn.Module): 2025-03-14T04:51:16.0212089Z def forward(self, L_predictions_0_: "f32[3261, 81][81, 1]cpu", L_predictions_1_: "f32[3261, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:51:16.0213005Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:51:16.0213252Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:51:16.0213584Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:51:16.0214017Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:51:16.0214429Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:51:16.0214846Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:51:16.0215153Z 2025-03-14T04:51:16.0215595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:16.0216142Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:16.0216408Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:51:16.0216655Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:51:16.0216949Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:16.0217229Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:51:16.0217489Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:51:16.0217712Z 2025-03-14T04:51:16.0218111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:51:16.0219128Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:51:16.0219895Z 2025-03-14T04:51:16.0220396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:51:16.0221011Z deltas: "f32[3261, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:51:16.0221298Z 2025-03-14T04:51:16.0221711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:51:16.0222225Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:51:16.0222493Z 2025-03-14T04:51:16.0222885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:51:16.0223631Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:51:16.0223950Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:16.0224625Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:51:16.0224888Z 2025-03-14T04:51:16.0225293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:51:16.0225885Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:51:16.0226176Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:51:16.0226486Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:51:16.0226750Z 2025-03-14T04:51:16.0227150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:51:16.0227620Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:16.0227871Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:51:16.0228119Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:51:16.0228348Z 2025-03-14T04:51:16.0228734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:51:16.0229217Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:51:16.0229491Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:51:16.0229741Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:51:16.0229973Z 2025-03-14T04:51:16.0230399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:51:16.0230892Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:51:16.0231207Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:51:16.0231432Z 2025-03-14T04:51:16.0231809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:51:16.0232300Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:51:16.0232609Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:51:16.0232834Z 2025-03-14T04:51:16.0233201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:51:16.0233681Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:51:16.0233989Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:51:16.0234216Z 2025-03-14T04:51:16.0234589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:51:16.0235111Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:51:16.0235443Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:51:16.0235663Z 2025-03-14T04:51:16.0236070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:51:16.0236574Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:51:16.0236820Z 2025-03-14T04:51:16.0237262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:51:16.0237771Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:51:16.0238051Z 2025-03-14T04:51:16.0238462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:51:16.0238984Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:51:16.0239281Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:51:16.0239605Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:51:16.0239938Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:51:16.0240189Z 2025-03-14T04:51:16.0240649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:51:16.0241166Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:51:16.0241465Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:51:16.0241775Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:51:16.0242101Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:51:16.0242346Z 2025-03-14T04:51:16.0242747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:51:16.0243227Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:51:16.0243550Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:51:16.0243879Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:51:16.0244124Z 2025-03-14T04:51:16.0244527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:51:16.0246083Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:51:16.0246483Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:51:16.0246825Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:51:16.0247068Z 2025-03-14T04:51:16.0247479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:51:16.0247935Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:51:16.0248196Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:51:16.0248437Z 2025-03-14T04:51:16.0248836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:51:16.0249285Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:51:16.0249537Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:51:16.0249766Z 2025-03-14T04:51:16.0250154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:51:16.0250628Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:51:16.0251001Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:51:16.0251261Z 2025-03-14T04:51:16.0251834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:51:16.0252392Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:51:16.0252690Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:51:16.0252965Z 2025-03-14T04:51:16.0253397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:51:16.0253977Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:51:16.0254270Z 2025-03-14T04:51:16.0254691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:51:16.0255248Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:51:16.0255539Z 2025-03-14T04:51:16.0256188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:51:16.0256839Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:51:16.0257200Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:51:16.0257485Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:51:16.0257781Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:51:16.0258097Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:51:16.0258359Z 2025-03-14T04:51:16.0258738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:16.0259301Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:51:16.0259645Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:51:16.0259883Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:51:16.0260244Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:51:16.0260779Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:51:16.0261038Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:51:16.0261258Z 2025-03-14T04:51:16.0261674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:51:16.0262268Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:51:16.0262596Z 2025-03-14T04:51:16.0263170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:51:16.0263780Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:51:16.0264138Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:51:16.0264428Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:51:16.0264726Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:51:16.0265130Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:51:16.0265394Z 2025-03-14T04:51:16.0265952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:51:16.0266720Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:51:16.0267059Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:51:16.0267399Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:51:16.0267738Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:51:16.0268026Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:51:16.0268292Z 2025-03-14T04:51:16.0268736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:51:16.0269255Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:51:16.0269486Z 2025-03-14T04:51:16.0269628Z 2025-03-14T04:51:16.0269723Z class GraphModule(torch.nn.Module): 2025-03-14T04:51:16.0270516Z def forward(self, L_predictions_0_: "f32[3261, 81][81, 1]cpu", L_predictions_1_: "f32[3261, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:51:16.0271286Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:51:16.0271511Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:51:16.0271814Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:51:16.0272204Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:51:16.0272584Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:51:16.0272959Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:51:16.0273236Z 2025-03-14T04:51:16.0273608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:16.0274063Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:16.0274300Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:51:16.0274513Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:51:16.0274778Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:16.0275032Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:51:16.0275265Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:51:16.0275480Z 2025-03-14T04:51:16.0275841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:51:16.0276754Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:51:16.0277449Z 2025-03-14T04:51:16.0277930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:51:16.0278525Z deltas: "f32[3261, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:51:16.0278793Z 2025-03-14T04:51:16.0279211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:51:16.0279721Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:51:16.0279990Z 2025-03-14T04:51:16.0280375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:51:16.0280854Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:51:16.0281140Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:16.0281448Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:51:16.0281700Z 2025-03-14T04:51:16.0282093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:51:16.0282570Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:51:16.0282855Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:51:16.0283158Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:51:16.0283411Z 2025-03-14T04:51:16.0283790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:51:16.0284253Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:16.0284502Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:51:16.0284749Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:51:16.0284979Z 2025-03-14T04:51:16.0285372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:51:16.0285875Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:51:16.0286159Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:51:16.0286417Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:51:16.0286659Z 2025-03-14T04:51:16.0287081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:51:16.0287605Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:51:16.0289126Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:51:16.0289383Z 2025-03-14T04:51:16.0289793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:51:16.0290309Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:51:16.0290635Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:51:16.0290868Z 2025-03-14T04:51:16.0291258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:51:16.0291830Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:51:16.0292184Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:51:16.0292504Z 2025-03-14T04:51:16.0292931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:51:16.0293543Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:51:16.0293902Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:51:16.0294125Z 2025-03-14T04:51:16.0294544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:51:16.0295072Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:51:16.0295324Z 2025-03-14T04:51:16.0295737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:51:16.0296256Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:51:16.0296506Z 2025-03-14T04:51:16.0296928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:51:16.0297458Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:51:16.0297764Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:51:16.0298088Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:51:16.0298428Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:51:16.0298679Z 2025-03-14T04:51:16.0299107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:51:16.0299638Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:51:16.0299953Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:51:16.0300269Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:51:16.0300607Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:51:16.0300857Z 2025-03-14T04:51:16.0301270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:51:16.0301767Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:51:16.0302086Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:51:16.0302420Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:51:16.0302670Z 2025-03-14T04:51:16.0303085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:51:16.0303581Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:51:16.0303904Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:51:16.0304254Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:51:16.0304503Z 2025-03-14T04:51:16.0304896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:51:16.0306246Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:51:16.0306524Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:51:16.0306804Z 2025-03-14T04:51:16.0307194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:51:16.0307669Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:51:16.0307933Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:51:16.0308169Z 2025-03-14T04:51:16.0308565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:51:16.0309041Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:51:16.0309342Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:51:16.0309593Z 2025-03-14T04:51:16.0309977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:51:16.0310457Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:51:16.0310742Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:51:16.0310992Z 2025-03-14T04:51:16.0311431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:51:16.0312015Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:51:16.0312307Z 2025-03-14T04:51:16.0312733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:51:16.0313294Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:51:16.0313586Z 2025-03-14T04:51:16.0314035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:51:16.0314658Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:51:16.0315025Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:51:16.0315312Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:51:16.0315619Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:51:16.0315938Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:51:16.0316199Z 2025-03-14T04:51:16.0316586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:16.0317156Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:51:16.0317507Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:51:16.0317754Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:51:16.0318122Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:51:16.0318478Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:51:16.0318725Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:51:16.0318943Z 2025-03-14T04:51:16.0319423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:51:16.0320036Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:51:16.0320402Z 2025-03-14T04:51:16.0320844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:51:16.0321451Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:51:16.0321810Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:51:16.0322113Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:51:16.0322400Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:51:16.0322709Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:51:16.0322969Z 2025-03-14T04:51:16.0323511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:51:16.0324205Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:51:16.0324539Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:51:16.0324868Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:51:16.0325203Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:51:16.0325490Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:51:16.0325725Z 2025-03-14T04:51:16.0326161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:51:16.0326683Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:51:16.0326920Z 2025-03-14T04:51:16.0327056Z 2025-03-14T04:51:16.0327147Z class GraphModule(torch.nn.Module): 2025-03-14T04:51:16.0327979Z def forward(self, L_predictions_0_: "f32[3261, 81][81, 1]cpu", L_predictions_1_: "f32[3261, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:51:16.0328785Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:51:16.0329016Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:51:16.0329337Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:51:16.0329744Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:51:16.0330145Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:51:16.0330540Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:51:16.0330960Z 2025-03-14T04:51:16.0331682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:16.0332268Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:16.0332596Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:51:16.0332948Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:51:16.0333349Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:51:16.0333666Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:51:16.0334007Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:51:16.0334286Z 2025-03-14T04:51:16.0334771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:51:16.0335766Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:51:16.0336538Z 2025-03-14T04:51:16.0337055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:51:16.0337682Z deltas: "f32[3261, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:51:16.0338002Z 2025-03-14T04:51:16.0338471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:51:16.0339049Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:51:16.0339389Z 2025-03-14T04:51:16.0339852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:51:16.0340404Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:51:16.0340775Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:16.0341152Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:51:16.0341541Z 2025-03-14T04:51:16.0342023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:51:16.0342579Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:51:16.0342974Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:51:16.0343359Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:51:16.0343680Z 2025-03-14T04:51:16.0344145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:51:16.0344686Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:51:16.0344990Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:51:16.0345335Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:51:16.0345724Z 2025-03-14T04:51:16.0346178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:51:16.0346750Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:51:16.0347094Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:51:16.0347434Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:51:16.0347732Z 2025-03-14T04:51:16.0348183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:51:16.0348775Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:51:16.0359228Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:51:16.0359610Z 2025-03-14T04:51:16.0360079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:51:16.0360934Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:51:16.0361290Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:51:16.0361533Z 2025-03-14T04:51:16.0361939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:51:16.0362460Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:51:16.0362789Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:51:16.0363024Z 2025-03-14T04:51:16.0363424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:51:16.0363965Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:51:16.0364314Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:51:16.0364550Z 2025-03-14T04:51:16.0364973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:51:16.0365513Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:51:16.0365764Z 2025-03-14T04:51:16.0366198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:51:16.0366721Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:51:16.0366976Z 2025-03-14T04:51:16.0367407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:51:16.0367953Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:51:16.0368276Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:51:16.0368613Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:51:16.0368954Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:51:16.0369209Z 2025-03-14T04:51:16.0369646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:51:16.0370182Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:51:16.0370509Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:51:16.0370837Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:51:16.0371182Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:51:16.0371447Z 2025-03-14T04:51:16.0371963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:51:16.0372507Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:51:16.0372964Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:51:16.0373333Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:51:16.0373595Z 2025-03-14T04:51:16.0374034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:51:16.0374620Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:51:16.0374966Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:51:16.0375329Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:51:16.0375597Z 2025-03-14T04:51:16.0376019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:51:16.0376506Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:51:16.0376783Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:51:16.0377030Z 2025-03-14T04:51:16.0377439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:51:16.0377916Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:51:16.0378187Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:51:16.0378425Z 2025-03-14T04:51:16.0378827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:51:16.0379317Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:51:16.0379617Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:51:16.0379875Z 2025-03-14T04:51:16.0380279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:51:16.0380775Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:51:16.0381064Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:51:16.0381292Z 2025-03-14T04:51:16.0381699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:51:16.0382251Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:51:16.0382534Z 2025-03-14T04:51:16.0382950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:51:16.0383495Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:51:16.0383779Z 2025-03-14T04:51:16.0384223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:51:16.0384823Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:51:16.0385183Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:51:16.0385469Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:51:16.0385769Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:51:16.0386087Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:51:16.0386379Z 2025-03-14T04:51:16.0386774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:51:16.0387353Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:51:16.0387690Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:51:16.0387926Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:51:16.0388280Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:51:16.0388616Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:51:16.0388853Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:51:16.0389063Z 2025-03-14T04:51:16.0389472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:51:16.0390045Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:51:16.0390361Z 2025-03-14T04:51:16.0390786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:51:16.0391367Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:51:16.0391715Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:51:16.0391996Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:51:16.0392287Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:51:16.0392588Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:51:16.0392841Z 2025-03-14T04:51:16.0393376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:51:16.0394048Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:51:16.0394379Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:51:16.0394702Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:51:16.0395031Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:51:16.0395311Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:51:16.0395543Z 2025-03-14T04:51:16.0395968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:51:16.0396476Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:51:16.0396706Z 2025-03-14T04:51:18.2288452Z 2025-03-14T04:51:18.2289391Z class GraphModule(torch.nn.Module): 2025-03-14T04:51:18.2289861Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T04:51:18.2290184Z l_scores_0_ = L_scores_0_ 2025-03-14T04:51:18.2290402Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:51:18.2290606Z 2025-03-14T04:51:18.2291234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:51:18.2292647Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:51:18.2293059Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:51:18.2293440Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:51:18.2293917Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:51:18.2294228Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:51:18.2294485Z 2025-03-14T04:51:18.2295008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:51:18.2295615Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:51:18.2295877Z 2025-03-14T04:51:18.2299792Z 2025-03-14T04:51:18.2299988Z class GraphModule(torch.nn.Module): 2025-03-14T04:51:18.2300374Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T04:51:18.2300700Z l_scores_0_ = L_scores_0_ 2025-03-14T04:51:18.2301027Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:51:18.2303759Z 2025-03-14T04:51:18.2304533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:51:18.2305274Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:51:18.2305611Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:51:18.2305942Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:51:18.2306275Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:51:18.2306612Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:51:18.2306862Z 2025-03-14T04:51:18.2307323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:51:18.2307864Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:51:18.2308107Z 2025-03-14T04:51:48.8892197Z Compilation time (from dynamo_timed): 75.875589482 2025-03-14T04:51:48.8892541Z pass 2025-03-14T04:51:48.8896388Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:51:48.8897336Z TIMING: entire_frame_compile:75.87559 gc:0.04595 _recursive_pre_grad_passes:0.0334 _recursive_joint_graph_passes:0.26614 _recursive_post_grad_passes:0.27056 async_compile.wait:36.06714 code_gen:48.17276 inductor_compile:52.64282 backend_compile:61.26234 total_wall_time:75.87559 2025-03-14T04:51:48.8899072Z STATS: call_* op count: 777 | FakeTensorMode.__torch_dispatch__:33338 | FakeTensor.__torch_dispatch__:3861 | ProxyTorchDispatchMode.__torch_dispatch__:12075 | attempt fast:91 | slow no contiguity match:44 | fast is_contiguous:47 2025-03-14T04:51:48.8905224Z Dynamo produced 53 graphs covering 777 ops with 42 graph breaks (6 unique) 2025-03-14T04:51:54.4583481Z 2025-03-14T04:52:05.9403769Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:52:05.9405660Z loading model: 0it [00:11, ?it/s] 2025-03-14T04:52:05.9419081Z cpu eval detectron2_fasterrcnn_r_101_dc5 2025-03-14T04:52:24.0239741Z WARNING:common:fp64 golden ref were not generated for detectron2_fasterrcnn_r_101_dc5. Setting accuracy check to cosine 2025-03-14T04:52:24.0661614Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:52:38.9437843Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:52:53.1644602Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:53:04.4417950Z 2025-03-14T04:53:04.4420353Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:04.4525712Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:53:04.4627531Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:53:04.4628091Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4629182Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4630014Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4630829Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4631572Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4632316Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4633125Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4633977Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4634835Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4635537Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4636196Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4636885Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4637630Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4638358Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4639099Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4639765Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4640511Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4641252Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4641974Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4642666Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4643331Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:04.4644048Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4644817Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4645568Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4646334Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4647051Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4647826Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4648622Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4649398Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4650134Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4650825Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4651622Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4652410Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4653171Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4653950Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4654665Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4655434Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4656265Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4657071Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4657871Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4658569Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4659291Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4660092Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4661007Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4661743Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4662439Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4663163Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4663937Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4664705Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4665437Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4666134Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4666853Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4667630Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4668455Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4669198Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4669887Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4670570Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4671303Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4672016Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4672699Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4673349Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4674028Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4674755Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4675476Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4676161Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4676813Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4677497Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4678232Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4678938Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4679626Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4680288Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:04.4680994Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4681757Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4682526Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4683271Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4683930Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4684606Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4685347Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4686103Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4686827Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4687526Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4688237Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4689015Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4689762Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4690531Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4691262Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4692090Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4692905Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4693673Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4694481Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4695180Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4695936Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4696772Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4697553Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4698361Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4699071Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4699823Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4700597Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4701306Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4701995Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4702649Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4703326Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4704061Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4704763Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4705452Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4706108Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4706788Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4707520Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4708228Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4708914Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4709564Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4710271Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4711012Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4711761Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4712449Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4713097Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4713782Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4714515Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4715231Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4715923Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4716611Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4717339Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4718083Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4718804Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4719491Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4720143Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4720827Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4721567Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4722286Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4722974Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4723630Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4724341Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4725079Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4725823Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4726535Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4727223Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:04.4727932Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4728711Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4729496Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4730256Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4730965Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4731763Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4732555Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4733322Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4734096Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4734803Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4735543Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4736332Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4737097Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4737826Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4738553Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4739301Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4740117Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4740887Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4741606Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4742262Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4742943Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4743677Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4744388Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4745076Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4745729Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4746408Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4747141Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4747849Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4748545Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4749250Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4749959Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4750701Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4751414Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4752143Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4752836Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4753561Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4754350Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4755054Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4755733Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4756386Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4757067Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4757815Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4758545Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4759268Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4759960Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4760823Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4761609Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4762357Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4763094Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4763783Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4764501Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4765279Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4766026Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4766850Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4767548Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4768315Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4769088Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4769840Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4770558Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4771241Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4772053Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4772892Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4773703Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4774433Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4775128Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4775815Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4776549Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4777257Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4777951Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4778605Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4779285Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4780019Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4780734Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4781461Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4782142Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4782818Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4783550Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4784259Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4784941Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4785598Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4786275Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4787004Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4787715Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4788405Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4789063Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4789775Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4790505Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4791215Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4791899Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4792549Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4793222Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4793948Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4794688Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4795378Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4796063Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4796752Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4797488Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4798201Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4798888Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4799539Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4800221Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4800947Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4801661Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4802347Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4802999Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4803676Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4804403Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4805117Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4805815Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4806522Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4807237Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4808082Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4808882Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4809683Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4810424Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4811180Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4812063Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4812891Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4813658Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4814396Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4815134Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4815909Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4816686Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4817427Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4818111Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4818820Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4819606Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4820350Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4821069Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4821747Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4822461Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4823231Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4823943Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4824686Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4825333Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4826012Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4826754Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4827464Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4828147Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4828806Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4829495Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4830232Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4830944Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4831633Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4832288Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4832965Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4833695Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4834410Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4835099Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4835753Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4836495Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4837300Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4838099Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4838802Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4839456Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4840138Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4840875Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4841593Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4842276Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4842928Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4843615Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4844367Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4845082Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4845778Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4846436Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4847121Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4847896Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4848644Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4849329Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4849988Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4850692Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4851527Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4852335Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4853056Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4853710Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4854396Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4855135Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4855842Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4856553Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4857248Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4857934Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4858675Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4859393Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4860075Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4860845Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4861595Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4862365Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4863094Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4863831Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4864600Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4865348Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4866221Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4866978Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4867705Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4868395Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4869110Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4869894Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4870646Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4871372Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4872035Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4872717Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4873451Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4874164Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4874866Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4875547Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4876263Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4877049Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4877817Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4879364Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4880098Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4880852Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4881614Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4882565Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4883413Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4884072Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4884776Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4885526Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4886265Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4886978Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4887656Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4888364Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4889125Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4889889Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4890624Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4891330Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4892123Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4892907Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4893713Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4894442Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4895173Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4895922Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4896679Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4897411Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4898121Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4898799Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4899502Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4900261Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4900976Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4901678Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4902347Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4903024Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4903770Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4904501Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4905208Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4905879Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4906584Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4907335Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4908100Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4908841Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4909522Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4910249Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4911010Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4911751Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4912478Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4913141Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4913837Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4914579Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4915303Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4916002Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4916668Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4917377Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4918158Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4918883Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4919604Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4920289Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4921004Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4921798Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4922536Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4923285Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4923968Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4924690Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4925473Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4926241Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4926973Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4927672Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4928397Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4929180Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4929943Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4930674Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4931371Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4932161Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4932988Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4933777Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4934501Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4935196Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4935933Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4936699Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4937460Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4938173Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4938845Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4939546Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4940302Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4941033Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4941742Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4942410Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4943111Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4943865Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4944608Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4945300Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4945971Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4946670Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4947428Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4948168Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4948879Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4949587Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4950313Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4951127Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4951874Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4952587Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4953276Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4953980Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4954750Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4955499Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4956216Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4956895Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4957596Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4958361Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4959094Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4959810Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4960622Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4961374Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4962179Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4962955Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4963697Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4964463Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4965208Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4966053Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4966790Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4967514Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4968212Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4968931Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4969718Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4970474Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4971203Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4971967Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4972738Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4973505Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4974242Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4974928Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4975580Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4976262Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4977001Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4977707Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4978423Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4979079Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4979800Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4980534Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4981244Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4981930Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4982595Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:04.4983304Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4984058Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4984801Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4985518Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4986182Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4986858Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4987585Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4988293Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4988981Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4989628Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.4990302Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4991029Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4991769Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4992464Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4993156Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.4993844Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4994574Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4995281Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4995959Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.4996609Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.4997285Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.4998012Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.4998722Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.4999422Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5000092Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5000780Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5001530Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5002255Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5002953Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5003623Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5004314Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5005059Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5005812Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5006533Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5007302Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:53:04.5008046Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:53:04.5008744Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:53:04.5009538Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:53:04.5010357Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:53:04.5011158Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:53:04.5012000Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:53:04.5012513Z 2025-03-14T04:53:04.5012952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5013859Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5014530Z 2025-03-14T04:53:04.5014921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5016832Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5018565Z 2025-03-14T04:53:04.5018971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:53:04.5019484Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:53:04.5019760Z 2025-03-14T04:53:04.5020240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:53:04.5020972Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:53:04.5021344Z 2025-03-14T04:53:04.5021733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5022515Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5023079Z 2025-03-14T04:53:04.5023450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5025417Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5027135Z 2025-03-14T04:53:04.5027510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5027991Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:53:04.5028247Z 2025-03-14T04:53:04.5028580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5029369Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5029904Z 2025-03-14T04:53:04.5030253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5032107Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5033737Z 2025-03-14T04:53:04.5034107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5034590Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:53:04.5034849Z 2025-03-14T04:53:04.5035225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5035972Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5036554Z 2025-03-14T04:53:04.5036905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5038765Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5040407Z 2025-03-14T04:53:04.5040752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5041501Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:04.5042057Z 2025-03-14T04:53:04.5042403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5044326Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5046040Z 2025-03-14T04:53:04.5046407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5046883Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:53:04.5047141Z 2025-03-14T04:53:04.5047508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5048012Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:53:04.5048295Z 2025-03-14T04:53:04.5048671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5049453Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5050077Z 2025-03-14T04:53:04.5050446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5052608Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5054339Z 2025-03-14T04:53:04.5054708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5055190Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:53:04.5055452Z 2025-03-14T04:53:04.5055788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5056527Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5057076Z 2025-03-14T04:53:04.5057422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5059346Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5061200Z 2025-03-14T04:53:04.5061579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5062081Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:53:04.5062351Z 2025-03-14T04:53:04.5062705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5063544Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5064172Z 2025-03-14T04:53:04.5064542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5066517Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5068250Z 2025-03-14T04:53:04.5068633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5069148Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:53:04.5069428Z 2025-03-14T04:53:04.5069811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5070324Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:53:04.5070603Z 2025-03-14T04:53:04.5070947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5071683Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5072228Z 2025-03-14T04:53:04.5072572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5074433Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5076074Z 2025-03-14T04:53:04.5076441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5076919Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:53:04.5077175Z 2025-03-14T04:53:04.5077537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5078270Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5078838Z 2025-03-14T04:53:04.5079185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5081033Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5082680Z 2025-03-14T04:53:04.5083046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5083520Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:53:04.5083774Z 2025-03-14T04:53:04.5084104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5084837Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5085386Z 2025-03-14T04:53:04.5085740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5087703Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5089431Z 2025-03-14T04:53:04.5089809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5090347Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:53:04.5090644Z 2025-03-14T04:53:04.5091052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5091711Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:53:04.5092027Z 2025-03-14T04:53:04.5092411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5093227Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5093799Z 2025-03-14T04:53:04.5094165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5096124Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5097861Z 2025-03-14T04:53:04.5098244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5098750Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:53:04.5099027Z 2025-03-14T04:53:04.5099373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5100145Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5100714Z 2025-03-14T04:53:04.5101076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5103252Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5104917Z 2025-03-14T04:53:04.5105303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5105798Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:53:04.5106073Z 2025-03-14T04:53:04.5106475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5107259Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5107871Z 2025-03-14T04:53:04.5108237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5110203Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5111934Z 2025-03-14T04:53:04.5112285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5113078Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:04.5113669Z 2025-03-14T04:53:04.5114034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5116047Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5117831Z 2025-03-14T04:53:04.5118210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5118721Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:53:04.5119000Z 2025-03-14T04:53:04.5119385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5119904Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:53:04.5120189Z 2025-03-14T04:53:04.5120540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5121348Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5121992Z 2025-03-14T04:53:04.5122380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5124364Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5126215Z 2025-03-14T04:53:04.5126622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5127159Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:53:04.5127453Z 2025-03-14T04:53:04.5127822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5128662Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5129292Z 2025-03-14T04:53:04.5129671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5131831Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5133774Z 2025-03-14T04:53:04.5134167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5134708Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:53:04.5135004Z 2025-03-14T04:53:04.5135385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5136258Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5136882Z 2025-03-14T04:53:04.5137307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5139389Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5141240Z 2025-03-14T04:53:04.5141639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5142178Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:53:04.5142479Z 2025-03-14T04:53:04.5142885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5143424Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:53:04.5143730Z 2025-03-14T04:53:04.5144104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5144923Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5145494Z 2025-03-14T04:53:04.5145855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5147810Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5149543Z 2025-03-14T04:53:04.5149927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5150427Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:53:04.5150701Z 2025-03-14T04:53:04.5151091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5151859Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5152473Z 2025-03-14T04:53:04.5152837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5154782Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5156517Z 2025-03-14T04:53:04.5156904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5157412Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:53:04.5157691Z 2025-03-14T04:53:04.5158040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5158820Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5159402Z 2025-03-14T04:53:04.5159765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5161929Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5163684Z 2025-03-14T04:53:04.5164071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5164589Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:53:04.5164875Z 2025-03-14T04:53:04.5165274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5165881Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:53:04.5166191Z 2025-03-14T04:53:04.5166587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5167451Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5168055Z 2025-03-14T04:53:04.5168439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5170555Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5172482Z 2025-03-14T04:53:04.5172909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5173442Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:53:04.5173733Z 2025-03-14T04:53:04.5174107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5174924Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5175531Z 2025-03-14T04:53:04.5175919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5177996Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5179712Z 2025-03-14T04:53:04.5180076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5180548Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:53:04.5180807Z 2025-03-14T04:53:04.5181171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5181913Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5182492Z 2025-03-14T04:53:04.5182842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5184679Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5186306Z 2025-03-14T04:53:04.5186664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5187150Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:53:04.5187423Z 2025-03-14T04:53:04.5187787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5188265Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:53:04.5188533Z 2025-03-14T04:53:04.5188868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5189590Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5190122Z 2025-03-14T04:53:04.5190466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5192337Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5194094Z 2025-03-14T04:53:04.5194483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5195023Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:53:04.5195293Z 2025-03-14T04:53:04.5195644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5196453Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5197022Z 2025-03-14T04:53:04.5197388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5199350Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5201079Z 2025-03-14T04:53:04.5201464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5201966Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:53:04.5202238Z 2025-03-14T04:53:04.5202586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5203365Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5203904Z 2025-03-14T04:53:04.5204268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5206214Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5207929Z 2025-03-14T04:53:04.5208277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5209088Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:04.5209673Z 2025-03-14T04:53:04.5210036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5212233Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5214101Z 2025-03-14T04:53:04.5214485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5214976Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:53:04.5215247Z 2025-03-14T04:53:04.5215652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5216185Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:53:04.5216477Z 2025-03-14T04:53:04.5216847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5217603Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5218169Z 2025-03-14T04:53:04.5218529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5220475Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5222194Z 2025-03-14T04:53:04.5222584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5223087Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:53:04.5223352Z 2025-03-14T04:53:04.5223701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5224512Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5225119Z 2025-03-14T04:53:04.5225485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5227433Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5229169Z 2025-03-14T04:53:04.5229559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5230057Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:53:04.5230326Z 2025-03-14T04:53:04.5230674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5231441Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5232007Z 2025-03-14T04:53:04.5232364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5234247Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5235883Z 2025-03-14T04:53:04.5236244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5236724Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:53:04.5236988Z 2025-03-14T04:53:04.5237360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5237838Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:53:04.5238100Z 2025-03-14T04:53:04.5238469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5239191Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5239758Z 2025-03-14T04:53:04.5240104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5241944Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5243630Z 2025-03-14T04:53:04.5244010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5244503Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:53:04.5244767Z 2025-03-14T04:53:04.5245107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5245877Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5246482Z 2025-03-14T04:53:04.5246870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5248959Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5250841Z 2025-03-14T04:53:04.5251255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5251854Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:53:04.5252146Z 2025-03-14T04:53:04.5252534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5253416Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5254032Z 2025-03-14T04:53:04.5254398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5256351Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5258077Z 2025-03-14T04:53:04.5258459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5258961Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:53:04.5259240Z 2025-03-14T04:53:04.5259633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5260146Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:53:04.5260420Z 2025-03-14T04:53:04.5260908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5261676Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5262248Z 2025-03-14T04:53:04.5262625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5264523Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5266199Z 2025-03-14T04:53:04.5266569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5267040Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:53:04.5267298Z 2025-03-14T04:53:04.5267708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5268479Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5269099Z 2025-03-14T04:53:04.5269472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5271339Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5273007Z 2025-03-14T04:53:04.5273391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5273890Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:53:04.5274159Z 2025-03-14T04:53:04.5274515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5275298Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5275842Z 2025-03-14T04:53:04.5276187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5278135Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5279981Z 2025-03-14T04:53:04.5280387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5280928Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:53:04.5281207Z 2025-03-14T04:53:04.5281593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5282156Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:53:04.5282432Z 2025-03-14T04:53:04.5282777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5283572Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5284132Z 2025-03-14T04:53:04.5284497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5286505Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5288346Z 2025-03-14T04:53:04.5288753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5289297Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:53:04.5289587Z 2025-03-14T04:53:04.5289967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5290811Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5291480Z 2025-03-14T04:53:04.5291889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5294035Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5295858Z 2025-03-14T04:53:04.5296265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5296790Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:53:04.5297070Z 2025-03-14T04:53:04.5297465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5298290Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5298930Z 2025-03-14T04:53:04.5299322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5301440Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5303263Z 2025-03-14T04:53:04.5303676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5304228Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:53:04.5304531Z 2025-03-14T04:53:04.5304954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5305504Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:53:04.5305813Z 2025-03-14T04:53:04.5306184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5306992Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5307583Z 2025-03-14T04:53:04.5307967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5310103Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5311974Z 2025-03-14T04:53:04.5312387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5312980Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:53:04.5313272Z 2025-03-14T04:53:04.5313647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5314518Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5315139Z 2025-03-14T04:53:04.5315541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5317667Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5319548Z 2025-03-14T04:53:04.5319971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5320491Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:53:04.5320760Z 2025-03-14T04:53:04.5321106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5321876Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5322446Z 2025-03-14T04:53:04.5322809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5324821Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5326653Z 2025-03-14T04:53:04.5327051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5327583Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:53:04.5327878Z 2025-03-14T04:53:04.5328317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5328853Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:53:04.5329180Z 2025-03-14T04:53:04.5329561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5330385Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5330992Z 2025-03-14T04:53:04.5331387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5333665Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5335522Z 2025-03-14T04:53:04.5335941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5336467Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:53:04.5336765Z 2025-03-14T04:53:04.5337137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5337951Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5338548Z 2025-03-14T04:53:04.5338929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5340998Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5342818Z 2025-03-14T04:53:04.5343222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5343780Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:53:04.5344063Z 2025-03-14T04:53:04.5344432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5345285Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5345885Z 2025-03-14T04:53:04.5346272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5348364Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5350198Z 2025-03-14T04:53:04.5350602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5351140Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:53:04.5351419Z 2025-03-14T04:53:04.5351806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5352315Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:53:04.5352592Z 2025-03-14T04:53:04.5352936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5353705Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5354264Z 2025-03-14T04:53:04.5354628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5356570Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5358288Z 2025-03-14T04:53:04.5358707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5359223Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:53:04.5359543Z 2025-03-14T04:53:04.5359896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5360760Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5361349Z 2025-03-14T04:53:04.5361720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5363656Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5365385Z 2025-03-14T04:53:04.5365765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5366268Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:53:04.5366529Z 2025-03-14T04:53:04.5366885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5367697Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5368306Z 2025-03-14T04:53:04.5368684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5370763Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5372642Z 2025-03-14T04:53:04.5373045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5373642Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:53:04.5373935Z 2025-03-14T04:53:04.5374334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5374917Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:53:04.5375208Z 2025-03-14T04:53:04.5375576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5376386Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5376983Z 2025-03-14T04:53:04.5377368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5379435Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5381170Z 2025-03-14T04:53:04.5381531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5382009Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:53:04.5382267Z 2025-03-14T04:53:04.5382593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5383320Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5383891Z 2025-03-14T04:53:04.5384252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5386227Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5386296Z 2025-03-14T04:53:04.5386636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5386782Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:53:04.5386887Z 2025-03-14T04:53:04.5387148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5387598Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5387662Z 2025-03-14T04:53:04.5387944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5389568Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5389640Z 2025-03-14T04:53:04.5389956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5390132Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:53:04.5390207Z 2025-03-14T04:53:04.5390501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5390653Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:53:04.5390717Z 2025-03-14T04:53:04.5390980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5391419Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5391487Z 2025-03-14T04:53:04.5391744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5393320Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5393390Z 2025-03-14T04:53:04.5393676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5393849Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:53:04.5393909Z 2025-03-14T04:53:04.5394159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5394579Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5394658Z 2025-03-14T04:53:04.5394938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5396571Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5396645Z 2025-03-14T04:53:04.5396952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5397094Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:53:04.5397155Z 2025-03-14T04:53:04.5397409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5397853Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5397925Z 2025-03-14T04:53:04.5398202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5399826Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5399901Z 2025-03-14T04:53:04.5400221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5400389Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:53:04.5400490Z 2025-03-14T04:53:04.5400796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5400940Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:53:04.5401015Z 2025-03-14T04:53:04.5401273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5401726Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5401801Z 2025-03-14T04:53:04.5402081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5403710Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5403777Z 2025-03-14T04:53:04.5404082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5404220Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:53:04.5404293Z 2025-03-14T04:53:04.5404549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5405002Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5405074Z 2025-03-14T04:53:04.5405350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5407117Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5407186Z 2025-03-14T04:53:04.5407544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5407690Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:53:04.5407766Z 2025-03-14T04:53:04.5408041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5408533Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5408610Z 2025-03-14T04:53:04.5408917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5410738Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5410809Z 2025-03-14T04:53:04.5411133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5411316Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:53:04.5411387Z 2025-03-14T04:53:04.5411772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5411934Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:53:04.5412011Z 2025-03-14T04:53:04.5412306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5412781Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5412852Z 2025-03-14T04:53:04.5413158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5415644Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5415773Z 2025-03-14T04:53:04.5416091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5416233Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:53:04.5416309Z 2025-03-14T04:53:04.5416579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5417058Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5417131Z 2025-03-14T04:53:04.5417424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5419114Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5419193Z 2025-03-14T04:53:04.5419513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5419659Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:53:04.5419735Z 2025-03-14T04:53:04.5420007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5420495Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5420563Z 2025-03-14T04:53:04.5420863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5422613Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5422723Z 2025-03-14T04:53:04.5423049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5423207Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:53:04.5423280Z 2025-03-14T04:53:04.5423574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5423726Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:53:04.5423790Z 2025-03-14T04:53:04.5424062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5424500Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5424573Z 2025-03-14T04:53:04.5424850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5426484Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5426559Z 2025-03-14T04:53:04.5426857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5427003Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:53:04.5427067Z 2025-03-14T04:53:04.5427337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5427780Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5427855Z 2025-03-14T04:53:04.5428131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5429787Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5429893Z 2025-03-14T04:53:04.5430188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5430333Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:53:04.5430398Z 2025-03-14T04:53:04.5430666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5431112Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5431187Z 2025-03-14T04:53:04.5431460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5433084Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5433162Z 2025-03-14T04:53:04.5433452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5433615Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:53:04.5433679Z 2025-03-14T04:53:04.5433979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5434124Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:53:04.5434197Z 2025-03-14T04:53:04.5434456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5434903Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5434968Z 2025-03-14T04:53:04.5435250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5436862Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5436956Z 2025-03-14T04:53:04.5437243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5437373Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:53:04.5437443Z 2025-03-14T04:53:04.5437691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5438120Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5438183Z 2025-03-14T04:53:04.5438452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5439995Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5440058Z 2025-03-14T04:53:04.5440342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5440472Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:53:04.5440540Z 2025-03-14T04:53:04.5440791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5441243Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5441310Z 2025-03-14T04:53:04.5441594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5443248Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5443339Z 2025-03-14T04:53:04.5443623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5443773Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:53:04.5443842Z 2025-03-14T04:53:04.5444126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5444279Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:53:04.5444342Z 2025-03-14T04:53:04.5444617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5445063Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5445130Z 2025-03-14T04:53:04.5445412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5447044Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5447122Z 2025-03-14T04:53:04.5447418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5447568Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:53:04.5447632Z 2025-03-14T04:53:04.5447912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5448394Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5448464Z 2025-03-14T04:53:04.5448766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5450605Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5450714Z 2025-03-14T04:53:04.5451037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5451198Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:53:04.5451276Z 2025-03-14T04:53:04.5451623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5452126Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5452198Z 2025-03-14T04:53:04.5452510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5454293Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5454377Z 2025-03-14T04:53:04.5454705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5454874Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:53:04.5454957Z 2025-03-14T04:53:04.5455283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5455453Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:53:04.5455524Z 2025-03-14T04:53:04.5455817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5456293Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5456368Z 2025-03-14T04:53:04.5456712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5458599Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5458708Z 2025-03-14T04:53:04.5459044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5459209Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:53:04.5459286Z 2025-03-14T04:53:04.5459581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5460075Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5460170Z 2025-03-14T04:53:04.5460466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5462276Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5462358Z 2025-03-14T04:53:04.5462659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5462808Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:53:04.5462873Z 2025-03-14T04:53:04.5463143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5463592Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5463666Z 2025-03-14T04:53:04.5463940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5465641Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5465758Z 2025-03-14T04:53:04.5466051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5466215Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:53:04.5466280Z 2025-03-14T04:53:04.5466583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5466731Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:53:04.5466805Z 2025-03-14T04:53:04.5467067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5467521Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5467586Z 2025-03-14T04:53:04.5467877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5469516Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5469584Z 2025-03-14T04:53:04.5469891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5470032Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:53:04.5470104Z 2025-03-14T04:53:04.5470364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5470820Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5470883Z 2025-03-14T04:53:04.5471198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5472792Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5472887Z 2025-03-14T04:53:04.5473175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5473306Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:53:04.5473377Z 2025-03-14T04:53:04.5473623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5474060Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5474121Z 2025-03-14T04:53:04.5474394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5475945Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5476010Z 2025-03-14T04:53:04.5476294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5476439Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:53:04.5476512Z 2025-03-14T04:53:04.5476790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5476937Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:53:04.5477001Z 2025-03-14T04:53:04.5477255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5477700Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5477772Z 2025-03-14T04:53:04.5478035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5479627Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5479700Z 2025-03-14T04:53:04.5479985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5480130Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:53:04.5480193Z 2025-03-14T04:53:04.5480460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5480896Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5480969Z 2025-03-14T04:53:04.5481228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5482766Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5482837Z 2025-03-14T04:53:04.5483115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5483255Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:53:04.5483315Z 2025-03-14T04:53:04.5483566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5483990Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5484056Z 2025-03-14T04:53:04.5484351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5485954Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5486058Z 2025-03-14T04:53:04.5486351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5486516Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:53:04.5486580Z 2025-03-14T04:53:04.5486883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5487026Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:53:04.5487097Z 2025-03-14T04:53:04.5487360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5487817Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5487892Z 2025-03-14T04:53:04.5488170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5489811Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5489877Z 2025-03-14T04:53:04.5490182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5490336Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:53:04.5490400Z 2025-03-14T04:53:04.5490671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5491156Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5491227Z 2025-03-14T04:53:04.5491572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5493429Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5493507Z 2025-03-14T04:53:04.5493812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5493962Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:53:04.5494025Z 2025-03-14T04:53:04.5494294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5494754Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5494824Z 2025-03-14T04:53:04.5495100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5496763Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5496837Z 2025-03-14T04:53:04.5497133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5497301Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:53:04.5497366Z 2025-03-14T04:53:04.5497671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5497822Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:53:04.5497890Z 2025-03-14T04:53:04.5498186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5498646Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5498735Z 2025-03-14T04:53:04.5499004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5500546Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5500618Z 2025-03-14T04:53:04.5500905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5501038Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:53:04.5501105Z 2025-03-14T04:53:04.5501349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5501784Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5501848Z 2025-03-14T04:53:04.5502117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5503648Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5503725Z 2025-03-14T04:53:04.5504013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5504144Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:53:04.5504211Z 2025-03-14T04:53:04.5504457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5504927Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5505023Z 2025-03-14T04:53:04.5505292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5506838Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5506904Z 2025-03-14T04:53:04.5507187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5507344Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:53:04.5507412Z 2025-03-14T04:53:04.5507689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5507839Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:53:04.5507901Z 2025-03-14T04:53:04.5508152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5508575Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5508645Z 2025-03-14T04:53:04.5508905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5510461Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5510532Z 2025-03-14T04:53:04.5510813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5510951Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:53:04.5511011Z 2025-03-14T04:53:04.5511303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5511729Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5511826Z 2025-03-14T04:53:04.5512089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5513641Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5513715Z 2025-03-14T04:53:04.5513993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5514136Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:53:04.5514197Z 2025-03-14T04:53:04.5514453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5514880Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5514951Z 2025-03-14T04:53:04.5515212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5516750Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5516823Z 2025-03-14T04:53:04.5517097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5517262Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:53:04.5517323Z 2025-03-14T04:53:04.5517640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5517783Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:53:04.5517851Z 2025-03-14T04:53:04.5518095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5518553Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5518623Z 2025-03-14T04:53:04.5518885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5520427Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5520492Z 2025-03-14T04:53:04.5520782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5520915Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:53:04.5520981Z 2025-03-14T04:53:04.5521226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5521660Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5521726Z 2025-03-14T04:53:04.5521983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5523513Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5523575Z 2025-03-14T04:53:04.5523860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5523990Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:53:04.5524088Z 2025-03-14T04:53:04.5524345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5524812Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5524879Z 2025-03-14T04:53:04.5525142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5526686Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5526749Z 2025-03-14T04:53:04.5527030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5527191Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:53:04.5527251Z 2025-03-14T04:53:04.5527540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5527680Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:53:04.5527750Z 2025-03-14T04:53:04.5528001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5528433Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5528495Z 2025-03-14T04:53:04.5528776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5530368Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5530441Z 2025-03-14T04:53:04.5530803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5530946Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:53:04.5531049Z 2025-03-14T04:53:04.5531316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5531830Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5531903Z 2025-03-14T04:53:04.5532188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5533943Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5534013Z 2025-03-14T04:53:04.5534295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5534423Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:53:04.5534490Z 2025-03-14T04:53:04.5534727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5535166Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5535230Z 2025-03-14T04:53:04.5535496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5537048Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5537122Z 2025-03-14T04:53:04.5537402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5537587Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:53:04.5537659Z 2025-03-14T04:53:04.5537942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5538121Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:53:04.5538181Z 2025-03-14T04:53:04.5538432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5538848Z x_190: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5538916Z 2025-03-14T04:53:04.5539178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5540765Z x_191: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5540837Z 2025-03-14T04:53:04.5541119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5541261Z out_120: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T04:53:04.5541321Z 2025-03-14T04:53:04.5541573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5541999Z x_192: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_120 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5542067Z 2025-03-14T04:53:04.5542330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5543881Z x_193: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5543953Z 2025-03-14T04:53:04.5544264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5544405Z out_121: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T04:53:04.5544498Z 2025-03-14T04:53:04.5544762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5545230Z x_194: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5545305Z 2025-03-14T04:53:04.5545596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5547269Z x_195: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5547344Z 2025-03-14T04:53:04.5547606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5548077Z x_196: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:04.5548147Z 2025-03-14T04:53:04.5548427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5550124Z x_197: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5550193Z 2025-03-14T04:53:04.5550486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5550640Z x_195 += x_197; out_122: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T04:53:04.5550712Z 2025-03-14T04:53:04.5551037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5551196Z out_123: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T04:53:04.5551262Z 2025-03-14T04:53:04.5551579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5552010Z x_198: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5552077Z 2025-03-14T04:53:04.5552337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5553897Z x_199: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5553973Z 2025-03-14T04:53:04.5554270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5554418Z out_124: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T04:53:04.5554481Z 2025-03-14T04:53:04.5554750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5555201Z x_200: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_124 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5555271Z 2025-03-14T04:53:04.5555546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5557188Z x_201: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5557258Z 2025-03-14T04:53:04.5557540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5557678Z out_125: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T04:53:04.5557775Z 2025-03-14T04:53:04.5558035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5558493Z x_202: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5558560Z 2025-03-14T04:53:04.5558824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5560445Z x_203: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5560606Z 2025-03-14T04:53:04.5560909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5561084Z x_203 += out_123; out_126: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T04:53:04.5561151Z 2025-03-14T04:53:04.5561455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5561606Z out_127: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T04:53:04.5561684Z 2025-03-14T04:53:04.5561944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5562395Z x_204: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5562473Z 2025-03-14T04:53:04.5562747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5564377Z x_205: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5564445Z 2025-03-14T04:53:04.5564804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5564946Z out_128: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T04:53:04.5565058Z 2025-03-14T04:53:04.5565317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5565774Z x_206: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_128 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5565847Z 2025-03-14T04:53:04.5566126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5567734Z x_207: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5567801Z 2025-03-14T04:53:04.5568110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5568259Z out_129: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T04:53:04.5568323Z 2025-03-14T04:53:04.5568587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5569042Z x_208: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5569113Z 2025-03-14T04:53:04.5569401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5571115Z x_209: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5571191Z 2025-03-14T04:53:04.5571548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5571779Z x_209 += out_127; out_130: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T04:53:04.5571849Z 2025-03-14T04:53:04.5572176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5572381Z out_131: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T04:53:04.5572455Z 2025-03-14T04:53:04.5572953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:04.5573120Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:53:04.5573184Z 2025-03-14T04:53:04.5573503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:04.5573647Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:53:04.5573720Z 2025-03-14T04:53:04.5574182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:04.5574349Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:53:04.5574413Z 2025-03-14T04:53:04.5574729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:04.5574873Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:53:04.5574942Z 2025-03-14T04:53:04.5575338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:53:04.5575532Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:53:04.5575636Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:53:04.5575767Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:53:04.5575830Z 2025-03-14T04:53:04.5576181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:53:04.5576310Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:53:04.5576381Z 2025-03-14T04:53:04.5576722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:53:04.5576852Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:53:04.5576913Z 2025-03-14T04:53:04.5577297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:53:04.5577511Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:53:04.5577579Z 2025-03-14T04:53:04.5577999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:53:04.5578127Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:53:04.5578585Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:53:04.5578801Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:53:04.5578923Z x_210: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:53:04.5578986Z 2025-03-14T04:53:04.5579293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:04.5579416Z tensor: "f32[82125, 4][4, 1]cpu" = x_210.to(torch.float32); x_210 = None 2025-03-14T04:53:04.5579486Z 2025-03-14T04:53:04.5579737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5580515Z x_211: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_131, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_131 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:53:04.5580582Z 2025-03-14T04:53:04.5580861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:53:04.5581051Z x_212: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_211, inplace = False); x_211 = None 2025-03-14T04:53:04.5581121Z 2025-03-14T04:53:04.5581505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:53:04.5582363Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_212, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:53:04.5582436Z 2025-03-14T04:53:04.5582793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:53:04.5583626Z x_213: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_212, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_212 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:53:04.5583690Z 2025-03-14T04:53:04.5584032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:53:04.5584183Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:53:04.5584326Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:53:04.5584387Z 2025-03-14T04:53:04.5584841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:53:04.5585000Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_213.view(4, -1, 4, 73, 75); x_213 = None 2025-03-14T04:53:04.5585210Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:53:04.5585384Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:53:04.5585456Z 2025-03-14T04:53:04.5585853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:53:04.5586063Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:53:04.5586131Z 2025-03-14T04:53:04.5586565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:53:04.5586720Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:53:04.5586864Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:53:04.5587006Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:53:04.5587065Z 2025-03-14T04:53:04.5587447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:04.5587616Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:53:04.5587686Z 2025-03-14T04:53:04.5587999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:04.5588144Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:53:04.5588208Z 2025-03-14T04:53:04.5588523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:04.5588654Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:04.5588793Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:04.5588943Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:53:04.5589013Z 2025-03-14T04:53:04.5589347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:04.5589477Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:04.5589599Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:04.5589762Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:04.5589825Z 2025-03-14T04:53:04.5590154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:04.5590272Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:04.5590365Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:53:04.5590484Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:53:04.5590552Z 2025-03-14T04:53:04.5590892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:04.5591043Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:04.5591174Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:53:04.5591305Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:53:04.5591365Z 2025-03-14T04:53:04.5591724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:04.5594546Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:04.5594672Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:53:04.5594737Z 2025-03-14T04:53:04.5595063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:04.5595212Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:04.5595334Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:53:04.5595397Z 2025-03-14T04:53:04.5595705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:04.5595854Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:04.5596000Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:53:04.5596070Z 2025-03-14T04:53:04.5596370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:04.5596563Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:04.5596674Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:53:04.5596745Z 2025-03-14T04:53:04.5597078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:04.5597221Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:04.5597282Z 2025-03-14T04:53:04.5597616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:04.5597748Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:04.5597815Z 2025-03-14T04:53:04.5598159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:04.5598304Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:04.5598430Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:53:04.5598578Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:04.5598717Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:53:04.5598782Z 2025-03-14T04:53:04.5599141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:04.5599319Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:04.5599447Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:53:04.5599596Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:04.5599755Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:53:04.5599816Z 2025-03-14T04:53:04.5600154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:04.5600271Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:04.5600497Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:04.5600637Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:53:04.5600707Z 2025-03-14T04:53:04.5601040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:04.5601163Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:04.5601329Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:04.5601465Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:53:04.5601532Z 2025-03-14T04:53:04.5601848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:04.5601946Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:04.5602073Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:04.5602136Z 2025-03-14T04:53:04.5602451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:04.5602546Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:04.5602672Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:04.5602737Z 2025-03-14T04:53:04.5603047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:04.5603160Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:04.5603297Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:04.5603362Z 2025-03-14T04:53:04.5603679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:04.5603792Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:04.5603925Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:04.5603991Z 2025-03-14T04:53:04.5604343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:04.5604524Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:04.5604597Z 2025-03-14T04:53:04.5604943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:04.5605103Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:53:04.5605216Z 2025-03-14T04:53:04.5605596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:53:04.5605790Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:53:04.5605851Z 2025-03-14T04:53:04.5606342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:53:04.5606504Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:53:04.5606573Z 2025-03-14T04:53:04.5606868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:04.5607010Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:53:04.5607072Z 2025-03-14T04:53:04.5607510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:53:04.5607631Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:53:04.5607730Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:53:04.5607848Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:53:04.5607911Z 2025-03-14T04:53:04.5608381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:53:04.5608546Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:53:04.5608793Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:53:04.5608857Z 2025-03-14T04:53:04.5609330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:53:04.5609496Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:53:04.5609569Z 2025-03-14T04:53:04.5609869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:04.5610027Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:53:04.5610089Z 2025-03-14T04:53:04.5610481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:53:04.5610627Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:53:04.5610696Z 2025-03-14T04:53:04.5610996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:04.5611146Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:53:04.5611210Z 2025-03-14T04:53:04.5611696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:53:04.5611842Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:53:04.5611914Z 2025-03-14T04:53:04.5612405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:53:04.5612569Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:53:04.5612693Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:04.5612879Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:53:04.5613009Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:53:04.5613080Z 2025-03-14T04:53:04.5613456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:53:04.5613578Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:53:04.5613644Z 2025-03-14T04:53:04.5614215Z 2025-03-14T04:53:04.5614309Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:04.5717329Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:53:04.5718179Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:53:04.5718534Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5718954Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5719356Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5719732Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5720111Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5720466Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5720906Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5721282Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5721623Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5721971Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5722280Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5722623Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5722956Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5723290Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5723595Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5723880Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5724212Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5724549Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5724863Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5725175Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5725476Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:04.5725822Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5726176Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5726509Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5726831Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5727121Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5727540Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5727932Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5728359Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5728736Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5729104Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5729500Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5729900Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5730272Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5730626Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5730952Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5731363Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5731856Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5732289Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5732698Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5733039Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5733421Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5733805Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5734152Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5734504Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5734819Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5735204Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5735624Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5735972Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5736345Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5736661Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5737069Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5737433Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5737786Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5738131Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5738451Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5738847Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5739203Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5739518Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5739821Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5740100Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5740428Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5740765Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5741074Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5741381Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5741660Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5741991Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5742356Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5742666Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5742989Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5743280Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:04.5743652Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5743992Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5744329Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5744683Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5744989Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5745365Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5745726Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5746078Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5746411Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5746725Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5747093Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5747449Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5747765Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5748069Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5748353Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5748712Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5749054Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5749379Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5749693Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5749986Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5750329Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5750663Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5750974Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5751286Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5751561Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5751900Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5752227Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5752553Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5752865Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5753141Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5753481Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5753808Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5754126Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5754428Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5754714Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5755079Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5755430Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5755746Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5756047Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5756347Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5756678Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5757011Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5757324Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5757635Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5757912Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5758249Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5758581Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5758890Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5759198Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5759474Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5759808Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5760135Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5760454Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5760892Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5761268Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5761608Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5761957Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5762273Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5762606Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5762889Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5763220Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5763556Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5763864Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5764178Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5764481Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:04.5764833Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5765188Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5765521Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5765854Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5766136Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5766484Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5766817Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5767144Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5767490Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5767773Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5768135Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5768471Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5768814Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5769126Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5769420Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5769763Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5770105Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5770430Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5770743Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5771031Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5771380Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5771808Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5772169Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5772527Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5772832Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5773179Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5773521Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5773840Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5774207Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5774491Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5774856Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5775194Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5775534Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5775849Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5776143Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5776486Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5776820Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5777149Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5777458Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5777752Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5778092Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5778437Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5778762Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5779083Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5779379Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5779720Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5780062Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5780415Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5780731Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5781030Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5781375Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5781726Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5782054Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5782373Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5782659Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5783008Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5783346Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5783673Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5783990Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5784278Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5784615Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5784961Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5785292Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5785602Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5785893Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5786232Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5786578Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5786928Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5787268Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5787551Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5787895Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5788256Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5788570Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5788887Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5789167Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5789506Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5789841Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5790164Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5790478Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5790774Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5791125Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5791468Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5791799Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5792110Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5792398Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5792742Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5793125Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5793445Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5793775Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5794064Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5794419Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5794763Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5795078Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5795395Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5795678Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5796026Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5796374Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5796693Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5797005Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5797288Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5797631Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5797963Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5798292Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5798593Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5798881Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5799220Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5799596Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5799936Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5800244Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5800533Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5800893Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5801234Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5801552Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5801872Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5802159Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5802508Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5802852Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5803172Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5803485Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5803766Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5804110Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5804444Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5804771Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5805081Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5805374Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5805754Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5806089Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5806431Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5806740Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5807051Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5807397Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5807752Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5808091Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5808425Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5808736Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5809098Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5809460Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5809797Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5810145Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5810457Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5810838Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5811200Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5811619Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5811991Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5812371Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5812776Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5813175Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5813520Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5813864Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5814178Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5814542Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5814915Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5815269Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5815596Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5815907Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5816264Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5816638Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5816985Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5817319Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5817620Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5817988Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5818365Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5818706Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5819042Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5819373Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5819750Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5820134Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5820486Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5820842Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5821151Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5821520Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5821896Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5822224Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5822537Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5822833Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5823176Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5823521Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5823841Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5824163Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5824460Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5824804Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5825149Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5825468Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5825826Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5826115Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5826480Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5826813Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5827156Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5827478Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5827765Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5828112Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5828448Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5828777Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5829090Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5829384Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5829721Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5830063Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5830393Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5830705Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5831002Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5831341Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5831685Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5832033Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5832356Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5832659Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5833003Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5833367Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5833689Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5834004Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5834287Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5834632Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5834967Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5835296Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5835604Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5835908Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5836243Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5836575Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5836899Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5837209Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5837499Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5837837Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5838218Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5838542Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5838875Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5839168Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5839506Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5839869Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5840192Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5840509Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5840791Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5841141Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5841480Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5841809Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5842133Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5842417Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5842767Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5843110Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5843443Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5843762Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5844058Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5844406Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5844787Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5845114Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5845444Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5845736Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5846097Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5846442Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5846761Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5847079Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5847361Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5847711Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5848066Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5848402Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5848732Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5849037Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5849404Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5849760Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5850108Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5850431Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5850740Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5851135Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5851545Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5851917Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5852247Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5852572Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5852938Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5853281Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5853626Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5853952Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5854262Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5854622Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5854999Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5855354Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5855687Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5855993Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5856376Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5856754Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5857102Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5857456Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5857809Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5858181Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5858561Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5858920Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5859273Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5859585Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5859954Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5860325Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5860785Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5861120Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5861435Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5861794Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5862179Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5862541Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5862902Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5863236Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5863620Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5864017Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5864382Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5864741Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5865109Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5865505Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5865858Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5866218Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5866601Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5866932Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5867303Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5867659Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5868010Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5868341Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5868655Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5869022Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5869388Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5869732Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5870062Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5870372Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5870734Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5871098Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5871447Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5871840Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5872161Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5872568Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5872960Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5873357Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5873715Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5874040Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5874428Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5874804Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5875171Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5875522Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5875850Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5876242Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5876620Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5876987Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5877335Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5877663Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5878043Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5878438Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5878827Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5879185Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5879531Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5879912Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5880307Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5880658Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5881009Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5881330Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5881693Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5882045Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5882386Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5882717Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5883031Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:04.5883405Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5883769Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5884125Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5884467Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5884769Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5885134Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5885544Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5885908Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5886285Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5886615Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5886996Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5887401Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5887757Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5888109Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5888423Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5888808Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5889204Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5889564Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5889917Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5890233Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.5890613Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5890997Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5891357Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5891752Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5892078Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.5892468Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5892878Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5893222Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5893565Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5893875Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.5894247Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.5894609Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.5894947Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.5895281Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.5895658Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:53:04.5895995Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:53:04.5896325Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:53:04.5896696Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:53:04.5897089Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:53:04.5897460Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:53:04.5897809Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:53:04.5897876Z 2025-03-14T04:53:04.5898178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5898662Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5898725Z 2025-03-14T04:53:04.5899016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5900515Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5900601Z 2025-03-14T04:53:04.5900908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:53:04.5901058Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:53:04.5901121Z 2025-03-14T04:53:04.5901495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:53:04.5901738Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:53:04.5901807Z 2025-03-14T04:53:04.5902072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5902500Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5902571Z 2025-03-14T04:53:04.5902843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5904392Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5904463Z 2025-03-14T04:53:04.5904753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5904898Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:53:04.5904960Z 2025-03-14T04:53:04.5905221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5905651Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5905720Z 2025-03-14T04:53:04.5905987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5907578Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5907681Z 2025-03-14T04:53:04.5907972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5908121Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:53:04.5908183Z 2025-03-14T04:53:04.5908437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5908878Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5908947Z 2025-03-14T04:53:04.5909209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5910749Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5910821Z 2025-03-14T04:53:04.5911070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5911516Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:04.5911579Z 2025-03-14T04:53:04.5911845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5913492Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5913578Z 2025-03-14T04:53:04.5913866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5914011Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:53:04.5914095Z 2025-03-14T04:53:04.5914381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5914540Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:53:04.5914602Z 2025-03-14T04:53:04.5914857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5915278Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5915346Z 2025-03-14T04:53:04.5915610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5917166Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5917236Z 2025-03-14T04:53:04.5917523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5917672Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:53:04.5917737Z 2025-03-14T04:53:04.5917995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5918422Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5918491Z 2025-03-14T04:53:04.5918751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5920340Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5920428Z 2025-03-14T04:53:04.5920723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5920887Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:53:04.5920948Z 2025-03-14T04:53:04.5921205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5921634Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5921705Z 2025-03-14T04:53:04.5921966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5923540Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5923610Z 2025-03-14T04:53:04.5923889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5924048Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:53:04.5924108Z 2025-03-14T04:53:04.5924408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5924562Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:53:04.5924629Z 2025-03-14T04:53:04.5924875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5925311Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5925372Z 2025-03-14T04:53:04.5925649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5927197Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5927293Z 2025-03-14T04:53:04.5927578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5927717Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:53:04.5927788Z 2025-03-14T04:53:04.5928043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5928482Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5928549Z 2025-03-14T04:53:04.5928824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5930403Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5930472Z 2025-03-14T04:53:04.5930768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5930910Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:53:04.5930984Z 2025-03-14T04:53:04.5931238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5931725Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5931793Z 2025-03-14T04:53:04.5932064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5933741Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5933819Z 2025-03-14T04:53:04.5934106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5934274Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:53:04.5934354Z 2025-03-14T04:53:04.5934632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5934786Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:53:04.5934848Z 2025-03-14T04:53:04.5935098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5935509Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5935578Z 2025-03-14T04:53:04.5935833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5937362Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5937435Z 2025-03-14T04:53:04.5937720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5937866Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:53:04.5937928Z 2025-03-14T04:53:04.5938182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5938621Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5938688Z 2025-03-14T04:53:04.5938958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5940545Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5940647Z 2025-03-14T04:53:04.5940938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5941088Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:53:04.5941148Z 2025-03-14T04:53:04.5941395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5941833Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5941895Z 2025-03-14T04:53:04.5942165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5943709Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5943782Z 2025-03-14T04:53:04.5944031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5944487Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:04.5944555Z 2025-03-14T04:53:04.5944812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5946453Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5946531Z 2025-03-14T04:53:04.5946821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5946966Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:53:04.5947053Z 2025-03-14T04:53:04.5947337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5947502Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:53:04.5947578Z 2025-03-14T04:53:04.5947835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5948269Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5948335Z 2025-03-14T04:53:04.5948612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5950149Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5950225Z 2025-03-14T04:53:04.5950521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5950666Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:53:04.5950738Z 2025-03-14T04:53:04.5950992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5951430Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5951496Z 2025-03-14T04:53:04.5951771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5953321Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5953408Z 2025-03-14T04:53:04.5953699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5953853Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:53:04.5953919Z 2025-03-14T04:53:04.5954166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5954600Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5954662Z 2025-03-14T04:53:04.5954929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5956493Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5956567Z 2025-03-14T04:53:04.5956848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5957003Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:53:04.5957071Z 2025-03-14T04:53:04.5957349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5957506Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:53:04.5957566Z 2025-03-14T04:53:04.5957820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5958239Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5958307Z 2025-03-14T04:53:04.5958572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5960185Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5960293Z 2025-03-14T04:53:04.5960663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5960823Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:53:04.5960886Z 2025-03-14T04:53:04.5961143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5961576Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5961647Z 2025-03-14T04:53:04.5961909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5963446Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5963518Z 2025-03-14T04:53:04.5963800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5963945Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:53:04.5964009Z 2025-03-14T04:53:04.5964264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5964691Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5964763Z 2025-03-14T04:53:04.5965024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5966687Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5966784Z 2025-03-14T04:53:04.5967063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5967246Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:53:04.5967308Z 2025-03-14T04:53:04.5967596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5967742Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:53:04.5967812Z 2025-03-14T04:53:04.5968060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5968486Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5968547Z 2025-03-14T04:53:04.5968822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5970399Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5970465Z 2025-03-14T04:53:04.5970763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5970907Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:53:04.5970977Z 2025-03-14T04:53:04.5971237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5971744Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5971817Z 2025-03-14T04:53:04.5972101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5973701Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5973794Z 2025-03-14T04:53:04.5974091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5974233Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:53:04.5974304Z 2025-03-14T04:53:04.5974556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5975001Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5975064Z 2025-03-14T04:53:04.5975350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5978644Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5978722Z 2025-03-14T04:53:04.5979020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5979180Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:53:04.5979250Z 2025-03-14T04:53:04.5979544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5979704Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:53:04.5979767Z 2025-03-14T04:53:04.5980031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5980498Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5980565Z 2025-03-14T04:53:04.5980863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5982427Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5982540Z 2025-03-14T04:53:04.5982838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5982976Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:53:04.5983049Z 2025-03-14T04:53:04.5983310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5983761Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5983826Z 2025-03-14T04:53:04.5984108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5985793Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5985861Z 2025-03-14T04:53:04.5986158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5986294Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:53:04.5986366Z 2025-03-14T04:53:04.5986619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5987067Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5987132Z 2025-03-14T04:53:04.5987410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5989015Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5989117Z 2025-03-14T04:53:04.5989381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5989836Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:04.5989906Z 2025-03-14T04:53:04.5990171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5991824Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5991897Z 2025-03-14T04:53:04.5992184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.5992350Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:53:04.5992412Z 2025-03-14T04:53:04.5992692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5992828Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:53:04.5992895Z 2025-03-14T04:53:04.5993132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5993546Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.5993612Z 2025-03-14T04:53:04.5993871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5995393Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5995481Z 2025-03-14T04:53:04.5995767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5995897Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:53:04.5995964Z 2025-03-14T04:53:04.5996202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5996621Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.5996690Z 2025-03-14T04:53:04.5996941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.5998433Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.5998495Z 2025-03-14T04:53:04.5998795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.5998922Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:53:04.5998987Z 2025-03-14T04:53:04.5999227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.5999642Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.5999712Z 2025-03-14T04:53:04.5999971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6001498Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6001578Z 2025-03-14T04:53:04.6001854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6002021Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:53:04.6002079Z 2025-03-14T04:53:04.6002360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6002495Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:53:04.6002560Z 2025-03-14T04:53:04.6002798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6003204Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6003263Z 2025-03-14T04:53:04.6003523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6005040Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6005112Z 2025-03-14T04:53:04.6005393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6005520Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:53:04.6005587Z 2025-03-14T04:53:04.6005829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6006243Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6006306Z 2025-03-14T04:53:04.6006568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6008111Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6008213Z 2025-03-14T04:53:04.6008502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6008631Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:53:04.6008700Z 2025-03-14T04:53:04.6008943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6009376Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6009443Z 2025-03-14T04:53:04.6009732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6011350Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6011479Z 2025-03-14T04:53:04.6011834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6012004Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:53:04.6012085Z 2025-03-14T04:53:04.6012410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6012579Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:53:04.6012651Z 2025-03-14T04:53:04.6012943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6013414Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6013489Z 2025-03-14T04:53:04.6013776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6015345Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6015451Z 2025-03-14T04:53:04.6015736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6015874Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:53:04.6015934Z 2025-03-14T04:53:04.6016188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6016610Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6016680Z 2025-03-14T04:53:04.6016945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6018491Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6018562Z 2025-03-14T04:53:04.6018847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6018985Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:53:04.6019046Z 2025-03-14T04:53:04.6019302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6019728Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6019796Z 2025-03-14T04:53:04.6020060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6021651Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6021749Z 2025-03-14T04:53:04.6022025Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6022174Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:53:04.6022237Z 2025-03-14T04:53:04.6022523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6022661Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:53:04.6022732Z 2025-03-14T04:53:04.6022976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6023398Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6023459Z 2025-03-14T04:53:04.6023730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6025287Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6025352Z 2025-03-14T04:53:04.6025655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6025781Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:53:04.6025849Z 2025-03-14T04:53:04.6026094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6026515Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6026577Z 2025-03-14T04:53:04.6026844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6028345Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6028433Z 2025-03-14T04:53:04.6028720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6028848Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:53:04.6028918Z 2025-03-14T04:53:04.6029165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6029596Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6029659Z 2025-03-14T04:53:04.6029929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6031453Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6031515Z 2025-03-14T04:53:04.6031789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6031928Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:53:04.6031994Z 2025-03-14T04:53:04.6032264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6032407Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:53:04.6032467Z 2025-03-14T04:53:04.6032717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6033131Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6033202Z 2025-03-14T04:53:04.6033480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6035004Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6035115Z 2025-03-14T04:53:04.6035393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6035531Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:53:04.6035595Z 2025-03-14T04:53:04.6035843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6036254Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6036322Z 2025-03-14T04:53:04.6036598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6038124Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6038189Z 2025-03-14T04:53:04.6038470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6038594Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:53:04.6038662Z 2025-03-14T04:53:04.6038903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6039324Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6039385Z 2025-03-14T04:53:04.6039646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6041210Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6041301Z 2025-03-14T04:53:04.6041581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6041721Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:53:04.6041789Z 2025-03-14T04:53:04.6042063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6042206Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:53:04.6042267Z 2025-03-14T04:53:04.6042515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6042927Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6042999Z 2025-03-14T04:53:04.6043265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6044827Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6044899Z 2025-03-14T04:53:04.6045182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6045322Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:53:04.6045384Z 2025-03-14T04:53:04.6045641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6046064Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6046133Z 2025-03-14T04:53:04.6046415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6047994Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6048098Z 2025-03-14T04:53:04.6048400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6048548Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:53:04.6048614Z 2025-03-14T04:53:04.6048914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6049385Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6049455Z 2025-03-14T04:53:04.6049734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6051355Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6051478Z 2025-03-14T04:53:04.6051808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6051977Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:53:04.6052046Z 2025-03-14T04:53:04.6052373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6052531Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:53:04.6052607Z 2025-03-14T04:53:04.6052889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6053331Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6053401Z 2025-03-14T04:53:04.6053665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6055226Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6055304Z 2025-03-14T04:53:04.6055599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6055733Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:53:04.6055802Z 2025-03-14T04:53:04.6056051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6056481Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6056550Z 2025-03-14T04:53:04.6056812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6058377Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6058440Z 2025-03-14T04:53:04.6058731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6058861Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:53:04.6058930Z 2025-03-14T04:53:04.6059175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6059614Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6059683Z 2025-03-14T04:53:04.6059966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6061675Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6083354Z 2025-03-14T04:53:04.6083732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6083892Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:53:04.6083965Z 2025-03-14T04:53:04.6084259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6084409Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:53:04.6084475Z 2025-03-14T04:53:04.6084742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6085180Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6085251Z 2025-03-14T04:53:04.6085525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6087153Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6087231Z 2025-03-14T04:53:04.6087519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6087668Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:53:04.6087731Z 2025-03-14T04:53:04.6087991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6088462Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6088536Z 2025-03-14T04:53:04.6088807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6090439Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6090528Z 2025-03-14T04:53:04.6090828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6090982Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:53:04.6091048Z 2025-03-14T04:53:04.6091323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6091896Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6091982Z 2025-03-14T04:53:04.6092278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6093957Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6094031Z 2025-03-14T04:53:04.6094316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6094476Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:53:04.6094537Z 2025-03-14T04:53:04.6094833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6094973Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:53:04.6095046Z 2025-03-14T04:53:04.6095299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6095742Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6095822Z 2025-03-14T04:53:04.6096095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6097642Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6097722Z 2025-03-14T04:53:04.6098012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6098145Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:53:04.6098215Z 2025-03-14T04:53:04.6098461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6098894Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6098959Z 2025-03-14T04:53:04.6099231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6100804Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6100872Z 2025-03-14T04:53:04.6101167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6101305Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:53:04.6101378Z 2025-03-14T04:53:04.6101633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6102089Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6102153Z 2025-03-14T04:53:04.6102425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6103994Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6104073Z 2025-03-14T04:53:04.6104362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6104510Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:53:04.6104582Z 2025-03-14T04:53:04.6104863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6105011Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:53:04.6105073Z 2025-03-14T04:53:04.6105333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6105755Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6105828Z 2025-03-14T04:53:04.6106098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6107662Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6107738Z 2025-03-14T04:53:04.6108025Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6108169Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:53:04.6108229Z 2025-03-14T04:53:04.6108487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6108962Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6109048Z 2025-03-14T04:53:04.6109321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6110868Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6110951Z 2025-03-14T04:53:04.6111237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6111380Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:53:04.6111442Z 2025-03-14T04:53:04.6111699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6112136Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6112199Z 2025-03-14T04:53:04.6112467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6114042Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6114117Z 2025-03-14T04:53:04.6114400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6114547Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:53:04.6114619Z 2025-03-14T04:53:04.6114897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6115041Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:53:04.6115118Z 2025-03-14T04:53:04.6115375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6115810Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6115878Z 2025-03-14T04:53:04.6116141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6117714Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6117784Z 2025-03-14T04:53:04.6118066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6118206Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:53:04.6118266Z 2025-03-14T04:53:04.6118520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6118940Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6119009Z 2025-03-14T04:53:04.6119268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6120832Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6120905Z 2025-03-14T04:53:04.6121189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6121330Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:53:04.6121389Z 2025-03-14T04:53:04.6121657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6122084Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6122169Z 2025-03-14T04:53:04.6122431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6123993Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6124078Z 2025-03-14T04:53:04.6124353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6124512Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:53:04.6124573Z 2025-03-14T04:53:04.6124857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6124996Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:53:04.6125061Z 2025-03-14T04:53:04.6125307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6125729Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6125790Z 2025-03-14T04:53:04.6126076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6127635Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6127700Z 2025-03-14T04:53:04.6127985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6128131Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:53:04.6128200Z 2025-03-14T04:53:04.6128445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6128889Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6128950Z 2025-03-14T04:53:04.6129219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6130787Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6130852Z 2025-03-14T04:53:04.6131149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6131300Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:53:04.6131379Z 2025-03-14T04:53:04.6131737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6132244Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6132318Z 2025-03-14T04:53:04.6132650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6134155Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6134218Z 2025-03-14T04:53:04.6134502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6134649Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:53:04.6134720Z 2025-03-14T04:53:04.6135023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6135172Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:53:04.6135260Z 2025-03-14T04:53:04.6135523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6135923Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6136008Z 2025-03-14T04:53:04.6136266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6137774Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6137844Z 2025-03-14T04:53:04.6138128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6138265Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:53:04.6138325Z 2025-03-14T04:53:04.6138570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6138977Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6139060Z 2025-03-14T04:53:04.6139322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6140817Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6140887Z 2025-03-14T04:53:04.6141166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6141317Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:53:04.6141376Z 2025-03-14T04:53:04.6141625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6142055Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6142120Z 2025-03-14T04:53:04.6142393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6143903Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6143971Z 2025-03-14T04:53:04.6144240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6144390Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:53:04.6144449Z 2025-03-14T04:53:04.6144729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6144865Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:53:04.6144935Z 2025-03-14T04:53:04.6145181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6145623Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6145691Z 2025-03-14T04:53:04.6145946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6147448Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6147524Z 2025-03-14T04:53:04.6147809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6147956Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:53:04.6148023Z 2025-03-14T04:53:04.6148270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6148699Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6148783Z 2025-03-14T04:53:04.6149056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6150653Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6150716Z 2025-03-14T04:53:04.6151004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6151138Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:53:04.6151200Z 2025-03-14T04:53:04.6151451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6151893Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6151965Z 2025-03-14T04:53:04.6152228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6153781Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6153850Z 2025-03-14T04:53:04.6154142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6154292Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:53:04.6154369Z 2025-03-14T04:53:04.6154653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6154790Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:53:04.6154858Z 2025-03-14T04:53:04.6155108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6155549Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6155610Z 2025-03-14T04:53:04.6155880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6157427Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6157497Z 2025-03-14T04:53:04.6157783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6157917Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:53:04.6157984Z 2025-03-14T04:53:04.6158233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6158689Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6158753Z 2025-03-14T04:53:04.6159019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6160707Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6160790Z 2025-03-14T04:53:04.6161083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6161239Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:53:04.6161307Z 2025-03-14T04:53:04.6161555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6161991Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6162079Z 2025-03-14T04:53:04.6162353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6163867Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6163940Z 2025-03-14T04:53:04.6164212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6164354Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:53:04.6164420Z 2025-03-14T04:53:04.6164689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6164829Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:53:04.6164909Z 2025-03-14T04:53:04.6165157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6165562Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6165631Z 2025-03-14T04:53:04.6165887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6167451Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6167535Z 2025-03-14T04:53:04.6167815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6167952Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:53:04.6168011Z 2025-03-14T04:53:04.6168265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6168730Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6168802Z 2025-03-14T04:53:04.6169081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6170794Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6170871Z 2025-03-14T04:53:04.6171182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6171334Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:53:04.6171401Z 2025-03-14T04:53:04.6171764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6172254Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6172331Z 2025-03-14T04:53:04.6172625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6174234Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6174307Z 2025-03-14T04:53:04.6174576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6174748Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:53:04.6174808Z 2025-03-14T04:53:04.6175092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6175246Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:53:04.6175317Z 2025-03-14T04:53:04.6175562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6175980Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6176041Z 2025-03-14T04:53:04.6176306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6177859Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6177925Z 2025-03-14T04:53:04.6178213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6178357Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:53:04.6178425Z 2025-03-14T04:53:04.6178670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6179108Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6179169Z 2025-03-14T04:53:04.6179435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6181040Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6181121Z 2025-03-14T04:53:04.6181432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6181559Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:53:04.6181649Z 2025-03-14T04:53:04.6181894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6182328Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6182394Z 2025-03-14T04:53:04.6182654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6184200Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6184263Z 2025-03-14T04:53:04.6184545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6184690Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:53:04.6184756Z 2025-03-14T04:53:04.6185051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6185201Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:53:04.6185261Z 2025-03-14T04:53:04.6185515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6185940Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6186003Z 2025-03-14T04:53:04.6186273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6187842Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6187931Z 2025-03-14T04:53:04.6188214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6188376Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:53:04.6188443Z 2025-03-14T04:53:04.6188690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6189134Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6189200Z 2025-03-14T04:53:04.6189482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6191109Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6191180Z 2025-03-14T04:53:04.6191466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6191620Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:53:04.6191688Z 2025-03-14T04:53:04.6191938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6192378Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6192440Z 2025-03-14T04:53:04.6192713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6194337Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6194426Z 2025-03-14T04:53:04.6194722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6194883Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:53:04.6194968Z 2025-03-14T04:53:04.6195269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6195418Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:53:04.6195477Z 2025-03-14T04:53:04.6195733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6196151Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6196218Z 2025-03-14T04:53:04.6196481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6198036Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6198105Z 2025-03-14T04:53:04.6198403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6198544Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:53:04.6198605Z 2025-03-14T04:53:04.6198858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6199282Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6199350Z 2025-03-14T04:53:04.6199611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6201181Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6201265Z 2025-03-14T04:53:04.6201549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6201707Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:53:04.6201768Z 2025-03-14T04:53:04.6202022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6202455Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6202524Z 2025-03-14T04:53:04.6202792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6204372Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6204446Z 2025-03-14T04:53:04.6204759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6204934Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:53:04.6204998Z 2025-03-14T04:53:04.6205299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6205450Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:53:04.6205521Z 2025-03-14T04:53:04.6205781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6206226Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6206290Z 2025-03-14T04:53:04.6206570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6208230Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6208332Z 2025-03-14T04:53:04.6208634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6208776Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:53:04.6208849Z 2025-03-14T04:53:04.6209123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6209608Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6209676Z 2025-03-14T04:53:04.6209975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6211834Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6211915Z 2025-03-14T04:53:04.6212252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6212406Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:53:04.6212492Z 2025-03-14T04:53:04.6212752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6213216Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6213280Z 2025-03-14T04:53:04.6213564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6215223Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6215322Z 2025-03-14T04:53:04.6215625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6215790Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:53:04.6215864Z 2025-03-14T04:53:04.6216161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6216324Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:53:04.6216391Z 2025-03-14T04:53:04.6216658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6217102Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6217174Z 2025-03-14T04:53:04.6217456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6219540Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6219623Z 2025-03-14T04:53:04.6219926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6220076Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:53:04.6220142Z 2025-03-14T04:53:04.6220415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6220863Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6220938Z 2025-03-14T04:53:04.6221224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6222933Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6223028Z 2025-03-14T04:53:04.6223312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6223449Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:53:04.6223511Z 2025-03-14T04:53:04.6223767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6224205Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6224266Z 2025-03-14T04:53:04.6224537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6226131Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6226204Z 2025-03-14T04:53:04.6226483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6226645Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:53:04.6226715Z 2025-03-14T04:53:04.6226994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6227140Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:53:04.6227202Z 2025-03-14T04:53:04.6227457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6227878Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6227964Z 2025-03-14T04:53:04.6228230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6229796Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6229879Z 2025-03-14T04:53:04.6230160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6230300Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:53:04.6230361Z 2025-03-14T04:53:04.6230614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6231042Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6231111Z 2025-03-14T04:53:04.6231372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6232943Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6233015Z 2025-03-14T04:53:04.6233294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6233431Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:53:04.6233491Z 2025-03-14T04:53:04.6233741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6234165Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6234233Z 2025-03-14T04:53:04.6234523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6236081Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6236180Z 2025-03-14T04:53:04.6236456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6236613Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:53:04.6236676Z 2025-03-14T04:53:04.6236959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6237099Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:53:04.6237168Z 2025-03-14T04:53:04.6237416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6237850Z x_190: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6237909Z 2025-03-14T04:53:04.6238170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6239695Z x_191: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6239764Z 2025-03-14T04:53:04.6240042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6240172Z out_120: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T04:53:04.6240237Z 2025-03-14T04:53:04.6240476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6240915Z x_192: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_120 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6240977Z 2025-03-14T04:53:04.6241238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6242747Z x_193: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6242823Z 2025-03-14T04:53:04.6243108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6243240Z out_121: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T04:53:04.6243307Z 2025-03-14T04:53:04.6243546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6243976Z x_194: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6244038Z 2025-03-14T04:53:04.6244301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6245816Z x_195: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6245879Z 2025-03-14T04:53:04.6246131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6246563Z x_196: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:04.6246632Z 2025-03-14T04:53:04.6246896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6248544Z x_197: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6248642Z 2025-03-14T04:53:04.6248917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6249074Z x_195 += x_197; out_122: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T04:53:04.6249136Z 2025-03-14T04:53:04.6249417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6249567Z out_123: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T04:53:04.6249636Z 2025-03-14T04:53:04.6249879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6250300Z x_198: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6250361Z 2025-03-14T04:53:04.6250627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6252375Z x_199: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6252455Z 2025-03-14T04:53:04.6252780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6252916Z out_124: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T04:53:04.6252988Z 2025-03-14T04:53:04.6253248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6253673Z x_200: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_124 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6253739Z 2025-03-14T04:53:04.6254045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6255808Z x_201: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6255908Z 2025-03-14T04:53:04.6256235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6256384Z out_125: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T04:53:04.6256461Z 2025-03-14T04:53:04.6256741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6257231Z x_202: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6257300Z 2025-03-14T04:53:04.6257606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6259366Z x_203: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6259441Z 2025-03-14T04:53:04.6259758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6259934Z x_203 += out_123; out_126: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T04:53:04.6260009Z 2025-03-14T04:53:04.6260325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6260492Z out_127: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T04:53:04.6260706Z 2025-03-14T04:53:04.6261000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6261458Z x_204: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6261559Z 2025-03-14T04:53:04.6261825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6263363Z x_205: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6263455Z 2025-03-14T04:53:04.6263728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6263865Z out_128: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T04:53:04.6263925Z 2025-03-14T04:53:04.6264172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6264596Z x_206: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_128 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6264660Z 2025-03-14T04:53:04.6264924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6266434Z x_207: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6266507Z 2025-03-14T04:53:04.6266779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6266917Z out_129: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T04:53:04.6266982Z 2025-03-14T04:53:04.6267218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6267639Z x_208: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6267700Z 2025-03-14T04:53:04.6267973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6269469Z x_209: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6269569Z 2025-03-14T04:53:04.6269848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6270001Z x_209 += out_127; out_130: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T04:53:04.6270070Z 2025-03-14T04:53:04.6270340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6270488Z out_131: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T04:53:04.6270548Z 2025-03-14T04:53:04.6270986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:04.6271134Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:53:04.6271202Z 2025-03-14T04:53:04.6271489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:04.6271628Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:53:04.6271688Z 2025-03-14T04:53:04.6272122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:04.6272280Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:53:04.6272350Z 2025-03-14T04:53:04.6272639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:04.6272776Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:53:04.6272837Z 2025-03-14T04:53:04.6273209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:53:04.6273387Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:53:04.6273492Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:53:04.6273612Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:53:04.6273680Z 2025-03-14T04:53:04.6274027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:53:04.6274155Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:53:04.6274227Z 2025-03-14T04:53:04.6274548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:53:04.6274683Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:53:04.6274752Z 2025-03-14T04:53:04.6275117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:53:04.6275332Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:53:04.6275407Z 2025-03-14T04:53:04.6275824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:53:04.6275943Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:53:04.6276370Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:53:04.6276491Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:53:04.6276602Z x_210: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:53:04.6276669Z 2025-03-14T04:53:04.6276965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:04.6277092Z tensor: "f32[82125, 4][4, 1]cpu" = x_210.to(torch.float32); x_210 = None 2025-03-14T04:53:04.6277150Z 2025-03-14T04:53:04.6277404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6278173Z x_211: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_131, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_131 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:53:04.6278242Z 2025-03-14T04:53:04.6278526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:53:04.6278721Z x_212: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_211, inplace = False); x_211 = None 2025-03-14T04:53:04.6278784Z 2025-03-14T04:53:04.6279161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:53:04.6279996Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_212, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:53:04.6280064Z 2025-03-14T04:53:04.6280417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:53:04.6281226Z x_213: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_212, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_212 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:53:04.6281304Z 2025-03-14T04:53:04.6281633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:53:04.6281808Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:53:04.6281941Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:53:04.6282009Z 2025-03-14T04:53:04.6282411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:53:04.6282572Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_213.view(4, -1, 4, 73, 75); x_213 = None 2025-03-14T04:53:04.6282736Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:53:04.6282913Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:53:04.6282972Z 2025-03-14T04:53:04.6283366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:53:04.6283570Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:53:04.6283628Z 2025-03-14T04:53:04.6284054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:53:04.6284195Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:53:04.6284340Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:53:04.6284487Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:53:04.6284553Z 2025-03-14T04:53:04.6284922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:04.6285096Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:53:04.6285154Z 2025-03-14T04:53:04.6285469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:04.6285604Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:53:04.6285669Z 2025-03-14T04:53:04.6285979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:04.6286113Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:04.6286233Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:04.6286394Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:53:04.6286456Z 2025-03-14T04:53:04.6286773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:04.6286903Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:04.6287022Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:04.6287162Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:04.6287232Z 2025-03-14T04:53:04.6287539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:04.6287680Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:04.6287766Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:53:04.6287893Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:53:04.6287955Z 2025-03-14T04:53:04.6288268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:04.6288409Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:04.6288504Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:53:04.6288628Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:53:04.6288696Z 2025-03-14T04:53:04.6289052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:04.6289209Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:04.6289323Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:53:04.6289391Z 2025-03-14T04:53:04.6293321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:04.6293514Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:04.6293626Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:53:04.6293701Z 2025-03-14T04:53:04.6294058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:04.6294222Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:04.6294343Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:53:04.6294409Z 2025-03-14T04:53:04.6294722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:04.6294906Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:04.6295023Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:53:04.6295084Z 2025-03-14T04:53:04.6295430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:04.6295572Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:04.6295642Z 2025-03-14T04:53:04.6295993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:04.6296132Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:04.6296194Z 2025-03-14T04:53:04.6296565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:04.6296702Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:04.6296828Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:53:04.6296980Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:04.6297139Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:53:04.6297200Z 2025-03-14T04:53:04.6297558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:04.6297694Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:04.6297819Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:53:04.6297964Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:04.6298103Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:53:04.6298164Z 2025-03-14T04:53:04.6298496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:04.6298613Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:04.6298778Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:04.6298906Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:53:04.6298976Z 2025-03-14T04:53:04.6299305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:04.6299424Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:04.6299586Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:04.6299738Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:53:04.6299802Z 2025-03-14T04:53:04.6300126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:04.6300222Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:04.6300347Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:04.6300406Z 2025-03-14T04:53:04.6300727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:04.6300819Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:04.6300933Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:04.6300992Z 2025-03-14T04:53:04.6301310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:04.6301424Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:04.6301571Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:04.6301630Z 2025-03-14T04:53:04.6301934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:04.6302057Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:04.6302181Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:04.6302241Z 2025-03-14T04:53:04.6302593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:04.6302790Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:04.6302851Z 2025-03-14T04:53:04.6303185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:04.6303344Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:53:04.6303413Z 2025-03-14T04:53:04.6303797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:53:04.6303973Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:53:04.6304033Z 2025-03-14T04:53:04.6304526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:53:04.6304659Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:53:04.6304726Z 2025-03-14T04:53:04.6305018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:04.6305159Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:53:04.6305219Z 2025-03-14T04:53:04.6305657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:53:04.6305781Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:53:04.6305891Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:53:04.6305999Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:53:04.6306066Z 2025-03-14T04:53:04.6306526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:53:04.6306693Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:53:04.6306920Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:53:04.6306988Z 2025-03-14T04:53:04.6307438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:53:04.6307613Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:53:04.6307674Z 2025-03-14T04:53:04.6308001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:04.6308153Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:53:04.6308235Z 2025-03-14T04:53:04.6308617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:53:04.6308768Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:53:04.6308830Z 2025-03-14T04:53:04.6309146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:04.6309294Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:53:04.6309356Z 2025-03-14T04:53:04.6309737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:53:04.6309872Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:53:04.6309940Z 2025-03-14T04:53:04.6310418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:53:04.6310557Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:53:04.6310672Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:04.6310829Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:53:04.6310957Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:53:04.6311025Z 2025-03-14T04:53:04.6311391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:53:04.6311512Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:53:04.6311573Z 2025-03-14T04:53:04.6311582Z 2025-03-14T04:53:04.6311673Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:04.6414565Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:53:04.6415320Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:53:04.6415671Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6416088Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6416462Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6416906Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6417297Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6417647Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6418056Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6418472Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6418872Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6419261Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6419614Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6420007Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6420403Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6420778Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6421128Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6421427Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6421837Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6422228Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6422601Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6422934Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6423258Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:04.6423620Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6423997Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6424344Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6424690Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6424983Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6425349Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6425691Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6426023Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6426335Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6426625Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6426965Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6427354Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6427721Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6428051Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6428355Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6428703Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6429052Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6429379Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6429696Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6429980Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6430370Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6430711Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6431051Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6431372Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6431677Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6432025Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6432363Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6432690Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6433002Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6433294Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6433634Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6434011Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6434338Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6434672Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6434967Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6435309Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6435687Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6436009Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6436344Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6436631Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6436990Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6437339Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6437672Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6438000Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6438302Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6438675Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6439023Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6439352Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6439699Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6440020Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:04.6440387Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6440738Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6441093Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6441443Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6441730Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6442063Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6442407Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6442725Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6443045Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6443346Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6443677Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6444024Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6444335Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6444663Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6444938Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6445276Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6445604Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6445920Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6446231Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6446513Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6446847Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6447175Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6447519Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6447830Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6448122Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6448461Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6448804Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6449129Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6449440Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6449743Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6450084Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6450438Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6450755Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6451090Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6451374Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6451786Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6452131Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6452450Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6452770Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6453056Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6453426Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6453780Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6454147Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6454478Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6454789Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6455134Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6455463Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6455791Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6456115Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6456411Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6456765Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6457113Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6457451Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6457787Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6458113Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6458493Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6458876Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6459233Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6459589Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6459905Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6460288Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6460771Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6461124Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6461463Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6461782Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:04.6462165Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6462513Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6462908Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6463260Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6463578Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6463922Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6464304Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6464641Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6464955Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6465253Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6465593Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6465943Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6466266Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6466585Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6466873Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6467241Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6467589Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6467912Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6468228Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6468514Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6468859Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6469196Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6469533Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6469853Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6470174Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6470519Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6470869Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6471203Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6471514Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6471808Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6472147Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6472491Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6472818Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6473129Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6473420Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6473771Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6474115Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6474430Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6474748Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6475028Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6475371Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6475734Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6476058Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6476395Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6476679Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6477040Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6477374Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6477699Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6478010Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6478310Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6478647Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6478981Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6479302Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6479612Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6479914Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6480259Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6480599Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6480920Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6481240Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6481526Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6481868Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6482221Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6482541Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6482875Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6483160Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6483724Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6484062Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6484394Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6484712Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6485006Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6485360Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6485699Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6486032Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6486344Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6486657Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6487003Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6487350Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6487675Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6487984Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6488278Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6488637Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6488980Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6489322Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6489639Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6489955Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6490307Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6490650Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6490974Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6491310Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6491667Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6492039Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6492404Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6492772Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6493152Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6493481Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6493862Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6494201Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6494532Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6494845Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6495138Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6495502Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6495856Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6496196Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6496517Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6496827Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6497223Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6497597Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6497930Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6498275Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6498581Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6498931Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6499296Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6499642Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6500009Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6500315Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6500708Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6501067Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6501394Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6501713Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6502020Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6502362Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6502733Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6503087Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6503441Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6503757Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6504131Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6504496Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6504834Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6505180Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6505467Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6505818Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6506164Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6506496Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6506814Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6507095Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6507434Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6507767Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6508094Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6508403Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6508734Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6509107Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6509449Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6509779Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6510105Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6510398Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6510742Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6511086Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6511409Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6511730Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6512024Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6512366Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6512722Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6513050Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6513372Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6513657Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6514005Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6514337Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6514670Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6515007Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6515295Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6515657Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6515996Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6516352Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6516687Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6517000Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6517361Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6517727Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6518061Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6518391Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6518702Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6519063Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6519442Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6519789Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6520128Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6520433Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6520804Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6521174Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6521532Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6521870Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6522192Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6522565Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6522936Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6523284Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6523613Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6523926Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6524293Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6524648Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6524991Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6525319Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6525631Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6526006Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6526370Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6526690Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6527013Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6527302Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6527644Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6528006Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6528330Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6528666Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6528950Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6529313Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6529663Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6530019Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6530356Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6530656Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6531023Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6531379Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6531789Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6532135Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6532517Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6532912Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6533260Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6533589Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6533902Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6534201Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6534545Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6534905Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6535236Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6535552Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6535835Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6536199Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6536541Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6536867Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6537183Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6537474Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6537823Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6538158Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6538486Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6538799Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6539119Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6539472Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6539803Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6540130Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6540439Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6540738Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6541095Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6541441Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6541778Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6542097Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6542404Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6542746Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6543090Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6543412Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6543731Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6544020Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6544370Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6544710Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6545038Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6545375Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6545665Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6546021Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6546356Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6546684Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6546994Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6547306Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6547640Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6547994Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6548313Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6548672Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6548960Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6549294Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6549636Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6549960Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6550272Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6550552Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6550904Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6551249Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6551584Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6551910Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6552197Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6552549Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6552894Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6553214Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6553532Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6553821Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6554177Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6554512Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6554858Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6555171Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6555463Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6555805Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6556151Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6556482Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6556793Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6557078Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6557412Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6557757Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6558077Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6558387Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6558665Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6559006Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6559333Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6559651Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6559976Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6560259Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6560753Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6561094Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6561471Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6561789Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6562091Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6562434Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6562783Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6563117Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6563432Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6563729Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6564071Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6564454Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6564782Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6565105Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6565402Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6565745Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6566093Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6566441Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6566762Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6567075Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6567429Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6567792Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6568124Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6568440Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6568729Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6569080Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6569420Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6569757Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6570075Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6570376Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6570734Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6571088Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6571518Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6571933Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6572263Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6572720Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6573125Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6573485Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6573830Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6574117Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6574483Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6574833Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6575157Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6575478Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6575774Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6576162Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6576532Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6576869Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6577182Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6577500Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6577863Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6578208Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6578533Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6578843Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6579148Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:04.6579498Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6579877Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6580239Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6580582Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6580876Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6581237Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6581579Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6581901Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6582215Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6582502Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6582848Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6583180Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6583506Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6583819Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6584119Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6584470Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6584809Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6585139Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6585457Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6585750Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:04.6586104Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6586446Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6586796Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6587112Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6587421Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:04.6587785Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6588132Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6588450Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6588769Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6589051Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:04.6589397Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:04.6589738Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:04.6590067Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:04.6590390Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:04.6590741Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:53:04.6591064Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:53:04.6591373Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:53:04.6591746Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:53:04.6592110Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:53:04.6592483Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:53:04.6592838Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:53:04.6592915Z 2025-03-14T04:53:04.6593193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6593659Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6593743Z 2025-03-14T04:53:04.6594019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6595494Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6595565Z 2025-03-14T04:53:04.6595851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:53:04.6596003Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:53:04.6596064Z 2025-03-14T04:53:04.6596428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:53:04.6596663Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:53:04.6596732Z 2025-03-14T04:53:04.6596996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6597430Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6597491Z 2025-03-14T04:53:04.6597758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6599279Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6599353Z 2025-03-14T04:53:04.6599653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6599784Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:53:04.6599851Z 2025-03-14T04:53:04.6600094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6600537Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6600599Z 2025-03-14T04:53:04.6600870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6602383Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6602455Z 2025-03-14T04:53:04.6602754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6602893Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:53:04.6602963Z 2025-03-14T04:53:04.6603214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6603680Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6603744Z 2025-03-14T04:53:04.6604014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6605564Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6605645Z 2025-03-14T04:53:04.6605902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6606350Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:04.6606436Z 2025-03-14T04:53:04.6606702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6608326Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6608399Z 2025-03-14T04:53:04.6608683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6608837Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:53:04.6608899Z 2025-03-14T04:53:04.6609188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6609336Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:53:04.6609406Z 2025-03-14T04:53:04.6609655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6610103Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6610167Z 2025-03-14T04:53:04.6610438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6612148Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6612224Z 2025-03-14T04:53:04.6612577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6612736Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:53:04.6612836Z 2025-03-14T04:53:04.6613087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6613523Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6613602Z 2025-03-14T04:53:04.6613873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6615405Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6615470Z 2025-03-14T04:53:04.6615762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6615902Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:53:04.6615975Z 2025-03-14T04:53:04.6616225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6616670Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6616735Z 2025-03-14T04:53:04.6617024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6618568Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6618631Z 2025-03-14T04:53:04.6618920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6619085Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:53:04.6619155Z 2025-03-14T04:53:04.6619435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6619600Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:53:04.6619664Z 2025-03-14T04:53:04.6619918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6620339Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6620423Z 2025-03-14T04:53:04.6620697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6622231Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6622303Z 2025-03-14T04:53:04.6622587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6622731Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:53:04.6622792Z 2025-03-14T04:53:04.6623048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6623488Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6623558Z 2025-03-14T04:53:04.6623825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6625360Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6625432Z 2025-03-14T04:53:04.6625729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6625874Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:53:04.6625949Z 2025-03-14T04:53:04.6626203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6626640Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6626715Z 2025-03-14T04:53:04.6626988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6628540Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6628610Z 2025-03-14T04:53:04.6628891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6629052Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:53:04.6629114Z 2025-03-14T04:53:04.6629408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6629568Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:53:04.6629628Z 2025-03-14T04:53:04.6629885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6630332Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6630403Z 2025-03-14T04:53:04.6630694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6632278Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6632351Z 2025-03-14T04:53:04.6632641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6632808Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:53:04.6632869Z 2025-03-14T04:53:04.6633122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6633556Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6633666Z 2025-03-14T04:53:04.6633933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6635496Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6635568Z 2025-03-14T04:53:04.6635857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6636007Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:53:04.6636069Z 2025-03-14T04:53:04.6636325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6636781Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6636852Z 2025-03-14T04:53:04.6637122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6638693Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6638767Z 2025-03-14T04:53:04.6639037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6639497Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:04.6639569Z 2025-03-14T04:53:04.6639831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6641406Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6641474Z 2025-03-14T04:53:04.6641756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6641901Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:53:04.6641967Z 2025-03-14T04:53:04.6642240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6642393Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:53:04.6642453Z 2025-03-14T04:53:04.6642698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6643127Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6643197Z 2025-03-14T04:53:04.6643450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6644992Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6645061Z 2025-03-14T04:53:04.6645368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6645519Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:53:04.6645579Z 2025-03-14T04:53:04.6645836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6646283Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6646366Z 2025-03-14T04:53:04.6646628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6648201Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6648272Z 2025-03-14T04:53:04.6648554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6648703Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:53:04.6648763Z 2025-03-14T04:53:04.6649021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6649457Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6649527Z 2025-03-14T04:53:04.6649804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6651395Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6651531Z 2025-03-14T04:53:04.6651831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6652021Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:53:04.6652087Z 2025-03-14T04:53:04.6652390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6652562Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:53:04.6652634Z 2025-03-14T04:53:04.6652901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6653333Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6653417Z 2025-03-14T04:53:04.6653690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6655239Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6655309Z 2025-03-14T04:53:04.6655606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6655757Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:53:04.6655829Z 2025-03-14T04:53:04.6656072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6656541Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6656604Z 2025-03-14T04:53:04.6656879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6658491Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6658557Z 2025-03-14T04:53:04.6658859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6658998Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:53:04.6659083Z 2025-03-14T04:53:04.6659331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6659776Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6659863Z 2025-03-14T04:53:04.6660138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6661802Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6661871Z 2025-03-14T04:53:04.6662168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6662322Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:53:04.6662397Z 2025-03-14T04:53:04.6662681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6662838Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:53:04.6662900Z 2025-03-14T04:53:04.6663157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6663627Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6663697Z 2025-03-14T04:53:04.6663964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6665522Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6665596Z 2025-03-14T04:53:04.6665885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6666052Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:53:04.6666112Z 2025-03-14T04:53:04.6666373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6666814Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6666897Z 2025-03-14T04:53:04.6667174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6668728Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6668803Z 2025-03-14T04:53:04.6669089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6669246Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:53:04.6669306Z 2025-03-14T04:53:04.6669557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6670005Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6670069Z 2025-03-14T04:53:04.6670333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6671830Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6671899Z 2025-03-14T04:53:04.6672183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6672339Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:53:04.6672419Z 2025-03-14T04:53:04.6672691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6672838Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:53:04.6672898Z 2025-03-14T04:53:04.6673147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6673573Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6673642Z 2025-03-14T04:53:04.6673897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6675397Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6675467Z 2025-03-14T04:53:04.6675744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6675881Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:53:04.6675941Z 2025-03-14T04:53:04.6676202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6676621Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6676691Z 2025-03-14T04:53:04.6676946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6678456Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6678526Z 2025-03-14T04:53:04.6678798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6678951Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:53:04.6679010Z 2025-03-14T04:53:04.6679256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6679667Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6679748Z 2025-03-14T04:53:04.6680008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6681500Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6681574Z 2025-03-14T04:53:04.6681816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6682248Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:04.6682313Z 2025-03-14T04:53:04.6682595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6684208Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6684279Z 2025-03-14T04:53:04.6684569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6684706Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:53:04.6684774Z 2025-03-14T04:53:04.6685065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6685211Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:53:04.6685298Z 2025-03-14T04:53:04.6685555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6685969Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6686055Z 2025-03-14T04:53:04.6686316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6687853Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6687924Z 2025-03-14T04:53:04.6688208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6688346Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:53:04.6688408Z 2025-03-14T04:53:04.6688661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6689096Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6689169Z 2025-03-14T04:53:04.6689430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6690966Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6691040Z 2025-03-14T04:53:04.6691345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6691555Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:53:04.6691627Z 2025-03-14T04:53:04.6691907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6692424Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6692497Z 2025-03-14T04:53:04.6692798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6694355Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6694429Z 2025-03-14T04:53:04.6694706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6694865Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:53:04.6694927Z 2025-03-14T04:53:04.6695213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6695354Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:53:04.6695425Z 2025-03-14T04:53:04.6695672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6696111Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6696175Z 2025-03-14T04:53:04.6696445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6697960Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6698023Z 2025-03-14T04:53:04.6698354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6698484Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:53:04.6698571Z 2025-03-14T04:53:04.6698818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6699253Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6699328Z 2025-03-14T04:53:04.6699599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6701156Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6701220Z 2025-03-14T04:53:04.6701510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6701643Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:53:04.6701712Z 2025-03-14T04:53:04.6701960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6702407Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6702469Z 2025-03-14T04:53:04.6702745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6704317Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6704382Z 2025-03-14T04:53:04.6704664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6704824Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:53:04.6704895Z 2025-03-14T04:53:04.6705177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6705340Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:53:04.6705400Z 2025-03-14T04:53:04.6705651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6706084Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6706153Z 2025-03-14T04:53:04.6706416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6707957Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6708031Z 2025-03-14T04:53:04.6708317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6708457Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:53:04.6708517Z 2025-03-14T04:53:04.6708775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6709214Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6709285Z 2025-03-14T04:53:04.6709556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6711080Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6711152Z 2025-03-14T04:53:04.6711458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6711596Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:53:04.6711671Z 2025-03-14T04:53:04.6711934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6712369Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6712447Z 2025-03-14T04:53:04.6712721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6714266Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6714340Z 2025-03-14T04:53:04.6714617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6714770Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:53:04.6714833Z 2025-03-14T04:53:04.6715123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6715262Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:53:04.6715332Z 2025-03-14T04:53:04.6715596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6716019Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6716086Z 2025-03-14T04:53:04.6716348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6717930Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6717992Z 2025-03-14T04:53:04.6718282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6718437Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:53:04.6718498Z 2025-03-14T04:53:04.6718749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6719186Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6719254Z 2025-03-14T04:53:04.6719524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6721151Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6721225Z 2025-03-14T04:53:04.6721518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6721663Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:53:04.6721725Z 2025-03-14T04:53:04.6721992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6722460Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6722540Z 2025-03-14T04:53:04.6722830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6724472Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6724550Z 2025-03-14T04:53:04.6724861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6725019Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:53:04.6725101Z 2025-03-14T04:53:04.6725410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6725555Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:53:04.6725626Z 2025-03-14T04:53:04.6725902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6726350Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6726415Z 2025-03-14T04:53:04.6726698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6728306Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6728376Z 2025-03-14T04:53:04.6728666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6728797Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:53:04.6728865Z 2025-03-14T04:53:04.6729125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6729563Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6729623Z 2025-03-14T04:53:04.6729893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6731505Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6731583Z 2025-03-14T04:53:04.6731877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6732037Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:53:04.6732113Z 2025-03-14T04:53:04.6732387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6732876Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6732940Z 2025-03-14T04:53:04.6733225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6734798Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6734871Z 2025-03-14T04:53:04.6735151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6735295Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:53:04.6735362Z 2025-03-14T04:53:04.6735640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6735807Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:53:04.6735870Z 2025-03-14T04:53:04.6736125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6736537Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6736607Z 2025-03-14T04:53:04.6736872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6738409Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6738785Z 2025-03-14T04:53:04.6739071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6739211Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:53:04.6739274Z 2025-03-14T04:53:04.6739543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6739964Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6740038Z 2025-03-14T04:53:04.6740299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6741862Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6741934Z 2025-03-14T04:53:04.6742215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6742353Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:53:04.6742415Z 2025-03-14T04:53:04.6742684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6743114Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6743187Z 2025-03-14T04:53:04.6743456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6745026Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6745099Z 2025-03-14T04:53:04.6745374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6745543Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:53:04.6745605Z 2025-03-14T04:53:04.6745891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6746043Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:53:04.6746112Z 2025-03-14T04:53:04.6746358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6746782Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6746845Z 2025-03-14T04:53:04.6747113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6748640Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6748704Z 2025-03-14T04:53:04.6748983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6749122Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:53:04.6749191Z 2025-03-14T04:53:04.6749434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6749851Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6749911Z 2025-03-14T04:53:04.6750179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6751683Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6751760Z 2025-03-14T04:53:04.6752041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6752168Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:53:04.6752235Z 2025-03-14T04:53:04.6752490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6752912Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6752971Z 2025-03-14T04:53:04.6753234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6754723Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6754785Z 2025-03-14T04:53:04.6755059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6755197Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:53:04.6755263Z 2025-03-14T04:53:04.6755551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6755694Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:53:04.6755751Z 2025-03-14T04:53:04.6756000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6756405Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6756471Z 2025-03-14T04:53:04.6756733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6758236Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6758319Z 2025-03-14T04:53:04.6758596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6758766Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:53:04.6758825Z 2025-03-14T04:53:04.6759072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6759487Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6759548Z 2025-03-14T04:53:04.6759807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6761379Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6761455Z 2025-03-14T04:53:04.6761733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6761903Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:53:04.6761964Z 2025-03-14T04:53:04.6762212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6762632Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6762694Z 2025-03-14T04:53:04.6762956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6764451Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6764541Z 2025-03-14T04:53:04.6764814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6764978Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:53:04.6765066Z 2025-03-14T04:53:04.6765342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6765485Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:53:04.6765547Z 2025-03-14T04:53:04.6765796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6766201Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6766269Z 2025-03-14T04:53:04.6766525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6768033Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6768103Z 2025-03-14T04:53:04.6768395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6768538Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:53:04.6768599Z 2025-03-14T04:53:04.6768852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6769261Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6769331Z 2025-03-14T04:53:04.6769591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6771132Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6771217Z 2025-03-14T04:53:04.6771550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6771734Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:53:04.6771800Z 2025-03-14T04:53:04.6772086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6772548Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6772628Z 2025-03-14T04:53:04.6772919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6774469Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6774547Z 2025-03-14T04:53:04.6774848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6775025Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:53:04.6775088Z 2025-03-14T04:53:04.6775397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6775534Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:53:04.6775602Z 2025-03-14T04:53:04.6775856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6776324Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6776384Z 2025-03-14T04:53:04.6776665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6778273Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6778372Z 2025-03-14T04:53:04.6778673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6778806Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:53:04.6778877Z 2025-03-14T04:53:04.6779133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6779604Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6779666Z 2025-03-14T04:53:04.6779946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6781500Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6781565Z 2025-03-14T04:53:04.6781890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6782027Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:53:04.6782095Z 2025-03-14T04:53:04.6782355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6782832Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6782895Z 2025-03-14T04:53:04.6783173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6784775Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6784859Z 2025-03-14T04:53:04.6785143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6785306Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:53:04.6785375Z 2025-03-14T04:53:04.6785652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6785799Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:53:04.6785862Z 2025-03-14T04:53:04.6786125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6786562Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6786634Z 2025-03-14T04:53:04.6786906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6788543Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6788617Z 2025-03-14T04:53:04.6788896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6789036Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:53:04.6789096Z 2025-03-14T04:53:04.6789342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6789761Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6789832Z 2025-03-14T04:53:04.6790093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6791654Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6791749Z 2025-03-14T04:53:04.6792024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6792161Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:53:04.6792221Z 2025-03-14T04:53:04.6792467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6792886Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6792956Z 2025-03-14T04:53:04.6793209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6794715Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6794802Z 2025-03-14T04:53:04.6795079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6795231Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:53:04.6795290Z 2025-03-14T04:53:04.6795576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6795708Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:53:04.6795776Z 2025-03-14T04:53:04.6796018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6796434Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6796503Z 2025-03-14T04:53:04.6796782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6798299Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6798388Z 2025-03-14T04:53:04.6798676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6798805Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:53:04.6798873Z 2025-03-14T04:53:04.6799115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6799539Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6799607Z 2025-03-14T04:53:04.6799862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6801386Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6801449Z 2025-03-14T04:53:04.6801733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6801869Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:53:04.6801928Z 2025-03-14T04:53:04.6802178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6802593Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6802663Z 2025-03-14T04:53:04.6802922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6804450Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6804544Z 2025-03-14T04:53:04.6804816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6804969Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:53:04.6805029Z 2025-03-14T04:53:04.6805313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6805450Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:53:04.6805519Z 2025-03-14T04:53:04.6805768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6806206Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6806269Z 2025-03-14T04:53:04.6806532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6808049Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6808119Z 2025-03-14T04:53:04.6808400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6808530Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:53:04.6808596Z 2025-03-14T04:53:04.6808833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6809263Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6809323Z 2025-03-14T04:53:04.6809610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6811157Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6811255Z 2025-03-14T04:53:04.6811599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6811739Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:53:04.6811805Z 2025-03-14T04:53:04.6812051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6812497Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6812561Z 2025-03-14T04:53:04.6812856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6814511Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6814584Z 2025-03-14T04:53:04.6814866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6815014Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:53:04.6815085Z 2025-03-14T04:53:04.6815362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6815505Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:53:04.6815564Z 2025-03-14T04:53:04.6815818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6816246Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6816314Z 2025-03-14T04:53:04.6816576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6818166Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6818253Z 2025-03-14T04:53:04.6818533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6818675Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:53:04.6818735Z 2025-03-14T04:53:04.6818988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6819409Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6819480Z 2025-03-14T04:53:04.6819739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6821333Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6821403Z 2025-03-14T04:53:04.6821691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6821834Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:53:04.6821896Z 2025-03-14T04:53:04.6822154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6822587Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6822673Z 2025-03-14T04:53:04.6822935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6824518Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6824617Z 2025-03-14T04:53:04.6824901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6825062Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:53:04.6825123Z 2025-03-14T04:53:04.6825414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6825553Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:53:04.6825627Z 2025-03-14T04:53:04.6825873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6826307Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6826369Z 2025-03-14T04:53:04.6826632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6828165Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6828258Z 2025-03-14T04:53:04.6828539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6828666Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:53:04.6828734Z 2025-03-14T04:53:04.6828973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6829402Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6829463Z 2025-03-14T04:53:04.6829739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6831234Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6831309Z 2025-03-14T04:53:04.6831594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6831726Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:53:04.6831798Z 2025-03-14T04:53:04.6832040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6832463Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6832530Z 2025-03-14T04:53:04.6832784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6834320Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6834384Z 2025-03-14T04:53:04.6834664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6834810Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:53:04.6834879Z 2025-03-14T04:53:04.6835155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6835296Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:53:04.6835355Z 2025-03-14T04:53:04.6835617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6836031Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6836104Z 2025-03-14T04:53:04.6836375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6837860Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6837944Z 2025-03-14T04:53:04.6838221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6838358Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:53:04.6838425Z 2025-03-14T04:53:04.6838665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6839086Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6839147Z 2025-03-14T04:53:04.6839404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6840931Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6841003Z 2025-03-14T04:53:04.6841284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6841412Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:53:04.6841480Z 2025-03-14T04:53:04.6841717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6842209Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6842284Z 2025-03-14T04:53:04.6842553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6844054Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6844137Z 2025-03-14T04:53:04.6844417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6844563Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:53:04.6844636Z 2025-03-14T04:53:04.6844912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6845056Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:53:04.6845121Z 2025-03-14T04:53:04.6845377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6845802Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6845873Z 2025-03-14T04:53:04.6846147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6847699Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6847771Z 2025-03-14T04:53:04.6848054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6848194Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:53:04.6848255Z 2025-03-14T04:53:04.6848521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6848954Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6849041Z 2025-03-14T04:53:04.6849304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6850909Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6850983Z 2025-03-14T04:53:04.6851283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6851480Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:53:04.6851554Z 2025-03-14T04:53:04.6851839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6852341Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6852425Z 2025-03-14T04:53:04.6852740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6854377Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6854451Z 2025-03-14T04:53:04.6854728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6854888Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:53:04.6854951Z 2025-03-14T04:53:04.6855254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6855394Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:53:04.6855464Z 2025-03-14T04:53:04.6855723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6856176Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6856235Z 2025-03-14T04:53:04.6856524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6858098Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6858162Z 2025-03-14T04:53:04.6858448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6858587Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:53:04.6858656Z 2025-03-14T04:53:04.6858902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6859342Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6859404Z 2025-03-14T04:53:04.6859699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6861365Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6861435Z 2025-03-14T04:53:04.6861728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6861864Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:53:04.6861966Z 2025-03-14T04:53:04.6862213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6862684Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6862749Z 2025-03-14T04:53:04.6863020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6864631Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6864705Z 2025-03-14T04:53:04.6864982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6865130Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:53:04.6865199Z 2025-03-14T04:53:04.6865470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6865618Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:53:04.6865678Z 2025-03-14T04:53:04.6865924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6866347Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6866414Z 2025-03-14T04:53:04.6866670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6868178Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6868249Z 2025-03-14T04:53:04.6868536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6868676Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:53:04.6868751Z 2025-03-14T04:53:04.6868996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6869409Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6869492Z 2025-03-14T04:53:04.6869758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6871269Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6871338Z 2025-03-14T04:53:04.6871614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6871757Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:53:04.6871816Z 2025-03-14T04:53:04.6872066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6872495Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6872556Z 2025-03-14T04:53:04.6872835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6874359Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6874430Z 2025-03-14T04:53:04.6874701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6874878Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:53:04.6874946Z 2025-03-14T04:53:04.6875222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6875383Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:53:04.6875445Z 2025-03-14T04:53:04.6875693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6876101Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6876182Z 2025-03-14T04:53:04.6876437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6877954Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6878023Z 2025-03-14T04:53:04.6878295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6878435Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:53:04.6878494Z 2025-03-14T04:53:04.6878740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6879167Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6879239Z 2025-03-14T04:53:04.6879497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6881026Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6881106Z 2025-03-14T04:53:04.6881398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6881539Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:53:04.6881624Z 2025-03-14T04:53:04.6881882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6882311Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6882394Z 2025-03-14T04:53:04.6882656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6884214Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6884287Z 2025-03-14T04:53:04.6884562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6884726Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:53:04.6884790Z 2025-03-14T04:53:04.6885079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6885221Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:53:04.6885291Z 2025-03-14T04:53:04.6885552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6885981Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6886043Z 2025-03-14T04:53:04.6886314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6887885Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6887956Z 2025-03-14T04:53:04.6888262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6888395Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:53:04.6888463Z 2025-03-14T04:53:04.6888707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6889162Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6889228Z 2025-03-14T04:53:04.6889497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6891063Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6891128Z 2025-03-14T04:53:04.6891417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6891600Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:53:04.6891674Z 2025-03-14T04:53:04.6891948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6892437Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6892505Z 2025-03-14T04:53:04.6892799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6894432Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6894495Z 2025-03-14T04:53:04.6894784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6894961Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:53:04.6895029Z 2025-03-14T04:53:04.6895308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6895460Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:53:04.6895540Z 2025-03-14T04:53:04.6895812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6896246Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6896318Z 2025-03-14T04:53:04.6896593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6898198Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6898269Z 2025-03-14T04:53:04.6898558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6898699Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:53:04.6898760Z 2025-03-14T04:53:04.6899030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6899458Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6899528Z 2025-03-14T04:53:04.6899790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6901369Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6901455Z 2025-03-14T04:53:04.6901738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6901877Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:53:04.6901939Z 2025-03-14T04:53:04.6902192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6902634Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6902705Z 2025-03-14T04:53:04.6902966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6904518Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6904590Z 2025-03-14T04:53:04.6904867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6905027Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:53:04.6905089Z 2025-03-14T04:53:04.6905390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6905537Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:53:04.6905608Z 2025-03-14T04:53:04.6905856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6906281Z x_190: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6906353Z 2025-03-14T04:53:04.6906613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6908187Z x_191: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6908263Z 2025-03-14T04:53:04.6908546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6908697Z out_120: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T04:53:04.6908762Z 2025-03-14T04:53:04.6909006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6909429Z x_192: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_120 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6909497Z 2025-03-14T04:53:04.6909751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6911250Z x_193: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6911313Z 2025-03-14T04:53:04.6911596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6911732Z out_121: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T04:53:04.6911805Z 2025-03-14T04:53:04.6912053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6912475Z x_194: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6912542Z 2025-03-14T04:53:04.6912797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6914322Z x_195: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6914407Z 2025-03-14T04:53:04.6914651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6915086Z x_196: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:04.6915160Z 2025-03-14T04:53:04.6915423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6916976Z x_197: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6917051Z 2025-03-14T04:53:04.6917333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6917483Z x_195 += x_197; out_122: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T04:53:04.6917554Z 2025-03-14T04:53:04.6917829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6917979Z out_123: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T04:53:04.6918043Z 2025-03-14T04:53:04.6918308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6918723Z x_198: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6918792Z 2025-03-14T04:53:04.6919050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6920553Z x_199: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6920624Z 2025-03-14T04:53:04.6920915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6921052Z out_124: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T04:53:04.6921110Z 2025-03-14T04:53:04.6921359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6921803Z x_200: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_124 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6921871Z 2025-03-14T04:53:04.6922135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6923659Z x_201: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6923728Z 2025-03-14T04:53:04.6924011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6924153Z out_125: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T04:53:04.6924213Z 2025-03-14T04:53:04.6924466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6924903Z x_202: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6924972Z 2025-03-14T04:53:04.6925237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6926796Z x_203: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6926868Z 2025-03-14T04:53:04.6927148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6927329Z x_203 += out_123; out_126: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T04:53:04.6927390Z 2025-03-14T04:53:04.6927678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6927823Z out_127: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T04:53:04.6927908Z 2025-03-14T04:53:04.6928154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6928573Z x_204: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:04.6928638Z 2025-03-14T04:53:04.6928907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6930438Z x_205: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6930501Z 2025-03-14T04:53:04.6930786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6930919Z out_128: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T04:53:04.6930985Z 2025-03-14T04:53:04.6931251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6931777Z x_206: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_128 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:04.6931850Z 2025-03-14T04:53:04.6932147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6933755Z x_207: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6933834Z 2025-03-14T04:53:04.6934125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6934261Z out_129: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T04:53:04.6934335Z 2025-03-14T04:53:04.6934595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6935060Z x_208: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:04.6935122Z 2025-03-14T04:53:04.6935392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:04.6936961Z x_209: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:04.6937025Z 2025-03-14T04:53:04.6937308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:04.6937466Z x_209 += out_127; out_130: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T04:53:04.6937536Z 2025-03-14T04:53:04.6937826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:04.6937981Z out_131: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T04:53:04.6938041Z 2025-03-14T04:53:04.6938484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:04.6938633Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:53:04.6938704Z 2025-03-14T04:53:04.6938997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:04.6939140Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:53:04.6939202Z 2025-03-14T04:53:04.6939644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:04.6939795Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:53:04.6939880Z 2025-03-14T04:53:04.6940175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:04.6940335Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:53:04.6940403Z 2025-03-14T04:53:04.6940779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:53:04.6940958Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:53:04.6941067Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:53:04.6941188Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:53:04.6941249Z 2025-03-14T04:53:04.6941582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:53:04.6941703Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:53:04.6941772Z 2025-03-14T04:53:04.6942086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:53:04.6942208Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:53:04.6942267Z 2025-03-14T04:53:04.6942643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:53:04.6942853Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:53:04.6942919Z 2025-03-14T04:53:04.6943323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:53:04.6943453Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:53:04.6943866Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:53:04.6944040Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:53:04.6944153Z x_210: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:53:04.6944219Z 2025-03-14T04:53:04.6944509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:04.6944636Z tensor: "f32[82125, 4][4, 1]cpu" = x_210.to(torch.float32); x_210 = None 2025-03-14T04:53:04.6944695Z 2025-03-14T04:53:04.6944945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:04.6945703Z x_211: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_131, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_131 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:53:04.6945773Z 2025-03-14T04:53:04.6946058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:53:04.6946246Z x_212: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_211, inplace = False); x_211 = None 2025-03-14T04:53:04.6946329Z 2025-03-14T04:53:04.6946698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:53:04.6947537Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_212, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:53:04.6947613Z 2025-03-14T04:53:04.6947966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:53:04.6948768Z x_213: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_212, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_212 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:53:04.6948836Z 2025-03-14T04:53:04.6949173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:53:04.6949324Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:53:04.6949463Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:53:04.6949525Z 2025-03-14T04:53:04.6949938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:53:04.6950089Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_213.view(4, -1, 4, 73, 75); x_213 = None 2025-03-14T04:53:04.6950275Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:53:04.6950449Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:53:04.6950516Z 2025-03-14T04:53:04.6950899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:53:04.6951103Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:53:04.6951164Z 2025-03-14T04:53:04.6951588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:53:04.6951729Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:53:04.6951877Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:53:04.6952010Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:53:04.6952076Z 2025-03-14T04:53:04.6952452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:04.6952641Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:53:04.6952702Z 2025-03-14T04:53:04.6953010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:04.6953145Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:53:04.6953234Z 2025-03-14T04:53:04.6953535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:04.6953668Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:04.6953789Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:04.6953937Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:53:04.6953999Z 2025-03-14T04:53:04.6954315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:04.6954437Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:04.6954549Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:04.6954699Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:04.6954758Z 2025-03-14T04:53:04.6955064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:04.6955177Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:04.6955268Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:53:04.6955386Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:53:04.6955452Z 2025-03-14T04:53:04.6955750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:04.6955892Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:04.6955993Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:53:04.6956123Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:53:04.6956184Z 2025-03-14T04:53:04.6956506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:04.6956651Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:04.6956771Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:53:04.6956831Z 2025-03-14T04:53:04.6957133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:04.6957276Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:04.6957394Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:53:04.6957454Z 2025-03-14T04:53:04.6957749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:04.6957909Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:04.6958023Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:53:04.6958097Z 2025-03-14T04:53:04.6958400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:04.6958580Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:04.6958694Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:53:04.6958771Z 2025-03-14T04:53:04.6959102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:04.6959238Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:04.6959306Z 2025-03-14T04:53:04.6959620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:04.6959758Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:04.6959817Z 2025-03-14T04:53:04.6960158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:04.6960295Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:04.6960420Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:53:04.6960683Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:04.6960834Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:53:04.6960892Z 2025-03-14T04:53:04.6961237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:04.6961377Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:04.6961493Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:53:04.6961679Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:04.6961811Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:53:04.6961878Z 2025-03-14T04:53:04.6962200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:04.6962317Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:04.6962469Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:04.6962602Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:53:04.6962664Z 2025-03-14T04:53:04.6962993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:04.6963105Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:04.6963272Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:04.6963398Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:53:04.6963488Z 2025-03-14T04:53:04.6963789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:04.6963906Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:04.6964016Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:04.6964085Z 2025-03-14T04:53:04.6964380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:04.6964473Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:04.6964604Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:04.6964672Z 2025-03-14T04:53:04.6964966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:04.6965084Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:04.6965205Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:04.6965274Z 2025-03-14T04:53:04.6965565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:04.6965679Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:04.6965797Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:04.6965869Z 2025-03-14T04:53:04.6966201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:04.6966380Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:04.6966442Z 2025-03-14T04:53:04.6966772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:04.6966927Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:53:04.6966997Z 2025-03-14T04:53:04.6967367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:53:04.6967558Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:53:04.6967619Z 2025-03-14T04:53:04.6968096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:53:04.6968232Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:53:04.6968301Z 2025-03-14T04:53:04.6968584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:04.6968721Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:53:04.6968781Z 2025-03-14T04:53:04.6969206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:53:04.6969321Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:53:04.6969434Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:53:04.6969551Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:53:04.6969611Z 2025-03-14T04:53:04.6970065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:53:04.6970235Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:53:04.6970469Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:53:04.6970542Z 2025-03-14T04:53:04.6970995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:53:04.6971156Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:53:04.6971224Z 2025-03-14T04:53:04.6971562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:04.6971725Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:53:04.6971785Z 2025-03-14T04:53:04.6972198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:53:04.6972348Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:53:04.6972431Z 2025-03-14T04:53:04.6972777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:04.6972960Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:53:04.6973041Z 2025-03-14T04:53:04.6973481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:53:04.6973618Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:53:04.6973689Z 2025-03-14T04:53:04.6974257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:53:04.6974410Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:53:04.6974544Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:04.6974709Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:53:04.6974837Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:53:04.6974908Z 2025-03-14T04:53:04.6975298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:53:04.6975424Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:53:04.6975501Z 2025-03-14T04:53:22.9848064Z 2025-03-14T04:53:22.9851554Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:22.9853813Z def forward(self, L_features_res5_: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:53:22.9855507Z l_features_res5_ = L_features_res5_ 2025-03-14T04:53:22.9855933Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:53:22.9856529Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:53:22.9857030Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:53:22.9857624Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:53:22.9858285Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:53:22.9858871Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:53:22.9859445Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:53:22.9859824Z 2025-03-14T04:53:22.9860431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:22.9861419Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:53:22.9861706Z 2025-03-14T04:53:22.9862117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:22.9862671Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:53:22.9862941Z 2025-03-14T04:53:22.9863555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:22.9864233Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:53:22.9864524Z 2025-03-14T04:53:22.9864932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:22.9865446Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:53:22.9865720Z 2025-03-14T04:53:22.9866212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:53:22.9866871Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:53:22.9867226Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:53:22.9867512Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:53:22.9867767Z 2025-03-14T04:53:22.9868212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:53:22.9868796Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:53:22.9869051Z 2025-03-14T04:53:22.9869455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:53:22.9869978Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:53:22.9870214Z 2025-03-14T04:53:22.9870678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:53:22.9871339Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:53:22.9871656Z 2025-03-14T04:53:22.9872150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:53:22.9872733Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:53:22.9873226Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:53:22.9873706Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:53:22.9873995Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:53:22.9874225Z 2025-03-14T04:53:22.9874611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:22.9875135Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:53:22.9875372Z 2025-03-14T04:53:22.9875704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:22.9876619Z x_1: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(l_features_res5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res5_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:53:22.9877321Z 2025-03-14T04:53:22.9877706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:53:22.9878233Z x_2: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:53:22.9878538Z 2025-03-14T04:53:22.9879010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:53:22.9880109Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:53:22.9880876Z 2025-03-14T04:53:22.9881330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:53:22.9882386Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:53:22.9883127Z 2025-03-14T04:53:22.9883562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:53:22.9884114Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:53:22.9884463Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:53:22.9884739Z 2025-03-14T04:53:22.9885262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:53:22.9885888Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T04:53:22.9886262Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:53:22.9886656Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:53:22.9886947Z 2025-03-14T04:53:22.9887430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:53:22.9888085Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:53:22.9888402Z 2025-03-14T04:53:22.9888912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:53:22.9889539Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:53:22.9889888Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:53:22.9890228Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:53:22.9890481Z 2025-03-14T04:53:22.9890954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:22.9891637Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:53:22.9891949Z 2025-03-14T04:53:22.9892381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:22.9892937Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:53:22.9893211Z 2025-03-14T04:53:22.9893626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:22.9894142Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:22.9894463Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:22.9894800Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:53:22.9895078Z 2025-03-14T04:53:22.9895496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:22.9896708Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:22.9897041Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:22.9897411Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:22.9897699Z 2025-03-14T04:53:22.9898126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:22.9898621Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:22.9898945Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:53:22.9899216Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:53:22.9899454Z 2025-03-14T04:53:22.9899852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:22.9900360Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:22.9900653Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:53:22.9900924Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:53:22.9901166Z 2025-03-14T04:53:22.9901698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:22.9902251Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:22.9902581Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:53:22.9902817Z 2025-03-14T04:53:22.9903205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:22.9903709Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:22.9904033Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:53:22.9904264Z 2025-03-14T04:53:22.9904651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:22.9905155Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:22.9905499Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:53:22.9905734Z 2025-03-14T04:53:22.9906121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:22.9907136Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:22.9907486Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:53:22.9907715Z 2025-03-14T04:53:22.9908131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:22.9908663Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:22.9908919Z 2025-03-14T04:53:22.9909333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:22.9909852Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:22.9910102Z 2025-03-14T04:53:22.9910550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:22.9911084Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:22.9911418Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:53:22.9911746Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:22.9912092Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:53:22.9912347Z 2025-03-14T04:53:22.9912799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:22.9913340Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:22.9913654Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:53:22.9913983Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:22.9914324Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:53:22.9914580Z 2025-03-14T04:53:22.9914991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:22.9915483Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:22.9915811Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:22.9916153Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:53:22.9916401Z 2025-03-14T04:53:22.9916826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:22.9917342Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:22.9917673Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:22.9918021Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:53:22.9918272Z 2025-03-14T04:53:22.9918682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:22.9919144Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:22.9919408Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:22.9919641Z 2025-03-14T04:53:22.9920036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:22.9920506Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:22.9920772Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:22.9921009Z 2025-03-14T04:53:22.9921408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:22.9921901Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:22.9922205Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:22.9922456Z 2025-03-14T04:53:22.9922839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:22.9923335Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:22.9923622Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:22.9923869Z 2025-03-14T04:53:22.9924341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:22.9924932Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:22.9925234Z 2025-03-14T04:53:22.9925661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:22.9926239Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:53:22.9926525Z 2025-03-14T04:53:22.9927002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:53:22.9927626Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:53:22.9927921Z 2025-03-14T04:53:22.9928504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:53:22.9929200Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:53:22.9929457Z 2025-03-14T04:53:22.9929842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:22.9930341Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:53:22.9930605Z 2025-03-14T04:53:22.9931125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:53:22.9931822Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:53:22.9932115Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:53:22.9932412Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:53:22.9932671Z 2025-03-14T04:53:22.9933255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:53:22.9933953Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:53:22.9934425Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:53:22.9934783Z 2025-03-14T04:53:22.9935342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:53:22.9936035Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:53:22.9936323Z 2025-03-14T04:53:22.9936717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:22.9937227Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:53:22.9937516Z 2025-03-14T04:53:22.9937995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:53:22.9938620Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:53:22.9938884Z 2025-03-14T04:53:22.9939260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:22.9939747Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:53:22.9940030Z 2025-03-14T04:53:22.9940492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:53:22.9941057Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:53:22.9941319Z 2025-03-14T04:53:22.9941886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:53:22.9942556Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:53:22.9942866Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:22.9943195Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:53:22.9943536Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:53:22.9943788Z 2025-03-14T04:53:22.9944247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:53:22.9944787Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:53:22.9945026Z 2025-03-14T04:53:22.9945168Z 2025-03-14T04:53:22.9945265Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:22.9946628Z def forward(self, L_features_res5_: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:53:22.9947926Z l_features_res5_ = L_features_res5_ 2025-03-14T04:53:22.9948319Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:53:22.9948837Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:53:22.9949306Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:53:22.9949828Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:53:22.9950400Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:53:22.9950964Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:53:22.9951502Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:53:22.9951889Z 2025-03-14T04:53:22.9952420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:22.9953070Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:53:22.9953335Z 2025-03-14T04:53:22.9953725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:22.9954194Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:53:22.9954432Z 2025-03-14T04:53:22.9954934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:22.9955547Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:53:22.9955804Z 2025-03-14T04:53:22.9956168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:22.9956640Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:53:22.9956889Z 2025-03-14T04:53:22.9957327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:53:22.9957909Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:53:22.9958232Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:53:22.9958492Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:53:22.9958723Z 2025-03-14T04:53:22.9959146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:53:22.9959633Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:53:22.9959866Z 2025-03-14T04:53:22.9960268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:53:22.9960924Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:53:22.9961164Z 2025-03-14T04:53:22.9961643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:53:22.9962300Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:53:22.9962629Z 2025-03-14T04:53:22.9963138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:53:22.9963717Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:53:22.9964203Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:53:22.9964726Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:53:22.9965009Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:53:22.9965240Z 2025-03-14T04:53:22.9965657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:22.9966134Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:53:22.9966375Z 2025-03-14T04:53:22.9966721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:22.9967655Z x_1: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(l_features_res5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res5_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:53:22.9968368Z 2025-03-14T04:53:22.9968723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:53:22.9969233Z x_2: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:53:22.9969530Z 2025-03-14T04:53:22.9969993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:53:22.9971058Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:53:22.9971897Z 2025-03-14T04:53:22.9972354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:53:22.9973412Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:53:22.9974130Z 2025-03-14T04:53:22.9974554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:53:22.9975096Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:53:22.9975439Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:53:22.9975694Z 2025-03-14T04:53:22.9976194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:53:22.9976808Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T04:53:22.9977188Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:53:22.9977585Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:53:22.9977877Z 2025-03-14T04:53:22.9978380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:53:22.9979057Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:53:22.9979370Z 2025-03-14T04:53:22.9979888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:53:22.9980516Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:53:22.9980885Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:53:22.9981228Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:53:22.9981485Z 2025-03-14T04:53:22.9981947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:22.9982545Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:53:22.9982838Z 2025-03-14T04:53:22.9983239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:22.9983752Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:53:22.9984015Z 2025-03-14T04:53:22.9984412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:22.9984912Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:22.9985224Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:22.9985553Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:53:22.9985823Z 2025-03-14T04:53:22.9986225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:22.9986725Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:22.9987044Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:22.9987366Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:22.9987632Z 2025-03-14T04:53:22.9988031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:22.9988516Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:22.9988782Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:53:22.9989047Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:53:22.9989287Z 2025-03-14T04:53:22.9989679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:22.9990182Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:22.9990474Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:53:22.9990742Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:53:22.9990986Z 2025-03-14T04:53:22.9991410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:22.9991918Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:22.9992259Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:53:22.9992486Z 2025-03-14T04:53:22.9992868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:22.9993371Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:22.9993714Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:53:22.9993946Z 2025-03-14T04:53:22.9994324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:22.9994829Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:22.9995149Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:53:22.9995381Z 2025-03-14T04:53:22.9995771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:22.9996289Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:22.9996637Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:53:22.9996868Z 2025-03-14T04:53:22.9997284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:22.9997808Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:22.9998066Z 2025-03-14T04:53:22.9998473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:22.9998999Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:22.9999240Z 2025-03-14T04:53:22.9999669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:23.0000219Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:23.0000538Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:53:23.0000868Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:23.0001218Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:53:23.0001478Z 2025-03-14T04:53:23.0001914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:23.0002461Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:23.0002778Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:53:23.0003106Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:23.0003463Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:53:23.0003713Z 2025-03-14T04:53:23.0004158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:23.0004646Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:23.0004963Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:23.0005320Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:53:23.0005567Z 2025-03-14T04:53:23.0005978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:23.0006481Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:23.0006812Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:23.0007163Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:53:23.0007432Z 2025-03-14T04:53:23.0007833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:23.0008299Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:23.0008555Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:23.0008790Z 2025-03-14T04:53:23.0009187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:23.0009652Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:23.0009918Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:23.0010155Z 2025-03-14T04:53:23.0010546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:23.0011028Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:23.0011336Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:23.0011675Z 2025-03-14T04:53:23.0012087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:23.0012586Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:23.0012872Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:23.0013153Z 2025-03-14T04:53:23.0013562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:23.0014128Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:23.0014426Z 2025-03-14T04:53:23.0014852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:23.0015425Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:53:23.0015717Z 2025-03-14T04:53:23.0016206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:53:23.0016839Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:53:23.0017133Z 2025-03-14T04:53:23.0017742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:53:23.0018447Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:53:23.0018730Z 2025-03-14T04:53:23.0019131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:23.0019648Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:53:23.0019918Z 2025-03-14T04:53:23.0020464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:53:23.0021113Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:53:23.0021397Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:53:23.0021675Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:53:23.0021910Z 2025-03-14T04:53:23.0022476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:53:23.0023177Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:53:23.0023647Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:53:23.0024007Z 2025-03-14T04:53:23.0024579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:53:23.0025239Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:53:23.0025509Z 2025-03-14T04:53:23.0025881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:23.0026367Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:53:23.0026631Z 2025-03-14T04:53:23.0027103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:53:23.0027679Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:53:23.0027937Z 2025-03-14T04:53:23.0028316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:23.0028802Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:53:23.0029062Z 2025-03-14T04:53:23.0029514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:53:23.0030074Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:53:23.0030327Z 2025-03-14T04:53:23.0030890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:53:23.0031550Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:53:23.0031870Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:23.0032195Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:53:23.0032557Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:53:23.0032816Z 2025-03-14T04:53:23.0033274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:53:23.0033820Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:53:23.0034071Z 2025-03-14T04:53:25.9912369Z 2025-03-14T04:53:25.9917448Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:25.9922064Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 82125, 4][328500, 4, 1]cpu", L_anchors_0_tensor: "f32[82125, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 82125][82125, 1]cpu"): 2025-03-14T04:53:25.9926092Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T04:53:25.9926449Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T04:53:25.9926735Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T04:53:25.9927007Z 2025-03-14T04:53:25.9927564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:53:25.9928263Z pred_anchor_deltas_i: "f32[328500, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T04:53:25.9928618Z 2025-03-14T04:53:25.9929160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:53:25.9929855Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T04:53:25.9930255Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:53:25.9930603Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:53:25.9930865Z 2025-03-14T04:53:25.9931340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:25.9932383Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T04:53:25.9932707Z 2025-03-14T04:53:25.9933136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:25.9933673Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:53:25.9933958Z 2025-03-14T04:53:25.9934360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:25.9934867Z getitem: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:25.9935184Z getitem_1: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:25.9935513Z widths: "f32[328500][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T04:53:25.9935782Z 2025-03-14T04:53:25.9936198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:25.9936702Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:25.9937063Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:25.9937393Z heights: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:53:25.9937663Z 2025-03-14T04:53:25.9938122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:25.9938618Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:25.9938891Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:53:25.9939155Z ctr_x: "f32[328500][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T04:53:25.9939447Z 2025-03-14T04:53:25.9939867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:25.9940399Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:25.9940705Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:53:25.9940993Z ctr_y: "f32[328500][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T04:53:25.9941247Z 2025-03-14T04:53:25.9941674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:25.9942190Z getitem_6: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:25.9942532Z dx: "f32[328500, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T04:53:25.9942778Z 2025-03-14T04:53:25.9943182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:25.9943732Z getitem_7: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:25.9944072Z dy: "f32[328500, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T04:53:25.9944312Z 2025-03-14T04:53:25.9944712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:25.9945230Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:25.9945563Z dw: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:53:25.9945802Z 2025-03-14T04:53:25.9946221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:25.9946775Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:25.9947131Z dh: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:53:25.9947361Z 2025-03-14T04:53:25.9947797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:25.9948350Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:25.9948616Z 2025-03-14T04:53:25.9949046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:25.9949587Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:25.9949849Z 2025-03-14T04:53:25.9950292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:25.9950869Z getitem_10: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:25.9951201Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T04:53:25.9951559Z getitem_11: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:25.9951918Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T04:53:25.9952181Z 2025-03-14T04:53:25.9952620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:25.9953186Z getitem_12: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:25.9953507Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T04:53:25.9953838Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:25.9954189Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T04:53:25.9954449Z 2025-03-14T04:53:25.9954874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:25.9955381Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:25.9955713Z getitem_14: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:25.9956071Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T04:53:25.9956328Z 2025-03-14T04:53:25.9956754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:25.9957262Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:25.9957596Z getitem_15: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:25.9957955Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T04:53:25.9958214Z 2025-03-14T04:53:25.9958627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:25.9959093Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:25.9959378Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:25.9959623Z 2025-03-14T04:53:25.9960025Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:25.9960492Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:25.9961045Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:25.9961302Z 2025-03-14T04:53:25.9961704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:25.9962185Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:25.9962484Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:25.9962733Z 2025-03-14T04:53:25.9963122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:25.9963598Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:25.9963919Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:25.9964172Z 2025-03-14T04:53:25.9964608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:25.9965212Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:25.9965506Z 2025-03-14T04:53:25.9965920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:25.9966499Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:53:25.9966784Z 2025-03-14T04:53:25.9967252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:53:25.9967858Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:53:25.9968151Z 2025-03-14T04:53:25.9970472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:53:25.9971219Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:53:25.9971525Z 2025-03-14T04:53:25.9971936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:25.9972431Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:53:25.9972687Z 2025-03-14T04:53:25.9973218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:53:25.9973873Z topk = l_pred_objectness_logits_0_.topk(6000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T04:53:25.9974200Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:53:25.9974466Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:53:25.9974692Z 2025-03-14T04:53:25.9975299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:53:25.9975971Z getitem_18: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:53:25.9976420Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_18, topk_idx)]; proposals_i_1 = getitem_18 = topk_idx = None 2025-03-14T04:53:25.9976762Z 2025-03-14T04:53:25.9977300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:53:25.9977970Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:53:25.9978250Z 2025-03-14T04:53:25.9978623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:25.9979114Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:53:25.9979378Z 2025-03-14T04:53:25.9979858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:53:25.9980440Z getitem_20: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:53:25.9980736Z 2025-03-14T04:53:25.9981116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:25.9981608Z tensor: "f32[6000, 4][4, 1]cpu" = getitem_20.to(torch.float32); getitem_20 = None 2025-03-14T04:53:25.9981871Z 2025-03-14T04:53:25.9982331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:53:25.9982939Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:53:25.9983199Z 2025-03-14T04:53:25.9983766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:53:25.9984430Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T04:53:25.9984737Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:25.9985066Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:53:25.9985409Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:53:25.9985668Z 2025-03-14T04:53:25.9986117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:53:25.9986657Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:53:25.9986888Z 2025-03-14T04:53:32.5272681Z 2025-03-14T04:53:32.5273560Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:32.5276013Z def forward(self, L_stack0_: "f32[3225, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:32.5278105Z l_stack0_ = L_stack0_ 2025-03-14T04:53:32.5278451Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:53:32.5278925Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:53:32.5279489Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:53:32.5279955Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:53:32.5280562Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:53:32.5281125Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:53:32.5281734Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:53:32.5282286Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:53:32.5282758Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5283200Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5283594Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5284009Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5284324Z 2025-03-14T04:53:32.5284720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:53:32.5285204Z x: "f32[3225, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:53:32.5285914Z x_1: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:53:32.5286633Z x_2: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:53:32.5287346Z x_3: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:53:32.5288053Z x_4: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:53:32.5288332Z 2025-03-14T04:53:32.5288734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:53:32.5289709Z scores: "f32[3225, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:53:32.5290424Z 2025-03-14T04:53:32.5290840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:53:32.5291924Z proposal_deltas: "f32[3225, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:53:32.5292762Z 2025-03-14T04:53:32.5293149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:32.5293631Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:32.5293883Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:32.5294112Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:32.5294382Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:32.5294675Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:53:32.5294934Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:32.5295162Z 2025-03-14T04:53:32.5295569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:32.5296555Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:32.5297325Z 2025-03-14T04:53:32.5297801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:32.5298403Z deltas: "f32[3225, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:53:32.5298689Z 2025-03-14T04:53:32.5299102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:32.5299643Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:32.5299928Z 2025-03-14T04:53:32.5300341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:32.5300860Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:32.5301176Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:32.5301505Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:32.5301780Z 2025-03-14T04:53:32.5302195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:32.5302704Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:32.5303007Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:32.5303328Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:32.5303604Z 2025-03-14T04:53:32.5304037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:32.5304523Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:32.5304783Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:53:32.5305040Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:32.5305275Z 2025-03-14T04:53:32.5305671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:32.5306175Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:32.5306457Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:53:32.5306716Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:32.5306956Z 2025-03-14T04:53:32.5307379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:32.5307887Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:32.5308230Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:32.5308461Z 2025-03-14T04:53:32.5308840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:32.5309357Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:32.5309676Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:32.5309899Z 2025-03-14T04:53:32.5310279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:32.5310797Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:32.5311113Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:32.5311342Z 2025-03-14T04:53:32.5311728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:32.5312259Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:32.5312607Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:32.5312841Z 2025-03-14T04:53:32.5313259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:32.5313788Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:32.5314046Z 2025-03-14T04:53:32.5314462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:32.5314983Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:32.5315231Z 2025-03-14T04:53:32.5315657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:32.5316191Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:32.5316518Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:32.5316888Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:32.5317234Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:32.5317487Z 2025-03-14T04:53:32.5317916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:32.5318453Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:32.5318773Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:32.5319102Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:32.5319458Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:32.5319711Z 2025-03-14T04:53:32.5320129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:32.5320627Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:32.5321004Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:32.5321346Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:32.5321594Z 2025-03-14T04:53:32.5322011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:32.5322530Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:32.5322845Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:32.5323187Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:32.5323455Z 2025-03-14T04:53:32.5323850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:32.5324302Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:32.5324567Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:32.5324801Z 2025-03-14T04:53:32.5325189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:32.5325645Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:32.5325910Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:32.5326145Z 2025-03-14T04:53:32.5326540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:32.5327023Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:32.5327313Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:32.5327563Z 2025-03-14T04:53:32.5327945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:32.5328413Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:32.5328687Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:32.5328926Z 2025-03-14T04:53:32.5329361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:32.5329985Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:32.5330279Z 2025-03-14T04:53:32.5330708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:32.5331270Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:53:32.5331713Z 2025-03-14T04:53:32.5332186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:32.5332839Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:32.5333204Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:32.5333497Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:32.5333802Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:32.5334116Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:32.5334376Z 2025-03-14T04:53:32.5334787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:32.5335326Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:32.5335678Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:32.5335909Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:32.5336258Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:32.5336604Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:53:32.5336862Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:32.5337069Z 2025-03-14T04:53:32.5337485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:32.5338029Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:53:32.5338308Z 2025-03-14T04:53:32.5338744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:32.5339337Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:32.5339692Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:32.5339981Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:32.5340275Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:32.5340583Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:32.5340840Z 2025-03-14T04:53:32.5341384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:32.5342076Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:32.5342409Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:32.5342737Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:32.5343087Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:32.5343383Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:32.5343615Z 2025-03-14T04:53:32.5344044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:32.5344556Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:32.5344782Z 2025-03-14T04:53:32.5344918Z 2025-03-14T04:53:32.5345013Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:32.5346941Z def forward(self, L_stack0_: "f32[3225, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:32.5349013Z l_stack0_ = L_stack0_ 2025-03-14T04:53:32.5349360Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:53:32.5349844Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:53:32.5350335Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:53:32.5350801Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:53:32.5351316Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:53:32.5351852Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:53:32.5352389Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:53:32.5352919Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:53:32.5353377Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5353761Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5354148Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5354532Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5354823Z 2025-03-14T04:53:32.5355179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:53:32.5355632Z x: "f32[3225, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:53:32.5356332Z x_1: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:53:32.5357050Z x_2: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:53:32.5357774Z x_3: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:53:32.5358489Z x_4: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:53:32.5358764Z 2025-03-14T04:53:32.5359163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:53:32.5360111Z scores: "f32[3225, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:53:32.5361347Z 2025-03-14T04:53:32.5361768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:53:32.5362802Z proposal_deltas: "f32[3225, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:53:32.5363547Z 2025-03-14T04:53:32.5363931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:32.5364418Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:32.5364677Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:32.5364959Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:32.5365323Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:32.5365879Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:53:32.5366216Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:32.5366522Z 2025-03-14T04:53:32.5366964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:32.5367972Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:32.5396647Z 2025-03-14T04:53:32.5397379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:32.5397978Z deltas: "f32[3225, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:53:32.5398253Z 2025-03-14T04:53:32.5398670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:32.5399210Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:32.5399490Z 2025-03-14T04:53:32.5400022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:32.5400547Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:32.5400867Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:32.5401201Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:32.5401472Z 2025-03-14T04:53:32.5401896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:32.5402407Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:32.5402698Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:32.5403009Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:32.5403274Z 2025-03-14T04:53:32.5403675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:32.5404197Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:32.5404456Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:53:32.5404712Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:32.5404986Z 2025-03-14T04:53:32.5405388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:32.5405910Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:32.5406202Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:53:32.5406472Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:32.5406744Z 2025-03-14T04:53:32.5407162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:32.5407688Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:32.5408021Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:32.5408261Z 2025-03-14T04:53:32.5408654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:32.5409166Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:32.5409489Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:32.5409721Z 2025-03-14T04:53:32.5410113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:32.5410627Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:32.5410953Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:32.5411186Z 2025-03-14T04:53:32.5411672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:32.5412238Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:32.5412613Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:32.5412874Z 2025-03-14T04:53:32.5413385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:32.5413967Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:32.5414221Z 2025-03-14T04:53:32.5414643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:32.5415167Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:32.5415427Z 2025-03-14T04:53:32.5415874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:32.5416437Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:32.5416757Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:32.5417097Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:32.5417449Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:32.5417708Z 2025-03-14T04:53:32.5418164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:32.5418731Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:32.5419052Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:32.5419385Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:32.5419729Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:32.5420008Z 2025-03-14T04:53:32.5420436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:32.5420943Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:32.5421271Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:32.5421617Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:32.5421872Z 2025-03-14T04:53:32.5422295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:32.5422805Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:32.5423139Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:32.5423495Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:32.5423751Z 2025-03-14T04:53:32.5424158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:32.5424611Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:32.5424867Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:32.5425102Z 2025-03-14T04:53:32.5425487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:32.5425935Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:32.5426188Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:32.5426433Z 2025-03-14T04:53:32.5426813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:32.5427288Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:32.5427575Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:32.5427819Z 2025-03-14T04:53:32.5428201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:32.5428674Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:32.5428958Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:32.5429201Z 2025-03-14T04:53:32.5429648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:32.5430248Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:32.5430542Z 2025-03-14T04:53:32.5431090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:32.5431879Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:53:32.5432187Z 2025-03-14T04:53:32.5432636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:32.5433425Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:32.5433978Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:32.5434274Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:32.5434589Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:32.5434928Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:32.5435197Z 2025-03-14T04:53:32.5435592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:32.5436174Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:32.5436519Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:32.5436760Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:32.5437124Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:32.5437476Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:53:32.5437718Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:32.5437935Z 2025-03-14T04:53:32.5438352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:32.5439065Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:53:32.5439364Z 2025-03-14T04:53:32.5439805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:32.5440401Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:32.5440782Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:32.5441071Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:32.5441358Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:32.5441673Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:32.5441929Z 2025-03-14T04:53:32.5442476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:32.5443169Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:32.5443503Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:32.5443836Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:32.5444171Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:32.5444457Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:32.5444693Z 2025-03-14T04:53:32.5445147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:32.5445672Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:32.5445900Z 2025-03-14T04:53:32.5446072Z 2025-03-14T04:53:32.5446158Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:32.5448104Z def forward(self, L_stack0_: "f32[3225, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:32.5450244Z l_stack0_ = L_stack0_ 2025-03-14T04:53:32.5450596Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:53:32.5451089Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:53:32.5451630Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:53:32.5452128Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:53:32.5452691Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:53:32.5453307Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:53:32.5453903Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:53:32.5454509Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:53:32.5455006Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5455425Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5455832Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5456232Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5456532Z 2025-03-14T04:53:32.5456915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:53:32.5457403Z x: "f32[3225, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:53:32.5458137Z x_1: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:53:32.5458907Z x_2: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:53:32.5459662Z x_3: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:53:32.5460417Z x_4: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:53:32.5460931Z 2025-03-14T04:53:32.5461354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:53:32.5462426Z scores: "f32[3225, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:53:32.5463163Z 2025-03-14T04:53:32.5463567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:53:32.5464566Z proposal_deltas: "f32[3225, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:53:32.5465299Z 2025-03-14T04:53:32.5465667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:32.5466127Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:32.5466379Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:32.5466608Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:32.5466875Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:32.5467132Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:53:32.5467375Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:32.5467591Z 2025-03-14T04:53:32.5467964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:32.5468920Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:32.5469631Z 2025-03-14T04:53:32.5470087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:32.5470664Z deltas: "f32[3225, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:53:32.5470932Z 2025-03-14T04:53:32.5471323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:32.5471839Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:32.5472110Z 2025-03-14T04:53:32.5472503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:32.5473029Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:32.5473333Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:32.5473645Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:32.5473926Z 2025-03-14T04:53:32.5474320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:32.5474805Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:32.5475093Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:32.5475417Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:32.5475674Z 2025-03-14T04:53:32.5476066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:32.5476550Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:32.5476801Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:53:32.5477054Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:32.5477283Z 2025-03-14T04:53:32.5477671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:32.5478170Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:32.5478442Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:53:32.5478701Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:32.5478936Z 2025-03-14T04:53:32.5479335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:32.5479850Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:32.5480171Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:32.5480402Z 2025-03-14T04:53:32.5480780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:32.5481283Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:32.5481612Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:32.5481845Z 2025-03-14T04:53:32.5482225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:32.5482722Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:32.5483036Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:32.5483266Z 2025-03-14T04:53:32.5483647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:32.5484178Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:32.5484517Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:32.5484748Z 2025-03-14T04:53:32.5485162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:32.5485701Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:32.5485950Z 2025-03-14T04:53:32.5486359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:32.5486890Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:32.5487139Z 2025-03-14T04:53:32.5487582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:32.5488134Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:32.5488464Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:32.5488791Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:32.5489141Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:32.5489406Z 2025-03-14T04:53:32.5489861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:32.5490429Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:32.5490752Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:32.5491089Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:32.5491525Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:32.5491825Z 2025-03-14T04:53:32.5492323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:32.5492878Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:32.5493211Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:32.5493557Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:32.5493807Z 2025-03-14T04:53:32.5494237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:32.5494779Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:32.5495122Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:32.5495481Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:32.5495744Z 2025-03-14T04:53:32.5496155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:32.5496639Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:32.5496910Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:32.5497144Z 2025-03-14T04:53:32.5497551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:32.5498022Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:32.5498290Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:32.5498531Z 2025-03-14T04:53:32.5498951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:32.5499454Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:32.5499758Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:32.5500036Z 2025-03-14T04:53:32.5500445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:32.5500937Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:32.5501251Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:32.5501524Z 2025-03-14T04:53:32.5501981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:32.5502566Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:32.5502858Z 2025-03-14T04:53:32.5503281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:32.5503844Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:53:32.5504133Z 2025-03-14T04:53:32.5504586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:32.5505191Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:32.5505551Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:32.5505836Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:32.5506138Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:32.5506448Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:32.5506707Z 2025-03-14T04:53:32.5507073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:32.5507619Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:32.5507965Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:32.5508219Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:32.5508583Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:32.5508928Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:53:32.5509169Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:32.5509384Z 2025-03-14T04:53:32.5509801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:32.5510356Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:53:32.5510637Z 2025-03-14T04:53:32.5511067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:32.5511664Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:32.5512019Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:32.5512305Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:32.5512613Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:32.5512922Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:32.5513205Z 2025-03-14T04:53:32.5513748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:32.5514435Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:32.5514791Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:32.5515125Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:32.5515463Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:32.5515754Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:32.5515988Z 2025-03-14T04:53:32.5516424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:32.5516949Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:32.5517183Z 2025-03-14T04:53:32.5517272Z 2025-03-14T04:53:32.5517359Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:32.5519298Z def forward(self, L_stack0_: "f32[3225, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:32.5521359Z l_stack0_ = L_stack0_ 2025-03-14T04:53:32.5521704Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:53:32.5522179Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:53:32.5522647Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:53:32.5523117Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:53:32.5523616Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:53:32.5524163Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:53:32.5524707Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:53:32.5525250Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:53:32.5525736Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5526129Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5526533Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5526915Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:32.5527206Z 2025-03-14T04:53:32.5527570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:53:32.5528077Z x: "f32[3225, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:53:32.5528770Z x_1: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:53:32.5529515Z x_2: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:53:32.5530264Z x_3: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:53:32.5531023Z x_4: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:53:32.5531329Z 2025-03-14T04:53:32.5531838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:53:32.5532934Z scores: "f32[3225, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:53:32.5533680Z 2025-03-14T04:53:32.5534109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:53:32.5535145Z proposal_deltas: "f32[3225, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:53:32.5535886Z 2025-03-14T04:53:32.5536275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:32.5536761Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:32.5537024Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:32.5537272Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:32.5537562Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:32.5537835Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:53:32.5538091Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:32.5538321Z 2025-03-14T04:53:32.5538710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:32.5539732Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:32.5540485Z 2025-03-14T04:53:32.5540952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:32.5541571Z deltas: "f32[3225, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:53:32.5541853Z 2025-03-14T04:53:32.5542267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:32.5542836Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:32.5543122Z 2025-03-14T04:53:32.5543544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:32.5544067Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:32.5544392Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:32.5544726Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:32.5545007Z 2025-03-14T04:53:32.5545433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:32.5545956Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:32.5546271Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:32.5546596Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:32.5546875Z 2025-03-14T04:53:32.5547306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:32.5547822Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:32.5548101Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:53:32.5548370Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:32.5548624Z 2025-03-14T04:53:32.5549046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:32.5549598Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:32.5549896Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:53:32.5550155Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:32.5550391Z 2025-03-14T04:53:32.5550783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:32.5551291Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:32.5551610Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:32.5551840Z 2025-03-14T04:53:32.5552220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:32.5552721Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:32.5553039Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:32.5553268Z 2025-03-14T04:53:32.5553668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:32.5554173Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:32.5554505Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:32.5554735Z 2025-03-14T04:53:32.5555118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:32.5555652Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:32.5556007Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:32.5556236Z 2025-03-14T04:53:32.5556665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:32.5557211Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:32.5557478Z 2025-03-14T04:53:32.5557913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:32.5558426Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:32.5558672Z 2025-03-14T04:53:32.5559095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:32.5559631Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:32.5559954Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:32.5560297Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:32.5560810Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:32.5561088Z 2025-03-14T04:53:32.5561548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:32.5562108Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:32.5562476Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:32.5562817Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:32.5563151Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:32.5563397Z 2025-03-14T04:53:32.5563813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:32.5564341Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:32.5564675Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:32.5565021Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:32.5565281Z 2025-03-14T04:53:32.5565717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:32.5566237Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:32.5566581Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:32.5566980Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:32.5567248Z 2025-03-14T04:53:32.5567669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:32.5568173Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:32.5568444Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:32.5568689Z 2025-03-14T04:53:32.5569106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:32.5569610Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:32.5569884Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:32.5570141Z 2025-03-14T04:53:32.5570572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:32.5571094Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:32.5571413Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:32.5571751Z 2025-03-14T04:53:32.5572200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:32.5572727Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:32.5573027Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:32.5573286Z 2025-03-14T04:53:32.5573745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:32.5574364Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:32.5574669Z 2025-03-14T04:53:32.5575105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:32.5575692Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:53:32.5575985Z 2025-03-14T04:53:32.5576484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:32.5577131Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:32.5577517Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:32.5577820Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:32.5578136Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:32.5578470Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:32.5578744Z 2025-03-14T04:53:32.5579138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:32.5579713Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:32.5580078Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:32.5580327Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:32.5580722Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:32.5581083Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:53:32.5581317Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:32.5581547Z 2025-03-14T04:53:32.5581951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:32.5582486Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:53:32.5582769Z 2025-03-14T04:53:32.5583203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:32.5583813Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:32.5584172Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:32.5584456Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:32.5584749Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:32.5585062Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:32.5585320Z 2025-03-14T04:53:32.5585867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:32.5586546Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:32.5586883Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:32.5587219Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:32.5587557Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:32.5587848Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:32.5588082Z 2025-03-14T04:53:32.5588514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:32.5589026Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:32.5589249Z 2025-03-14T04:53:34.4072924Z 2025-03-14T04:53:34.4077098Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:34.4078107Z def forward(self, L_predictions_0_: "f32[3225, 81][81, 1]cpu", L_predictions_1_: "f32[3225, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:34.4079662Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:53:34.4079907Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:53:34.4080284Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:34.4085877Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:34.4087062Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:34.4087538Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:34.4087840Z 2025-03-14T04:53:34.4088278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:34.4089209Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:34.4089477Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:34.4089711Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:34.4090065Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:34.4090342Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:53:34.4090586Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:34.4090806Z 2025-03-14T04:53:34.4091188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:34.4092345Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:34.4093119Z 2025-03-14T04:53:34.4093592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:34.4094178Z deltas: "f32[3225, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:53:34.4094453Z 2025-03-14T04:53:34.4094848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:34.4095379Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:34.4095653Z 2025-03-14T04:53:34.4096054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:34.4096552Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:34.4096852Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:34.4097169Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:34.4097430Z 2025-03-14T04:53:34.4097831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:34.4098329Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:34.4098661Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:34.4098978Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:34.4099241Z 2025-03-14T04:53:34.4099634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:34.4100116Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:34.4100371Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:53:34.4100623Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:34.4100859Z 2025-03-14T04:53:34.4101252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:34.4101753Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:34.4102035Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:53:34.4102327Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:34.4102576Z 2025-03-14T04:53:34.4103010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:34.4103516Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:34.4103860Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:34.4104083Z 2025-03-14T04:53:34.4104455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:34.4104946Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:34.4105275Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:34.4105499Z 2025-03-14T04:53:34.4105872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:34.4106355Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:34.4106668Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:34.4106893Z 2025-03-14T04:53:34.4107267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:34.4107790Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:34.4108125Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:34.4108353Z 2025-03-14T04:53:34.4108774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:34.4109297Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:34.4109554Z 2025-03-14T04:53:34.4109958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:34.4110475Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:34.4110723Z 2025-03-14T04:53:34.4111165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:34.4111707Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:34.4112021Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:34.4112350Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:34.4112693Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:34.4112949Z 2025-03-14T04:53:34.4113585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:34.4114159Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:34.4114475Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:34.4114809Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:34.4115165Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:34.4115433Z 2025-03-14T04:53:34.4115892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:34.4116424Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:34.4116786Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:34.4117157Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:34.4117424Z 2025-03-14T04:53:34.4117872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:34.4118402Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:34.4118739Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:34.4119142Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:34.4119540Z 2025-03-14T04:53:34.4119966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:34.4120460Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:34.4120737Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:34.4120988Z 2025-03-14T04:53:34.4121402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:34.4121887Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:34.4122177Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:34.4122550Z 2025-03-14T04:53:34.4122974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:34.4123484Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:34.4123788Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:34.4124051Z 2025-03-14T04:53:34.4124461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:34.4124962Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:34.4125283Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:34.4125538Z 2025-03-14T04:53:34.4125984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:34.4126596Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:34.4126890Z 2025-03-14T04:53:34.4127325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:34.4127905Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:53:34.4128203Z 2025-03-14T04:53:34.4128672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:34.4129321Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:34.4129702Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:34.4130023Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:34.4130347Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:34.4130671Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:34.4130958Z 2025-03-14T04:53:34.4131351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:34.4132015Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:34.4132426Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:34.4132670Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:34.4133043Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:34.4133399Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:53:34.4133650Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:34.4133873Z 2025-03-14T04:53:34.4134301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:34.4134921Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:53:34.4135249Z 2025-03-14T04:53:34.4135704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:34.4136320Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:34.4136685Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:34.4136981Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:34.4137281Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:34.4137605Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:34.4137868Z 2025-03-14T04:53:34.4138435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:34.4139176Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:34.4139540Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:34.4139887Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:34.4140236Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:34.4140535Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:34.4140778Z 2025-03-14T04:53:34.4141219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:34.4141747Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:34.4141987Z 2025-03-14T04:53:34.4142124Z 2025-03-14T04:53:34.4142213Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:34.4143097Z def forward(self, L_predictions_0_: "f32[3225, 81][81, 1]cpu", L_predictions_1_: "f32[3225, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:34.4143917Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:53:34.4144156Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:53:34.4144490Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:34.4144885Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:34.4145275Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:34.4145665Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:34.4145970Z 2025-03-14T04:53:34.4146349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:34.4146811Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:34.4147064Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:34.4147293Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:34.4147569Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:34.4147826Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:53:34.4148069Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:34.4148283Z 2025-03-14T04:53:34.4148650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:34.4149606Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:34.4150329Z 2025-03-14T04:53:34.4150793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:34.4151367Z deltas: "f32[3225, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:53:34.4151705Z 2025-03-14T04:53:34.4152320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:34.4152902Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:34.4153180Z 2025-03-14T04:53:34.4153585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:34.4154240Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:34.4154548Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:34.4154878Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:34.4155243Z 2025-03-14T04:53:34.4155652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:34.4156155Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:34.4156458Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:34.4156788Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:34.4157192Z 2025-03-14T04:53:34.4157733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:34.4158237Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:34.4158499Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:53:34.4158781Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:34.4159028Z 2025-03-14T04:53:34.4159535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:34.4160051Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:34.4160359Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:53:34.4160779Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:34.4161034Z 2025-03-14T04:53:34.4161448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:34.4161965Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:34.4162301Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:34.4162532Z 2025-03-14T04:53:34.4162911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:34.4163409Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:34.4163730Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:34.4163959Z 2025-03-14T04:53:34.4164339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:34.4164844Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:34.4165158Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:34.4165394Z 2025-03-14T04:53:34.4165770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:34.4166284Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:34.4166611Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:34.4167447Z 2025-03-14T04:53:34.4167873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:34.4168403Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:34.4168661Z 2025-03-14T04:53:34.4169083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:34.4169624Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:34.4169879Z 2025-03-14T04:53:34.4170313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:34.4170861Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:34.4171176Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:34.4171577Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:34.4171992Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:34.4172265Z 2025-03-14T04:53:34.4172728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:34.4173308Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:34.4173631Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:34.4173966Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:34.4174341Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:34.4174598Z 2025-03-14T04:53:34.4175022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:34.4175532Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:34.4175858Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:34.4176216Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:34.4176461Z 2025-03-14T04:53:34.4176870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:34.4177371Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:34.4177698Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:34.4178049Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:34.4178314Z 2025-03-14T04:53:34.4178723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:34.4179204Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:34.4179469Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:34.4179711Z 2025-03-14T04:53:34.4180111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:34.4180621Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:34.4180882Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:34.4181112Z 2025-03-14T04:53:34.4181496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:34.4181973Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:34.4182257Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:34.4182502Z 2025-03-14T04:53:34.4182883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:34.4183353Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:34.4183632Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:34.4183876Z 2025-03-14T04:53:34.4184299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:34.4184896Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:34.4185183Z 2025-03-14T04:53:34.4185599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:34.4186187Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:53:34.4186473Z 2025-03-14T04:53:34.4186917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:34.4187546Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:34.4187912Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:34.4188204Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:34.4188509Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:34.4188827Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:34.4189092Z 2025-03-14T04:53:34.4189474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:34.4190047Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:34.4190402Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:34.4190649Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:34.4191018Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:34.4191378Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:53:34.4191615Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:34.4191834Z 2025-03-14T04:53:34.4192250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:34.4192847Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:53:34.4193174Z 2025-03-14T04:53:34.4193629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:34.4194239Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:34.4194601Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:34.4194893Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:34.4195191Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:34.4195501Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:34.4195761Z 2025-03-14T04:53:34.4196303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:34.4196991Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:34.4197324Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:34.4197655Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:34.4198007Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:34.4198302Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:34.4198534Z 2025-03-14T04:53:34.4198977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:34.4199510Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:34.4199736Z 2025-03-14T04:53:34.4199865Z 2025-03-14T04:53:34.4199957Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:34.4200772Z def forward(self, L_predictions_0_: "f32[3225, 81][81, 1]cpu", L_predictions_1_: "f32[3225, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:34.4201585Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:53:34.4201810Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:53:34.4202122Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:34.4202521Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:34.4202914Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:34.4203301Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:34.4203588Z 2025-03-14T04:53:34.4203954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:34.4204417Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:34.4204667Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:34.4204897Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:34.4205166Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:34.4205423Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:53:34.4205666Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:34.4205882Z 2025-03-14T04:53:34.4206252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:34.4207221Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:34.4207944Z 2025-03-14T04:53:34.4208403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:34.4208972Z deltas: "f32[3225, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:53:34.4209238Z 2025-03-14T04:53:34.4209632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:34.4210148Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:34.4210421Z 2025-03-14T04:53:34.4210816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:34.4211327Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:34.4211735Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:34.4212072Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:34.4212370Z 2025-03-14T04:53:34.4212794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:34.4213300Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:34.4213600Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:34.4213934Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:34.4214202Z 2025-03-14T04:53:34.4214608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:34.4215105Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:34.4215364Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:53:34.4215624Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:34.4215866Z 2025-03-14T04:53:34.4216268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:34.4216782Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:34.4217065Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:53:34.4217331Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:34.4217574Z 2025-03-14T04:53:34.4217986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:34.4218507Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:34.4218838Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:34.4219078Z 2025-03-14T04:53:34.4219465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:34.4219977Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:34.4220325Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:34.4220554Z 2025-03-14T04:53:34.4220945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:34.4221454Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:34.4221782Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:34.4222019Z 2025-03-14T04:53:34.4222415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:34.4222965Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:34.4223315Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:34.4223556Z 2025-03-14T04:53:34.4223996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:34.4224535Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:34.4224829Z 2025-03-14T04:53:34.4225256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:34.4225796Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:34.4226055Z 2025-03-14T04:53:34.4226490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:34.4227030Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:34.4227370Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:34.4227708Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:34.4228063Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:34.4228324Z 2025-03-14T04:53:34.4228769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:34.4229319Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:34.4229639Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:34.4229970Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:34.4230313Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:34.4230561Z 2025-03-14T04:53:34.4230970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:34.4231462Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:34.4231776Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:34.4232103Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:34.4232343Z 2025-03-14T04:53:34.4232747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:34.4233253Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:34.4233580Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:34.4233915Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:34.4234167Z 2025-03-14T04:53:34.4234575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:34.4235042Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:34.4235303Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:34.4235541Z 2025-03-14T04:53:34.4235926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:34.4236374Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:34.4236627Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:34.4236856Z 2025-03-14T04:53:34.4237233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:34.4237748Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:34.4238025Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:34.4238302Z 2025-03-14T04:53:34.4238691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:34.4239163Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:34.4239461Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:34.4239707Z 2025-03-14T04:53:34.4240166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:34.4240761Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:34.4241041Z 2025-03-14T04:53:34.4241451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:34.4241989Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:53:34.4242265Z 2025-03-14T04:53:34.4242701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:34.4243298Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:34.4243656Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:34.4243937Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:34.4244231Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:34.4244535Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:34.4244789Z 2025-03-14T04:53:34.4245154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:34.4245698Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:34.4246037Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:34.4246287Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:34.4246644Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:34.4246982Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:53:34.4247220Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:34.4247435Z 2025-03-14T04:53:34.4247842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:34.4248427Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:53:34.4248746Z 2025-03-14T04:53:34.4249181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:34.4249792Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:34.4250150Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:34.4250437Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:34.4250753Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:34.4251065Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:34.4251337Z 2025-03-14T04:53:34.4251979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:34.4252701Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:34.4253069Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:34.4253404Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:34.4253741Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:34.4254087Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:34.4254409Z 2025-03-14T04:53:34.4254938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:34.4255455Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:34.4255686Z 2025-03-14T04:53:37.1406170Z 2025-03-14T04:53:37.1406757Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:37.1407204Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T04:53:37.1407577Z l_scores_0_ = L_scores_0_ 2025-03-14T04:53:37.1407794Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:53:37.1407995Z 2025-03-14T04:53:37.1408629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:37.1409364Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:53:37.1409711Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:37.1410045Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:53:37.1410376Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:37.1410685Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:37.1411257Z 2025-03-14T04:53:37.1411885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:37.1412476Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:37.1412745Z 2025-03-14T04:53:37.1412860Z 2025-03-14T04:53:37.1412949Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:37.1413262Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T04:53:37.1413575Z l_scores_0_ = L_scores_0_ 2025-03-14T04:53:37.1413784Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:53:37.1413976Z 2025-03-14T04:53:37.1414606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:37.1415353Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:53:37.1415697Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:37.1416098Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:53:37.1416454Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:37.1416756Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:37.1417064Z 2025-03-14T04:53:37.1417546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:37.1418107Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:37.1418394Z 2025-03-14T04:53:51.7203236Z Compilation time (from dynamo_timed): 45.955684111 2025-03-14T04:53:51.7208456Z pass 2025-03-14T04:53:51.7208998Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:53:51.7209934Z TIMING: entire_frame_compile:45.95568 gc:0.03183 _recursive_pre_grad_passes:0.03098 async_compile.wait:11.0958 backend_compile:30.80132 _recursive_joint_graph_passes:0.56658 _recursive_post_grad_passes:0.15207 code_gen:15.85088 inductor_compile:18.47933 total_wall_time:45.95568 2025-03-14T04:53:51.7211082Z STATS: call_* op count: 781 | FakeTensorMode.__torch_dispatch__:27912 | FakeTensor.__torch_dispatch__:3330 | ProxyTorchDispatchMode.__torch_dispatch__:10384 | attempt fast:51 | slow no contiguity match:20 | fast is_contiguous:31 2025-03-14T04:53:51.7211833Z Dynamo produced 52 graphs covering 781 ops with 42 graph breaks (6 unique) 2025-03-14T04:53:57.2077043Z 2025-03-14T04:54:04.8925361Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:54:04.8927271Z loading model: 0it [00:07, ?it/s] 2025-03-14T04:54:04.8940892Z cpu eval detectron2_fasterrcnn_r_101_fpn 2025-03-14T04:54:20.9899861Z WARNING:common:fp64 golden ref were not generated for detectron2_fasterrcnn_r_101_fpn. Setting accuracy check to cosine 2025-03-14T04:54:21.0047058Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:54:28.6756913Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:54:36.9797124Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:54:52.7776943Z 2025-03-14T04:54:52.7777740Z class GraphModule(torch.nn.Module): 2025-03-14T04:54:52.7927229Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T04:54:52.8049073Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:54:52.8049560Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8050340Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8051207Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8052254Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8053186Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8054114Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8055103Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8056177Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8057209Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8061351Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8062334Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8063393Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8064437Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8065473Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8066401Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8067309Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8068200Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8069167Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8070124Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8071059Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8071897Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:54:52.8072773Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8073707Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8074621Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8075524Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8076338Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8077222Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8078121Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8079008Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8079830Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8080615Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8081434Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8082314Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8083173Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8083995Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8084789Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8085598Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8086461Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8087303Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8088117Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8088895Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8089723Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8090610Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8091573Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8092530Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8093378Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8094284Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8095265Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8096215Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8097124Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8098003Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8098914Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8099906Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8100799Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8101613Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8102391Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8103236Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8104155Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8104998Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8105846Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8106667Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8107553Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8108405Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8109244Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8110056Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8110838Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8111647Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8112514Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8113381Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8114202Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8114994Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:54:52.8115841Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8116744Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8117625Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8118489Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8119311Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8120121Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8120999Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8121839Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8122640Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8123405Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8124190Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8125034Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8125851Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8126645Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8127437Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8128254Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8129130Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8129980Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8130811Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8131714Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8132592Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8133548Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8134375Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8135192Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8135952Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8136738Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8137583Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8138402Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8139199Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8139957Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8140759Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8141599Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8142428Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8143231Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8143998Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8144793Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8145653Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8146487Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8147303Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8148088Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8148881Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8149727Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8150556Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8151348Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8152113Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8152905Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8153751Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8154587Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8155412Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8156174Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8156967Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8157814Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8158651Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8159457Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8160242Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8161187Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8162076Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8162906Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8163709Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8164478Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8165284Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8166163Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8167013Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8167837Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8168667Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:54:52.8169522Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8170418Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8171297Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8172223Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8173096Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8173923Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8174825Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8175682Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8176531Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8177311Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8178119Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8178985Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8179828Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8180639Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8181423Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8182266Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8183138Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8183953Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8184745Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8185499Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8186284Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8187137Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8187982Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8188777Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8189584Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8190374Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8191222Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8192046Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8192849Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8193612Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8194403Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8195258Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8196107Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8196906Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8197667Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8198460Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8199310Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8200153Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8200950Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8201734Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8202547Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8203441Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8204293Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8205349Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8206136Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8206977Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8207897Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8208792Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8209683Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8210518Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8211386Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8212400Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8213304Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8214171Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8219942Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8220925Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8221849Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8222741Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8223571Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8224355Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8225161Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8226305Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8227195Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8228029Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8228827Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8229679Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8230552Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8231396Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8232216Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8233013Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8233850Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8234718Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8235584Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8236678Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8237516Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8238338Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8239217Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8240069Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8240893Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8241673Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8242469Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8243326Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8244162Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8244974Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8245992Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8246853Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8247734Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8248609Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8249439Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8250283Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8251105Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8252129Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8253039Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8253887Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8254690Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8255537Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8256722Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8257601Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8258445Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8259244Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8260066Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8261077Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8261933Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8262753Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8263598Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8264444Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8265319Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8266477Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8267328Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8268122Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8268946Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8269826Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8270681Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8271500Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8272282Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8273113Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8273994Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8274836Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8275884Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8276750Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8277592Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8278473Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8279336Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8280162Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8280968Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8281784Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8282643Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8283487Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8284302Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8285084Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8286515Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8287455Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8288331Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8289186Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8289993Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8290828Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8291798Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8292700Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8293546Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8294422Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8295276Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8296474Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8297373Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8298234Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8299057Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8299911Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8300808Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8301691Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8302558Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8303392Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8304231Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8305117Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8306220Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8307087Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8307882Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8308730Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8309614Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8310481Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8311313Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8312108Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8312932Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8313816Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8314674Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8315501Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8316559Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8317404Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8318287Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8319142Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8319966Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8320759Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8321596Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8322474Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8323342Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8324182Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8324974Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8325819Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8326727Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8327888Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8328744Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8329554Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8330398Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8331319Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8332277Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8333130Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8333935Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8334781Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8335699Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8336842Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8337728Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8338538Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8339406Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8340301Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8341170Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8342003Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8342765Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8343556Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8344404Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8345248Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8346313Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8347133Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8347958Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8348833Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8349696Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8350531Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8351326Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8352144Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8353043Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8353906Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8354706Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8355474Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8356294Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8357445Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8358317Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8359156Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8359977Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8360929Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8361822Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8362682Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8363512Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8364344Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8365166Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8366330Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8367216Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8368087Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8368878Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8369709Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8370587Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8371529Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8372395Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8373239Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8374101Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8374976Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8376265Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8378758Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8379571Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8380404Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8381656Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8382527Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8383346Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8384154Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8384970Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8386090Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8386972Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8387812Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8388624Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8389458Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8390364Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8391275Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8392103Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8392913Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8393755Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8394652Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8395542Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8396649Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8397495Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8398343Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8399266Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8400146Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8400994Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8401805Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8402644Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8403547Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8404418Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8405298Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8406809Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8407680Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8408592Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8409473Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8410323Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8411163Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8412128Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8413074Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8413984Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8414834Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8415851Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8416753Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8417668Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8418521Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8419344Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8420135Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8420975Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8421851Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8422696Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8423521Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8424318Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8425148Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8426269Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8427164Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8427985Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8428780Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8429606Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8430479Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8431332Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8432157Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8432942Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8433759Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8434649Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8435505Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8436704Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8437511Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8438337Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8439214Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8440091Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8440938Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8441735Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8442589Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8443474Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8444594Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8446360Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8447455Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8448324Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8449251Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8450139Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8451192Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8452096Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8452965Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8453896Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8454778Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8455628Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8456490Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8457333Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8458238Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8459129Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8460339Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8461719Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8462999Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8464403Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8465738Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8467294Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8468541Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8469385Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8470266Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8471432Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8472277Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8473062Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8473907Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8474812Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8475663Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8476510Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8477571Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8478402Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8479277Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8480133Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8480957Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8481745Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8482567Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8483459Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8484318Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8485139Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8486170Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:54:52.8487048Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8488008Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8488904Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8489780Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8490589Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8491487Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8492468Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8493427Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8494261Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8495061Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8496117Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8497052Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8497946Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8498819Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8499651Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8500522Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8501443Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8502340Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8503236Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8504095Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.8504963Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8506112Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8507025Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8507843Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8508633Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.8509448Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8510317Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8511160Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8511986Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8512788Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.8513608Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.8514477Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.8515351Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.8516172Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.8516853Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T04:54:52.8517390Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T04:54:52.8518176Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T04:54:52.8518716Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T04:54:52.8519216Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T04:54:52.8519714Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T04:54:52.8520225Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T04:54:52.8520710Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T04:54:52.8521196Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T04:54:52.8521681Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T04:54:52.8522170Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T04:54:52.8522654Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T04:54:52.8523138Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T04:54:52.8523627Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T04:54:52.8524111Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T04:54:52.8524590Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T04:54:52.8525211Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:54:52.8526214Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T04:54:52.8527024Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T04:54:52.8527781Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T04:54:52.8528524Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T04:54:52.8529249Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:54:52.8529949Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:54:52.8530698Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:54:52.8531603Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:54:52.8532426Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:54:52.8533202Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:54:52.8533672Z 2025-03-14T04:54:52.8534061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8534970Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8535643Z 2025-03-14T04:54:52.8537751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8539848Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8541696Z 2025-03-14T04:54:52.8542073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:54:52.8542555Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:54:52.8542817Z 2025-03-14T04:54:52.8543298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:54:52.8543945Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:54:52.8544293Z 2025-03-14T04:54:52.8544633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8545430Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8546330Z 2025-03-14T04:54:52.8546712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8548893Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8550844Z 2025-03-14T04:54:52.8551217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8551707Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:54:52.8551960Z 2025-03-14T04:54:52.8552290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8553080Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8553685Z 2025-03-14T04:54:52.8554026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8556111Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8557987Z 2025-03-14T04:54:52.8558352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8558825Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:54:52.8559080Z 2025-03-14T04:54:52.8559411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8560202Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8560953Z 2025-03-14T04:54:52.8561299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8563394Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8565324Z 2025-03-14T04:54:52.8565664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8566483Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:54:52.8567107Z 2025-03-14T04:54:52.8567462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8569673Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8571974Z 2025-03-14T04:54:52.8572384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8572929Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:54:52.8573222Z 2025-03-14T04:54:52.8573620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8574110Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:54:52.8574381Z 2025-03-14T04:54:52.8574711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8575509Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8576150Z 2025-03-14T04:54:52.8576499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8578628Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8580576Z 2025-03-14T04:54:52.8580943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8581424Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:54:52.8581686Z 2025-03-14T04:54:52.8582021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8582827Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8583439Z 2025-03-14T04:54:52.8583787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8585953Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8587875Z 2025-03-14T04:54:52.8588249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8588723Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:54:52.8588987Z 2025-03-14T04:54:52.8589326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8590157Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8590772Z 2025-03-14T04:54:52.8591143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8593279Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8595234Z 2025-03-14T04:54:52.8595600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8596105Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:54:52.8596396Z 2025-03-14T04:54:52.8596779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8597273Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:54:52.8597542Z 2025-03-14T04:54:52.8597889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8598724Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8599326Z 2025-03-14T04:54:52.8599711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8601954Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8603913Z 2025-03-14T04:54:52.8604341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8604853Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:54:52.8605128Z 2025-03-14T04:54:52.8605497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8606348Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8607006Z 2025-03-14T04:54:52.8607372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8609628Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8611789Z 2025-03-14T04:54:52.8612209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8612733Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:54:52.8613007Z 2025-03-14T04:54:52.8613381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8614257Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8614923Z 2025-03-14T04:54:52.8615294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8617568Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8619610Z 2025-03-14T04:54:52.8619994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8620536Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:54:52.8620820Z 2025-03-14T04:54:52.8621206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8621725Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:54:52.8622009Z 2025-03-14T04:54:52.8622346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8623185Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8623794Z 2025-03-14T04:54:52.8624142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8626342Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8628256Z 2025-03-14T04:54:52.8628624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8629132Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:54:52.8629400Z 2025-03-14T04:54:52.8629734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8630544Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8631165Z 2025-03-14T04:54:52.8631512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8633665Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8635614Z 2025-03-14T04:54:52.8635987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8636491Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:54:52.8636756Z 2025-03-14T04:54:52.8637094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8637898Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8638514Z 2025-03-14T04:54:52.8638861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8640967Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8642870Z 2025-03-14T04:54:52.8643201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8644008Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:54:52.8644626Z 2025-03-14T04:54:52.8644976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8647274Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8649468Z 2025-03-14T04:54:52.8649828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8650332Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:54:52.8650602Z 2025-03-14T04:54:52.8650973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8651569Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:54:52.8651865Z 2025-03-14T04:54:52.8652210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8653049Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8653655Z 2025-03-14T04:54:52.8654001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8656158Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8658075Z 2025-03-14T04:54:52.8658447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8658928Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:54:52.8659189Z 2025-03-14T04:54:52.8659522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8660330Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8661048Z 2025-03-14T04:54:52.8661407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8663584Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8665536Z 2025-03-14T04:54:52.8665904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8666386Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:54:52.8666652Z 2025-03-14T04:54:52.8666988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8667798Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8668419Z 2025-03-14T04:54:52.8668764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8670902Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8672804Z 2025-03-14T04:54:52.8673159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8673647Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:54:52.8673919Z 2025-03-14T04:54:52.8674317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8674807Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:54:52.8675074Z 2025-03-14T04:54:52.8675398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8676214Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8676844Z 2025-03-14T04:54:52.8677196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8679316Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8681270Z 2025-03-14T04:54:52.8681637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8682131Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:54:52.8682404Z 2025-03-14T04:54:52.8682756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8683586Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8684198Z 2025-03-14T04:54:52.8684543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8686802Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8688835Z 2025-03-14T04:54:52.8689222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8689731Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:54:52.8690035Z 2025-03-14T04:54:52.8690388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8691244Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8694547Z 2025-03-14T04:54:52.8695005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8697271Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8699294Z 2025-03-14T04:54:52.8699680Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8700198Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:54:52.8700487Z 2025-03-14T04:54:52.8700898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8701477Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:54:52.8701769Z 2025-03-14T04:54:52.8702124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8703006Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8703646Z 2025-03-14T04:54:52.8704010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8706265Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8708279Z 2025-03-14T04:54:52.8708658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8709149Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:54:52.8709417Z 2025-03-14T04:54:52.8709759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8710613Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8711245Z 2025-03-14T04:54:52.8711602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8713795Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8715710Z 2025-03-14T04:54:52.8716080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8716560Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:54:52.8716824Z 2025-03-14T04:54:52.8717203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8718011Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8718624Z 2025-03-14T04:54:52.8718974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8721092Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8723017Z 2025-03-14T04:54:52.8723384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8723873Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:54:52.8724161Z 2025-03-14T04:54:52.8724528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8725042Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:54:52.8725326Z 2025-03-14T04:54:52.8725675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8726482Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8727071Z 2025-03-14T04:54:52.8727421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8729625Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8731730Z 2025-03-14T04:54:52.8732151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8732676Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:54:52.8732949Z 2025-03-14T04:54:52.8733293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8734147Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8734790Z 2025-03-14T04:54:52.8735160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8737425Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8739466Z 2025-03-14T04:54:52.8739852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8740333Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:54:52.8740583Z 2025-03-14T04:54:52.8740901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8741670Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8742253Z 2025-03-14T04:54:52.8742591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8744659Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8746511Z 2025-03-14T04:54:52.8746833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8747611Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:54:52.8748217Z 2025-03-14T04:54:52.8748561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8750724Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8752804Z 2025-03-14T04:54:52.8753161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8753618Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:54:52.8753863Z 2025-03-14T04:54:52.8754217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8754695Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:54:52.8754955Z 2025-03-14T04:54:52.8755288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8756080Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8756677Z 2025-03-14T04:54:52.8757026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8759148Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8761158Z 2025-03-14T04:54:52.8761531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8762011Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:54:52.8762270Z 2025-03-14T04:54:52.8762610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8763449Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8764061Z 2025-03-14T04:54:52.8764407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8766634Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8768572Z 2025-03-14T04:54:52.8768945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8769424Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:54:52.8769681Z 2025-03-14T04:54:52.8770017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8770824Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8771519Z 2025-03-14T04:54:52.8771893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8774235Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8776319Z 2025-03-14T04:54:52.8776728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8777270Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:54:52.8777566Z 2025-03-14T04:54:52.8777976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8778535Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:54:52.8778829Z 2025-03-14T04:54:52.8779199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8780098Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8780710Z 2025-03-14T04:54:52.8781083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8783279Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8785201Z 2025-03-14T04:54:52.8785569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8786050Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:54:52.8786305Z 2025-03-14T04:54:52.8786640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8787461Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8788071Z 2025-03-14T04:54:52.8788417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8790532Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8792431Z 2025-03-14T04:54:52.8792829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8793297Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:54:52.8793566Z 2025-03-14T04:54:52.8793895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8794687Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8795310Z 2025-03-14T04:54:52.8795660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8797772Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8799680Z 2025-03-14T04:54:52.8800041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8800515Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:54:52.8800776Z 2025-03-14T04:54:52.8801141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8801638Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:54:52.8801901Z 2025-03-14T04:54:52.8802239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8803033Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8803631Z 2025-03-14T04:54:52.8803995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8806249Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8808274Z 2025-03-14T04:54:52.8808659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8809182Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:54:52.8809449Z 2025-03-14T04:54:52.8809800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8810640Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8811291Z 2025-03-14T04:54:52.8811750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8814080Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8816098Z 2025-03-14T04:54:52.8816515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8817024Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:54:52.8817296Z 2025-03-14T04:54:52.8817651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8818504Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8819153Z 2025-03-14T04:54:52.8819522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8822324Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8824561Z 2025-03-14T04:54:52.8825002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8825549Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:54:52.8825857Z 2025-03-14T04:54:52.8826276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8826856Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:54:52.8827155Z 2025-03-14T04:54:52.8827534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8828446Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8829139Z 2025-03-14T04:54:52.8829538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8831832Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8833775Z 2025-03-14T04:54:52.8834142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8834637Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:54:52.8834906Z 2025-03-14T04:54:52.8835257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8836087Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8836723Z 2025-03-14T04:54:52.8837090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8839256Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8841205Z 2025-03-14T04:54:52.8841570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8842047Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:54:52.8842300Z 2025-03-14T04:54:52.8842629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8843434Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8844045Z 2025-03-14T04:54:52.8844383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8846640Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8848630Z 2025-03-14T04:54:52.8849006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8849503Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:54:52.8849777Z 2025-03-14T04:54:52.8850159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8850678Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:54:52.8850964Z 2025-03-14T04:54:52.8851347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8852351Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8853069Z 2025-03-14T04:54:52.8853472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8855821Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8857938Z 2025-03-14T04:54:52.8858323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8858817Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:54:52.8859087Z 2025-03-14T04:54:52.8859427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8860272Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8861059Z 2025-03-14T04:54:52.8861478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8863713Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8865631Z 2025-03-14T04:54:52.8865997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8866496Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:54:52.8866751Z 2025-03-14T04:54:52.8867082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8867902Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8868495Z 2025-03-14T04:54:52.8868868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8870989Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8872905Z 2025-03-14T04:54:52.8873264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8873743Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:54:52.8874014Z 2025-03-14T04:54:52.8874381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8874860Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:54:52.8875119Z 2025-03-14T04:54:52.8875471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8876254Z x_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8876848Z 2025-03-14T04:54:52.8877195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8879324Z x_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8881234Z 2025-03-14T04:54:52.8881600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8882065Z out_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:54:52.8882317Z 2025-03-14T04:54:52.8882666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8883468Z x_90: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8884084Z 2025-03-14T04:54:52.8884431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8886557Z x_91: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8888461Z 2025-03-14T04:54:52.8888826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8889322Z out_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:54:52.8889575Z 2025-03-14T04:54:52.8889918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8890756Z x_92: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8891392Z 2025-03-14T04:54:52.8891839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8894201Z x_93: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8896231Z 2025-03-14T04:54:52.8896610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8897145Z x_93 += out_51; out_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:54:52.8897419Z 2025-03-14T04:54:52.8897807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8898313Z out_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:54:52.8898589Z 2025-03-14T04:54:52.8898940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8899766Z x_94: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8900393Z 2025-03-14T04:54:52.8900759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8903017Z x_95: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8905029Z 2025-03-14T04:54:52.8905419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8905917Z out_56: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:54:52.8906188Z 2025-03-14T04:54:52.8906539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8907384Z x_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8907995Z 2025-03-14T04:54:52.8908361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8910622Z x_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8912601Z 2025-03-14T04:54:52.8912999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8913531Z out_57: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:54:52.8913803Z 2025-03-14T04:54:52.8914171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8914998Z x_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8915636Z 2025-03-14T04:54:52.8915991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8918154Z x_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8920048Z 2025-03-14T04:54:52.8920334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8920480Z x_99 += out_55; out_58: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:54:52.8920552Z 2025-03-14T04:54:52.8920836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8920986Z out_59: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:54:52.8921049Z 2025-03-14T04:54:52.8921303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8921804Z x_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8921889Z 2025-03-14T04:54:52.8922150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8923957Z x_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8924046Z 2025-03-14T04:54:52.8924329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8924473Z out_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:54:52.8924534Z 2025-03-14T04:54:52.8924789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8925271Z x_102: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8925342Z 2025-03-14T04:54:52.8925602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8927522Z x_103: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8927599Z 2025-03-14T04:54:52.8927908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8928059Z out_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:54:52.8928123Z 2025-03-14T04:54:52.8928412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8928933Z x_104: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8929025Z 2025-03-14T04:54:52.8929307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8931259Z x_105: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8931335Z 2025-03-14T04:54:52.8931723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8931899Z x_105 += out_59; out_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:54:52.8931977Z 2025-03-14T04:54:52.8932295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8932465Z out_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:54:52.8932529Z 2025-03-14T04:54:52.8932803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8934067Z x_106: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8934147Z 2025-03-14T04:54:52.8934444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8936389Z x_107: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8936466Z 2025-03-14T04:54:52.8936771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8936950Z out_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:54:52.8937015Z 2025-03-14T04:54:52.8937286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8937823Z x_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8937895Z 2025-03-14T04:54:52.8938172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8940088Z x_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8940162Z 2025-03-14T04:54:52.8940461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8940608Z out_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:54:52.8940671Z 2025-03-14T04:54:52.8940959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8941480Z x_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8941552Z 2025-03-14T04:54:52.8941835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8943686Z x_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8943773Z 2025-03-14T04:54:52.8944054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8944215Z x_111 += out_63; out_66: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:54:52.8944295Z 2025-03-14T04:54:52.8944583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8944723Z out_67: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:54:52.8944793Z 2025-03-14T04:54:52.8945041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8945533Z x_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8945603Z 2025-03-14T04:54:52.8945865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8947707Z x_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8947778Z 2025-03-14T04:54:52.8948069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8948211Z out_68: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:54:52.8948272Z 2025-03-14T04:54:52.8948533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8949024Z x_114: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8949092Z 2025-03-14T04:54:52.8949359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8951204Z x_115: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8951305Z 2025-03-14T04:54:52.8951595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8951737Z out_69: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:54:52.8951799Z 2025-03-14T04:54:52.8952059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8952554Z x_116: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8952624Z 2025-03-14T04:54:52.8952888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8954731Z x_117: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8954806Z 2025-03-14T04:54:52.8955088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8955244Z x_117 += out_67; out_70: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:54:52.8955305Z 2025-03-14T04:54:52.8955597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8955734Z out_71: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:54:52.8955805Z 2025-03-14T04:54:52.8956054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8956574Z x_118: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8956651Z 2025-03-14T04:54:52.8956944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8958770Z x_119: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8958850Z 2025-03-14T04:54:52.8959139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8959274Z out_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:54:52.8959342Z 2025-03-14T04:54:52.8959586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8960194Z x_120: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8960264Z 2025-03-14T04:54:52.8960657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8962533Z x_121: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8962608Z 2025-03-14T04:54:52.8962901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8963043Z out_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:54:52.8963105Z 2025-03-14T04:54:52.8963410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8963905Z x_122: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8963998Z 2025-03-14T04:54:52.8964269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8966101Z x_123: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8966193Z 2025-03-14T04:54:52.8966474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.8966632Z x_123 += out_71; out_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:54:52.8966697Z 2025-03-14T04:54:52.8966982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8967121Z out_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:54:52.8967192Z 2025-03-14T04:54:52.8967454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8967989Z x_124: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.8968055Z 2025-03-14T04:54:52.8968340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8970276Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8970344Z 2025-03-14T04:54:52.8970649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8970805Z out_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:54:52.8970878Z 2025-03-14T04:54:52.8971173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8971840Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.8971943Z 2025-03-14T04:54:52.8972238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.8974194Z x_127: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.8996736Z 2025-03-14T04:54:52.8997325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.8997495Z out_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:54:52.8997580Z 2025-03-14T04:54:52.8997997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.8998547Z x_128: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.8998620Z 2025-03-14T04:54:52.8998906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9000808Z x_129: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9000912Z 2025-03-14T04:54:52.9001210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9001377Z x_129 += out_75; out_78: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:54:52.9001469Z 2025-03-14T04:54:52.9001777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9001926Z out_79: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:54:52.9002002Z 2025-03-14T04:54:52.9002262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9002787Z x_130: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9002852Z 2025-03-14T04:54:52.9003138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9005096Z x_131: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9005168Z 2025-03-14T04:54:52.9005493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9005642Z out_80: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:54:52.9005715Z 2025-03-14T04:54:52.9005982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9006521Z x_132: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9006592Z 2025-03-14T04:54:52.9006878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9008848Z x_133: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9008956Z 2025-03-14T04:54:52.9009276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9009434Z out_81: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:54:52.9009504Z 2025-03-14T04:54:52.9009788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9010345Z x_134: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9010419Z 2025-03-14T04:54:52.9010712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9012939Z x_135: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9013028Z 2025-03-14T04:54:52.9013343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9013520Z x_135 += out_79; out_82: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:54:52.9013591Z 2025-03-14T04:54:52.9013912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9014071Z out_83: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:54:52.9014152Z 2025-03-14T04:54:52.9014432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9015006Z x_136: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9015092Z 2025-03-14T04:54:52.9015396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9017416Z x_137: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9017504Z 2025-03-14T04:54:52.9017812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9017954Z out_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:54:52.9018031Z 2025-03-14T04:54:52.9018293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9018823Z x_138: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9018898Z 2025-03-14T04:54:52.9019174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9021091Z x_139: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9021161Z 2025-03-14T04:54:52.9021477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9021627Z out_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:54:52.9021690Z 2025-03-14T04:54:52.9021979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9022502Z x_140: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9022603Z 2025-03-14T04:54:52.9022870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9024722Z x_141: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9024811Z 2025-03-14T04:54:52.9025108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9025271Z x_141 += out_83; out_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:54:52.9025336Z 2025-03-14T04:54:52.9025641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9025789Z out_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:54:52.9025862Z 2025-03-14T04:54:52.9026121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9026650Z x_142: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9026716Z 2025-03-14T04:54:52.9026990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9028848Z x_143: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9028916Z 2025-03-14T04:54:52.9029217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9029369Z out_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:54:52.9029440Z 2025-03-14T04:54:52.9029688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9030185Z x_144: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9030262Z 2025-03-14T04:54:52.9030539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9032380Z x_145: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9032447Z 2025-03-14T04:54:52.9032756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9032894Z out_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:54:52.9032966Z 2025-03-14T04:54:52.9033249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9033783Z x_146: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9033856Z 2025-03-14T04:54:52.9034131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9035991Z x_147: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9036076Z 2025-03-14T04:54:52.9036351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9036506Z x_147 += out_87; out_90: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:54:52.9036567Z 2025-03-14T04:54:52.9036884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9037022Z out_91: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:54:52.9037092Z 2025-03-14T04:54:52.9037339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9037831Z x_148: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9037892Z 2025-03-14T04:54:52.9038172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9040073Z x_149: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9040146Z 2025-03-14T04:54:52.9040497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9040640Z out_92: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:54:52.9040710Z 2025-03-14T04:54:52.9040971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9041499Z x_150: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9041563Z 2025-03-14T04:54:52.9041853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9043788Z x_151: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9043887Z 2025-03-14T04:54:52.9044198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9044337Z out_93: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:54:52.9044411Z 2025-03-14T04:54:52.9044739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9045271Z x_152: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9045339Z 2025-03-14T04:54:52.9045625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9047572Z x_153: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9047642Z 2025-03-14T04:54:52.9047951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9048106Z x_153 += out_91; out_94: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:54:52.9048182Z 2025-03-14T04:54:52.9048494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9048662Z out_95: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:54:52.9048735Z 2025-03-14T04:54:52.9049027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9049600Z x_154: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9049671Z 2025-03-14T04:54:52.9049993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9052077Z x_155: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9052182Z 2025-03-14T04:54:52.9052512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9052672Z out_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:54:52.9052746Z 2025-03-14T04:54:52.9053007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9053536Z x_156: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9053603Z 2025-03-14T04:54:52.9053887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9055830Z x_157: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9055908Z 2025-03-14T04:54:52.9056201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9056332Z out_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:54:52.9056400Z 2025-03-14T04:54:52.9056660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9057156Z x_158: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9057239Z 2025-03-14T04:54:52.9057504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9059322Z x_159: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9059407Z 2025-03-14T04:54:52.9059684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9059839Z x_159 += out_95; out_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:54:52.9059899Z 2025-03-14T04:54:52.9060187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9060329Z out_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:54:52.9060391Z 2025-03-14T04:54:52.9060872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9061417Z x_160: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9061491Z 2025-03-14T04:54:52.9061755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9063612Z x_161: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9063685Z 2025-03-14T04:54:52.9063974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9064194Z out_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:54:52.9064257Z 2025-03-14T04:54:52.9064512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9065003Z x_162: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9065100Z 2025-03-14T04:54:52.9065362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9067168Z x_163: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9067240Z 2025-03-14T04:54:52.9067519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9067663Z out_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:54:52.9067724Z 2025-03-14T04:54:52.9067998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9068501Z x_164: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9068573Z 2025-03-14T04:54:52.9068840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9070688Z x_165: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9070779Z 2025-03-14T04:54:52.9071057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9071220Z x_165 += out_99; out_102: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:54:52.9071286Z 2025-03-14T04:54:52.9071593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9071737Z out_103: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:54:52.9071807Z 2025-03-14T04:54:52.9072052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9072563Z x_166: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9072637Z 2025-03-14T04:54:52.9072917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9074831Z x_167: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9074909Z 2025-03-14T04:54:52.9075209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9075361Z out_104: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:54:52.9075424Z 2025-03-14T04:54:52.9075695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9076221Z x_168: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9076293Z 2025-03-14T04:54:52.9076573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9078536Z x_169: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9078639Z 2025-03-14T04:54:52.9078937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9079085Z out_105: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:54:52.9079148Z 2025-03-14T04:54:52.9079415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9079933Z x_170: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9080008Z 2025-03-14T04:54:52.9080281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9082199Z x_171: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9082274Z 2025-03-14T04:54:52.9082571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9082742Z x_171 += out_103; out_106: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:54:52.9082806Z 2025-03-14T04:54:52.9083108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9083258Z out_107: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:54:52.9083330Z 2025-03-14T04:54:52.9083593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9084127Z x_172: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9084191Z 2025-03-14T04:54:52.9084504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9086365Z x_173: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9086448Z 2025-03-14T04:54:52.9086764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9086910Z out_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:54:52.9086989Z 2025-03-14T04:54:52.9087265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9087821Z x_174: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9087897Z 2025-03-14T04:54:52.9088190Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9090230Z x_175: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9090312Z 2025-03-14T04:54:52.9090630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9090788Z out_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:54:52.9090856Z 2025-03-14T04:54:52.9091171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9091804Z x_176: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9091913Z 2025-03-14T04:54:52.9092217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9094109Z x_177: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9094196Z 2025-03-14T04:54:52.9094477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9094644Z x_177 += out_107; out_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:54:52.9094706Z 2025-03-14T04:54:52.9094994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9095135Z out_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:54:52.9095209Z 2025-03-14T04:54:52.9095456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9095979Z x_178: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9096048Z 2025-03-14T04:54:52.9096333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9098282Z x_179: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9098351Z 2025-03-14T04:54:52.9098669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9098827Z out_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:54:52.9098900Z 2025-03-14T04:54:52.9099160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9099687Z x_180: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9099767Z 2025-03-14T04:54:52.9100051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9101878Z x_181: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9101942Z 2025-03-14T04:54:52.9102231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9102362Z out_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:54:52.9102432Z 2025-03-14T04:54:52.9102697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9103226Z x_182: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9103298Z 2025-03-14T04:54:52.9103572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9105500Z x_183: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9105589Z 2025-03-14T04:54:52.9105882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9106051Z x_183 += out_111; out_114: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:54:52.9106114Z 2025-03-14T04:54:52.9106431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9106578Z out_115: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:54:52.9106651Z 2025-03-14T04:54:52.9106908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9107422Z x_184: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9107487Z 2025-03-14T04:54:52.9107767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9109690Z x_185: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9109765Z 2025-03-14T04:54:52.9110069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9110209Z out_116: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:54:52.9110280Z 2025-03-14T04:54:52.9110536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9111060Z x_186: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9111124Z 2025-03-14T04:54:52.9111411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9113329Z x_187: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9113423Z 2025-03-14T04:54:52.9113726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9113865Z out_117: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:54:52.9113939Z 2025-03-14T04:54:52.9114201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9114728Z x_188: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9114795Z 2025-03-14T04:54:52.9115076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9117535Z x_189: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9117614Z 2025-03-14T04:54:52.9117905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9118056Z x_189 += out_115; out_118: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:54:52.9118128Z 2025-03-14T04:54:52.9118412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9118561Z out_119: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:54:52.9118634Z 2025-03-14T04:54:52.9118881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9119391Z x_190: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9119454Z 2025-03-14T04:54:52.9119882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9122701Z x_191: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9122830Z 2025-03-14T04:54:52.9123139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9123275Z out_120: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T04:54:52.9123345Z 2025-03-14T04:54:52.9123605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9124110Z x_192: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_120 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9124193Z 2025-03-14T04:54:52.9124632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9126752Z x_193: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9126823Z 2025-03-14T04:54:52.9127133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9127275Z out_121: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T04:54:52.9127360Z 2025-03-14T04:54:52.9127802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9128645Z x_194: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9128770Z 2025-03-14T04:54:52.9129227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9131930Z x_195: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9132082Z 2025-03-14T04:54:52.9132562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9133366Z x_196: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:54:52.9133450Z 2025-03-14T04:54:52.9133823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9136644Z x_197: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9136733Z 2025-03-14T04:54:52.9137076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9137251Z x_195 += x_197; out_122: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T04:54:52.9137338Z 2025-03-14T04:54:52.9137661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9137860Z out_123: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T04:54:52.9137933Z 2025-03-14T04:54:52.9138223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9138795Z x_198: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9138873Z 2025-03-14T04:54:52.9139171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9141276Z x_199: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9141357Z 2025-03-14T04:54:52.9141692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9141864Z out_124: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T04:54:52.9141934Z 2025-03-14T04:54:52.9148981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9149560Z x_200: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_124 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9149650Z 2025-03-14T04:54:52.9149950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9151763Z x_201: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9151844Z 2025-03-14T04:54:52.9152163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9152323Z out_125: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T04:54:52.9152450Z 2025-03-14T04:54:52.9152731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9153254Z x_202: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9153346Z 2025-03-14T04:54:52.9153618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9155526Z x_203: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9155608Z 2025-03-14T04:54:52.9155929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9156092Z x_203 += out_123; out_126: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T04:54:52.9156162Z 2025-03-14T04:54:52.9156447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9156622Z out_127: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T04:54:52.9156689Z 2025-03-14T04:54:52.9156958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9157452Z x_204: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9157531Z 2025-03-14T04:54:52.9157814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9159749Z x_205: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9159859Z 2025-03-14T04:54:52.9160168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9160347Z out_128: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T04:54:52.9160413Z 2025-03-14T04:54:52.9160824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9161327Z x_206: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_128 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9161403Z 2025-03-14T04:54:52.9161668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9163471Z x_207: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9163551Z 2025-03-14T04:54:52.9163887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9164042Z out_129: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T04:54:52.9164110Z 2025-03-14T04:54:52.9164397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9164934Z x_208: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9165007Z 2025-03-14T04:54:52.9165304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9167353Z x_209: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9167487Z 2025-03-14T04:54:52.9167814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9167997Z x_209 += out_127; out_130: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T04:54:52.9168079Z 2025-03-14T04:54:52.9168399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9168574Z out_131: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T04:54:52.9168646Z 2025-03-14T04:54:52.9168985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9169692Z x_210: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_131, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_131 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T04:54:52.9169838Z 2025-03-14T04:54:52.9170224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9182073Z x_211: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_210, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T04:54:52.9182210Z 2025-03-14T04:54:52.9182682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:54:52.9182975Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_210, scale_factor = 2.0, mode = 'nearest'); x_210 = None 2025-03-14T04:54:52.9183043Z 2025-03-14T04:54:52.9183316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9183917Z x_212: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T04:54:52.9183988Z 2025-03-14T04:54:52.9184345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:54:52.9184550Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_212 + top_down_features; x_212 = top_down_features = None 2025-03-14T04:54:52.9184613Z 2025-03-14T04:54:52.9205566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9206216Z x_213: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T04:54:52.9206308Z 2025-03-14T04:54:52.9206736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:54:52.9207086Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T04:54:52.9207157Z 2025-03-14T04:54:52.9207414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9208023Z x_214: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T04:54:52.9208084Z 2025-03-14T04:54:52.9208443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:54:52.9208658Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_214 + top_down_features_1; x_214 = top_down_features_1 = None 2025-03-14T04:54:52.9208725Z 2025-03-14T04:54:52.9208978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9209592Z x_215: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T04:54:52.9209658Z 2025-03-14T04:54:52.9210085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:54:52.9210426Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T04:54:52.9210486Z 2025-03-14T04:54:52.9210745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9211346Z x_216: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T04:54:52.9211417Z 2025-03-14T04:54:52.9211857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:54:52.9212104Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_216 + top_down_features_2; x_216 = top_down_features_2 = None 2025-03-14T04:54:52.9212168Z 2025-03-14T04:54:52.9212438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9213107Z x_217: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T04:54:52.9213191Z 2025-03-14T04:54:52.9213564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T04:54:52.9213781Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_211, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T04:54:52.9213846Z 2025-03-14T04:54:52.9214303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:52.9214468Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T04:54:52.9214532Z 2025-03-14T04:54:52.9214844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9214989Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:54:52.9215053Z 2025-03-14T04:54:52.9215515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:52.9215676Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T04:54:52.9215740Z 2025-03-14T04:54:52.9216051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9216194Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:54:52.9216260Z 2025-03-14T04:54:52.9216668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:52.9216863Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:54:52.9216964Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T04:54:52.9217095Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:54:52.9217158Z 2025-03-14T04:54:52.9217511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:52.9217645Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:54:52.9217718Z 2025-03-14T04:54:52.9218058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:52.9218193Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:54:52.9218257Z 2025-03-14T04:54:52.9218713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:52.9218934Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:54:52.9219016Z 2025-03-14T04:54:52.9219461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:52.9219594Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:54:52.9220042Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:54:52.9220184Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:54:52.9220311Z x_218: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T04:54:52.9220373Z 2025-03-14T04:54:52.9220833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:52.9220986Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T04:54:52.9221052Z 2025-03-14T04:54:52.9221358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9221508Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:54:52.9221570Z 2025-03-14T04:54:52.9222029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:52.9222178Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T04:54:52.9222249Z 2025-03-14T04:54:52.9222551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9222699Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T04:54:52.9222761Z 2025-03-14T04:54:52.9223171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:52.9223365Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T04:54:52.9223470Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T04:54:52.9223593Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T04:54:52.9223658Z 2025-03-14T04:54:52.9223979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:52.9224108Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T04:54:52.9224170Z 2025-03-14T04:54:52.9224500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:52.9224625Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T04:54:52.9224692Z 2025-03-14T04:54:52.9225093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:52.9225316Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T04:54:52.9225393Z 2025-03-14T04:54:52.9225819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:52.9225953Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T04:54:52.9226407Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T04:54:52.9226538Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T04:54:52.9226652Z x_219: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T04:54:52.9226721Z 2025-03-14T04:54:52.9227164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:52.9227315Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T04:54:52.9227378Z 2025-03-14T04:54:52.9227685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9227824Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T04:54:52.9227890Z 2025-03-14T04:54:52.9228329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:52.9228486Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T04:54:52.9228546Z 2025-03-14T04:54:52.9228841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9228973Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T04:54:52.9229036Z 2025-03-14T04:54:52.9229417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:52.9229614Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T04:54:52.9229710Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T04:54:52.9229830Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T04:54:52.9229890Z 2025-03-14T04:54:52.9230215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:52.9230335Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T04:54:52.9230400Z 2025-03-14T04:54:52.9230721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:52.9230846Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T04:54:52.9230904Z 2025-03-14T04:54:52.9231304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:52.9231514Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T04:54:52.9231595Z 2025-03-14T04:54:52.9232000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:52.9232132Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T04:54:52.9232569Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T04:54:52.9232689Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T04:54:52.9232804Z x_220: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T04:54:52.9232865Z 2025-03-14T04:54:52.9233306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:52.9233448Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T04:54:52.9233511Z 2025-03-14T04:54:52.9233802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9233941Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T04:54:52.9234000Z 2025-03-14T04:54:52.9234434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:52.9234574Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T04:54:52.9234639Z 2025-03-14T04:54:52.9234924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9235061Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T04:54:52.9235138Z 2025-03-14T04:54:52.9235511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:52.9235698Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T04:54:52.9235799Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T04:54:52.9235911Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T04:54:52.9235979Z 2025-03-14T04:54:52.9236302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:52.9236426Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T04:54:52.9236487Z 2025-03-14T04:54:52.9236813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:52.9236928Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T04:54:52.9236993Z 2025-03-14T04:54:52.9237401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:52.9237626Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T04:54:52.9237685Z 2025-03-14T04:54:52.9238096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:52.9238236Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T04:54:52.9238660Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T04:54:52.9238782Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T04:54:52.9238891Z x_221: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T04:54:52.9238956Z 2025-03-14T04:54:52.9239382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:52.9239521Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:54:52.9239580Z 2025-03-14T04:54:52.9239870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9240009Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T04:54:52.9240070Z 2025-03-14T04:54:52.9240501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:52.9240642Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:54:52.9240710Z 2025-03-14T04:54:52.9240996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9241150Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T04:54:52.9241210Z 2025-03-14T04:54:52.9241597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:52.9241782Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T04:54:52.9241884Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T04:54:52.9242000Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T04:54:52.9242070Z 2025-03-14T04:54:52.9242398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:52.9242520Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T04:54:52.9242583Z 2025-03-14T04:54:52.9242910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:52.9243026Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T04:54:52.9243106Z 2025-03-14T04:54:52.9243493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:52.9243711Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T04:54:52.9243778Z 2025-03-14T04:54:52.9244182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:52.9244328Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T04:54:52.9244746Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T04:54:52.9244866Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T04:54:52.9244975Z x_222: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T04:54:52.9245039Z 2025-03-14T04:54:52.9245339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:54:52.9245472Z tensor: "f32[269952, 4][4, 1]cpu" = x_218.to(torch.float32); x_218 = None 2025-03-14T04:54:52.9245603Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_219.to(torch.float32); x_219 = None 2025-03-14T04:54:52.9245732Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_220.to(torch.float32); x_220 = None 2025-03-14T04:54:52.9245851Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_221.to(torch.float32); x_221 = None 2025-03-14T04:54:52.9245978Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_222.to(torch.float32); x_222 = None 2025-03-14T04:54:52.9246038Z 2025-03-14T04:54:52.9246305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9246839Z x_223: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_217, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_217 = None 2025-03-14T04:54:52.9246907Z 2025-03-14T04:54:52.9247202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:52.9247408Z x_224: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_223, inplace = False); x_223 = None 2025-03-14T04:54:52.9247471Z 2025-03-14T04:54:52.9247869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:52.9248405Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:54:52.9248467Z 2025-03-14T04:54:52.9248847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:52.9249413Z x_233: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_224 = None 2025-03-14T04:54:52.9249482Z 2025-03-14T04:54:52.9249751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9250285Z x_225: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_215, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_215 = None 2025-03-14T04:54:52.9250347Z 2025-03-14T04:54:52.9250657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:52.9250858Z x_226: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_225, inplace = False); x_225 = None 2025-03-14T04:54:52.9250928Z 2025-03-14T04:54:52.9251320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:52.9252010Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:54:52.9252106Z 2025-03-14T04:54:52.9252507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:52.9253089Z x_234: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_226 = None 2025-03-14T04:54:52.9253152Z 2025-03-14T04:54:52.9253415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9253902Z x_227: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_213, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_213 = None 2025-03-14T04:54:52.9253992Z 2025-03-14T04:54:52.9254271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:52.9254465Z x_228: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_227, inplace = False); x_227 = None 2025-03-14T04:54:52.9254525Z 2025-03-14T04:54:52.9254908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:52.9255425Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:54:52.9255494Z 2025-03-14T04:54:52.9255854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:52.9256396Z x_235: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_228 = None 2025-03-14T04:54:52.9256464Z 2025-03-14T04:54:52.9256734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9257220Z x_229: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_211, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_211 = None 2025-03-14T04:54:52.9257299Z 2025-03-14T04:54:52.9257580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:52.9257765Z x_230: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_229, inplace = False); x_229 = None 2025-03-14T04:54:52.9257831Z 2025-03-14T04:54:52.9258209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:52.9258727Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:54:52.9258789Z 2025-03-14T04:54:52.9259156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:52.9259675Z x_236: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_230 = None 2025-03-14T04:54:52.9259741Z 2025-03-14T04:54:52.9259999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9261012Z x_231: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:54:52.9261086Z 2025-03-14T04:54:52.9261362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:52.9261538Z x_232: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_231, inplace = False); x_231 = None 2025-03-14T04:54:52.9261600Z 2025-03-14T04:54:52.9261974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:52.9262832Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:54:52.9262922Z 2025-03-14T04:54:52.9263279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:52.9264140Z x_237: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_232 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:54:52.9264860Z 2025-03-14T04:54:52.9265200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:54:52.9265371Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:54:52.9265513Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:54:52.9265680Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T04:54:52.9265819Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T04:54:52.9265974Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T04:54:52.9266110Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T04:54:52.9266262Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T04:54:52.9266391Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T04:54:52.9266535Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T04:54:52.9266665Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T04:54:52.9266733Z 2025-03-14T04:54:52.9267162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:54:52.9267340Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_233.view(4, -1, 4, 296, 304); x_233 = None 2025-03-14T04:54:52.9267540Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T04:54:52.9267721Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T04:54:52.9267887Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_234.view(4, -1, 4, 148, 152); x_234 = None 2025-03-14T04:54:52.9268055Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T04:54:52.9268229Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T04:54:52.9268376Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_235.view(4, -1, 4, 74, 76); x_235 = None 2025-03-14T04:54:52.9268550Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T04:54:52.9268721Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T04:54:52.9268869Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_236.view(4, -1, 4, 37, 38); x_236 = None 2025-03-14T04:54:52.9269042Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T04:54:52.9269218Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T04:54:52.9269371Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_237.view(4, -1, 4, 19, 19); x_237 = None 2025-03-14T04:54:52.9269532Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T04:54:52.9269693Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T04:54:52.9269783Z 2025-03-14T04:54:52.9270198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:52.9270415Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:54:52.9270473Z 2025-03-14T04:54:52.9270928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:52.9271080Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:54:52.9271229Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:54:52.9271366Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:54:52.9271433Z 2025-03-14T04:54:52.9271807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:52.9271979Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:54:52.9272036Z 2025-03-14T04:54:52.9272349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:52.9272495Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:54:52.9272554Z 2025-03-14T04:54:52.9272870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:52.9273017Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:54:52.9273146Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:54:52.9273295Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:54:52.9273359Z 2025-03-14T04:54:52.9273674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:52.9273804Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:54:52.9273923Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:54:52.9274073Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T04:54:52.9274131Z 2025-03-14T04:54:52.9274442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:52.9274562Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:54:52.9274649Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T04:54:52.9274806Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T04:54:52.9274872Z 2025-03-14T04:54:52.9275178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:52.9275343Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:54:52.9275429Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T04:54:52.9275561Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T04:54:52.9275618Z 2025-03-14T04:54:52.9275980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:52.9276137Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:52.9276256Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T04:54:52.9276315Z 2025-03-14T04:54:52.9276616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:52.9276767Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:52.9276880Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T04:54:52.9276940Z 2025-03-14T04:54:52.9277238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:52.9277397Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:52.9277512Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T04:54:52.9277572Z 2025-03-14T04:54:52.9277872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:52.9278128Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:54:52.9278241Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T04:54:52.9278300Z 2025-03-14T04:54:52.9278657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:52.9278818Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:54:52.9278927Z 2025-03-14T04:54:52.9279272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:52.9279435Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:54:52.9279492Z 2025-03-14T04:54:52.9279946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:52.9280081Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:54:52.9280201Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T04:54:52.9280405Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:54:52.9280537Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T04:54:52.9280601Z 2025-03-14T04:54:52.9280961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:52.9281257Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:54:52.9281392Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T04:54:52.9281540Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:54:52.9281679Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T04:54:52.9281785Z 2025-03-14T04:54:52.9282145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:52.9282273Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:54:52.9282442Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:54:52.9282567Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T04:54:52.9282632Z 2025-03-14T04:54:52.9282954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:52.9283067Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:54:52.9283227Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:54:52.9283363Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T04:54:52.9283421Z 2025-03-14T04:54:52.9283727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:52.9283820Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:54:52.9283940Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:54:52.9284001Z 2025-03-14T04:54:52.9284305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:52.9284520Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:54:52.9284638Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:54:52.9284758Z 2025-03-14T04:54:52.9285144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:52.9285257Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:54:52.9285384Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:54:52.9285445Z 2025-03-14T04:54:52.9285738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:52.9285850Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:54:52.9285973Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:54:52.9286033Z 2025-03-14T04:54:52.9286372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:52.9286552Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:54:52.9286610Z 2025-03-14T04:54:52.9286961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:52.9287120Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T04:54:52.9287196Z 2025-03-14T04:54:52.9287573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:52.9287747Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:54:52.9287803Z 2025-03-14T04:54:52.9288228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:52.9288436Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T04:54:52.9288500Z 2025-03-14T04:54:52.9288933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:52.9289088Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T04:54:52.9289235Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T04:54:52.9289376Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T04:54:52.9289438Z 2025-03-14T04:54:52.9289809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:52.9289977Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T04:54:52.9290046Z 2025-03-14T04:54:52.9290350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:52.9290497Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T04:54:52.9290556Z 2025-03-14T04:54:52.9290868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:52.9291029Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T04:54:52.9291155Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:54:52.9291311Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T04:54:52.9291372Z 2025-03-14T04:54:52.9291799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:52.9291935Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T04:54:52.9292063Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T04:54:52.9292220Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T04:54:52.9292285Z 2025-03-14T04:54:52.9292605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:52.9292734Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:54:52.9292827Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T04:54:52.9292989Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T04:54:52.9293051Z 2025-03-14T04:54:52.9293374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:52.9293544Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T04:54:52.9293640Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T04:54:52.9293773Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T04:54:52.9293854Z 2025-03-14T04:54:52.9294173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:52.9294340Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:52.9294459Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T04:54:52.9294530Z 2025-03-14T04:54:52.9294843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:52.9295010Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:52.9295126Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T04:54:52.9295197Z 2025-03-14T04:54:52.9295507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:52.9295671Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:52.9295787Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T04:54:52.9295859Z 2025-03-14T04:54:52.9296172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:52.9296376Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T04:54:52.9296489Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T04:54:52.9296560Z 2025-03-14T04:54:52.9296926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:52.9297083Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T04:54:52.9297147Z 2025-03-14T04:54:52.9297503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:52.9297642Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T04:54:52.9297716Z 2025-03-14T04:54:52.9298078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:52.9298230Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T04:54:52.9298360Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T04:54:52.9298536Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T04:54:52.9298682Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T04:54:52.9298755Z 2025-03-14T04:54:52.9299133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:52.9299302Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T04:54:52.9299434Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T04:54:52.9299595Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T04:54:52.9299744Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T04:54:52.9299828Z 2025-03-14T04:54:52.9300181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:52.9300298Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T04:54:52.9300475Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T04:54:52.9300615Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T04:54:52.9300687Z 2025-03-14T04:54:52.9301036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:52.9301159Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T04:54:52.9301334Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T04:54:52.9301483Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T04:54:52.9301548Z 2025-03-14T04:54:52.9301884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:52.9301985Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T04:54:52.9302118Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T04:54:52.9302185Z 2025-03-14T04:54:52.9302517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:52.9302614Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T04:54:52.9302759Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T04:54:52.9302827Z 2025-03-14T04:54:52.9303147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:52.9303272Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T04:54:52.9303416Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T04:54:52.9303480Z 2025-03-14T04:54:52.9303800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:52.9303918Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T04:54:52.9304055Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T04:54:52.9304119Z 2025-03-14T04:54:52.9304476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:52.9304672Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T04:54:52.9304760Z 2025-03-14T04:54:52.9305101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:52.9305306Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T04:54:52.9305368Z 2025-03-14T04:54:52.9305767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:52.9305947Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T04:54:52.9306033Z 2025-03-14T04:54:52.9306576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:52.9306802Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T04:54:52.9306866Z 2025-03-14T04:54:52.9307321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:52.9307483Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T04:54:52.9307635Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T04:54:52.9307783Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T04:54:52.9307846Z 2025-03-14T04:54:52.9308232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:52.9308399Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T04:54:52.9308474Z 2025-03-14T04:54:52.9308791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:52.9308942Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T04:54:52.9309003Z 2025-03-14T04:54:52.9309343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:52.9309476Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T04:54:52.9309607Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:54:52.9309756Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T04:54:52.9309826Z 2025-03-14T04:54:52.9310147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:52.9310278Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T04:54:52.9310397Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T04:54:52.9310554Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T04:54:52.9310620Z 2025-03-14T04:54:52.9310941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:52.9311077Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:54:52.9311179Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T04:54:52.9311308Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T04:54:52.9311395Z 2025-03-14T04:54:52.9311713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:52.9311871Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T04:54:52.9311965Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T04:54:52.9312127Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T04:54:52.9312190Z 2025-03-14T04:54:52.9312503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:52.9312659Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:52.9312781Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T04:54:52.9312844Z 2025-03-14T04:54:52.9313152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:52.9313302Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:52.9313418Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T04:54:52.9313484Z 2025-03-14T04:54:52.9313792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:52.9313949Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:52.9314058Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T04:54:52.9314127Z 2025-03-14T04:54:52.9314432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:52.9314625Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T04:54:52.9314735Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T04:54:52.9314805Z 2025-03-14T04:54:52.9315188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:52.9315343Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T04:54:52.9315404Z 2025-03-14T04:54:52.9315749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:52.9315888Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T04:54:52.9315963Z 2025-03-14T04:54:52.9316313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:52.9316455Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T04:54:52.9316585Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T04:54:52.9316750Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T04:54:52.9316910Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T04:54:52.9316981Z 2025-03-14T04:54:52.9317329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:52.9317500Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T04:54:52.9317621Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T04:54:52.9317779Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T04:54:52.9317940Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T04:54:52.9318013Z 2025-03-14T04:54:52.9318349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:52.9318473Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T04:54:52.9318638Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T04:54:52.9318782Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T04:54:52.9318844Z 2025-03-14T04:54:52.9319188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:52.9319322Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T04:54:52.9319500Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T04:54:52.9319632Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T04:54:52.9319702Z 2025-03-14T04:54:52.9320016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:52.9320124Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T04:54:52.9320249Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T04:54:52.9320317Z 2025-03-14T04:54:52.9320620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:52.9320718Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T04:54:52.9320849Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T04:54:52.9320918Z 2025-03-14T04:54:52.9321217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:52.9321340Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T04:54:52.9321480Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T04:54:52.9321541Z 2025-03-14T04:54:52.9321846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:52.9321958Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T04:54:52.9322090Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T04:54:52.9322155Z 2025-03-14T04:54:52.9322506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:52.9322708Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T04:54:52.9322777Z 2025-03-14T04:54:52.9323104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:52.9323286Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T04:54:52.9323350Z 2025-03-14T04:54:52.9323733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:52.9323921Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T04:54:52.9323993Z 2025-03-14T04:54:52.9324398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:52.9324611Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T04:54:52.9324677Z 2025-03-14T04:54:52.9325119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:52.9325268Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T04:54:52.9325427Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T04:54:52.9325565Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T04:54:52.9325635Z 2025-03-14T04:54:52.9326011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:52.9326186Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T04:54:52.9326252Z 2025-03-14T04:54:52.9326571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:52.9326715Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T04:54:52.9326787Z 2025-03-14T04:54:52.9327118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:52.9327257Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T04:54:52.9327383Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:54:52.9327541Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T04:54:52.9327605Z 2025-03-14T04:54:52.9327939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:52.9328061Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T04:54:52.9328187Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T04:54:52.9328346Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T04:54:52.9328411Z 2025-03-14T04:54:52.9328740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:52.9328896Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:54:52.9328998Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T04:54:52.9329130Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T04:54:52.9329220Z 2025-03-14T04:54:52.9329544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:52.9329700Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T04:54:52.9329814Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T04:54:52.9329953Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T04:54:52.9330019Z 2025-03-14T04:54:52.9330347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:52.9330505Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:52.9330628Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T04:54:52.9330695Z 2025-03-14T04:54:52.9331018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:52.9331174Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:52.9331297Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T04:54:52.9331363Z 2025-03-14T04:54:52.9331781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:52.9331946Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:52.9332067Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T04:54:52.9332134Z 2025-03-14T04:54:52.9332466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:52.9332649Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T04:54:52.9332769Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T04:54:52.9332854Z 2025-03-14T04:54:52.9333207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:52.9333350Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T04:54:52.9333422Z 2025-03-14T04:54:52.9333757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:52.9333906Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T04:54:52.9333968Z 2025-03-14T04:54:52.9334323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:52.9334461Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T04:54:52.9334594Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T04:54:52.9334760Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T04:54:52.9334916Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T04:54:52.9334988Z 2025-03-14T04:54:52.9335339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:52.9335510Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T04:54:52.9335628Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T04:54:52.9335782Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T04:54:52.9335965Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T04:54:52.9336033Z 2025-03-14T04:54:52.9336359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:52.9336476Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T04:54:52.9336633Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T04:54:52.9336774Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T04:54:52.9336834Z 2025-03-14T04:54:52.9337170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:52.9337280Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T04:54:52.9337449Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T04:54:52.9337577Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T04:54:52.9337646Z 2025-03-14T04:54:52.9337951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:52.9338054Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T04:54:52.9338167Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T04:54:52.9338236Z 2025-03-14T04:54:52.9338541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:52.9338658Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T04:54:52.9338772Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T04:54:52.9338840Z 2025-03-14T04:54:52.9339142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:52.9339261Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T04:54:52.9339389Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T04:54:52.9339460Z 2025-03-14T04:54:52.9339760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:52.9339879Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T04:54:52.9340009Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T04:54:52.9340081Z 2025-03-14T04:54:52.9340424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:52.9340628Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T04:54:52.9340690Z 2025-03-14T04:54:52.9341040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:52.9341198Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T04:54:52.9341265Z 2025-03-14T04:54:52.9341640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:52.9341838Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T04:54:52.9341898Z 2025-03-14T04:54:52.9342301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:52.9342508Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T04:54:52.9342570Z 2025-03-14T04:54:52.9343004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:52.9343151Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T04:54:52.9343304Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T04:54:52.9343435Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T04:54:52.9343507Z 2025-03-14T04:54:52.9343878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:52.9344051Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T04:54:52.9344114Z 2025-03-14T04:54:52.9344427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:52.9344583Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T04:54:52.9344655Z 2025-03-14T04:54:52.9344964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:52.9345095Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T04:54:52.9345214Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:54:52.9345366Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T04:54:52.9345429Z 2025-03-14T04:54:52.9345749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:52.9345868Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T04:54:52.9345994Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T04:54:52.9346143Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T04:54:52.9346211Z 2025-03-14T04:54:52.9346533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:52.9346662Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:54:52.9346747Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T04:54:52.9346900Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T04:54:52.9346961Z 2025-03-14T04:54:52.9347278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:52.9347420Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T04:54:52.9347532Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T04:54:52.9347654Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T04:54:52.9347724Z 2025-03-14T04:54:52.9348026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:52.9348183Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:52.9348293Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T04:54:52.9348363Z 2025-03-14T04:54:52.9348661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:52.9348814Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:52.9348922Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T04:54:52.9348990Z 2025-03-14T04:54:52.9349298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:52.9349441Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:52.9349553Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T04:54:52.9349615Z 2025-03-14T04:54:52.9349924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:52.9350102Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T04:54:52.9350241Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T04:54:52.9350306Z 2025-03-14T04:54:52.9350652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:52.9350787Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T04:54:52.9350857Z 2025-03-14T04:54:52.9351185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:52.9351323Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T04:54:52.9351383Z 2025-03-14T04:54:52.9351731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:52.9351865Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T04:54:52.9351989Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T04:54:52.9352163Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T04:54:52.9352303Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T04:54:52.9352366Z 2025-03-14T04:54:52.9352731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:52.9352861Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T04:54:52.9352986Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T04:54:52.9353132Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T04:54:52.9353287Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T04:54:52.9353348Z 2025-03-14T04:54:52.9353689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:52.9353801Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T04:54:52.9353966Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T04:54:52.9354096Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T04:54:52.9354163Z 2025-03-14T04:54:52.9354494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:52.9354614Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T04:54:52.9354774Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T04:54:52.9354907Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T04:54:52.9354968Z 2025-03-14T04:54:52.9355282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:52.9355377Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T04:54:52.9355495Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T04:54:52.9355555Z 2025-03-14T04:54:52.9355866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:52.9355985Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T04:54:52.9356096Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T04:54:52.9356157Z 2025-03-14T04:54:52.9356468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:52.9356586Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T04:54:52.9356716Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T04:54:52.9356784Z 2025-03-14T04:54:52.9357081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:52.9357200Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T04:54:52.9357329Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T04:54:52.9357398Z 2025-03-14T04:54:52.9357760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:52.9357949Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T04:54:52.9358009Z 2025-03-14T04:54:52.9358358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:52.9358513Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T04:54:52.9358580Z 2025-03-14T04:54:52.9358959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:52.9359149Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T04:54:52.9359210Z 2025-03-14T04:54:52.9359702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:54:52.9359831Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:54:52.9359898Z 2025-03-14T04:54:52.9360187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9360329Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T04:54:52.9360394Z 2025-03-14T04:54:52.9361017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:52.9361137Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T04:54:52.9361249Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T04:54:52.9361361Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:54:52.9361432Z 2025-03-14T04:54:52.9361891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:52.9362033Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:54:52.9362308Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T04:54:52.9362383Z 2025-03-14T04:54:52.9362862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:52.9363048Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:52.9363109Z 2025-03-14T04:54:52.9363412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9363538Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T04:54:52.9363601Z 2025-03-14T04:54:52.9364053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:52.9364172Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T04:54:52.9364313Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T04:54:52.9364428Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T04:54:52.9364499Z 2025-03-14T04:54:52.9364951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:52.9365110Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:54:52.9365345Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T04:54:52.9365436Z 2025-03-14T04:54:52.9365892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:52.9366060Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:52.9366120Z 2025-03-14T04:54:52.9366420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9366542Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T04:54:52.9366611Z 2025-03-14T04:54:52.9367056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:52.9367178Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T04:54:52.9367295Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T04:54:52.9367418Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T04:54:52.9367480Z 2025-03-14T04:54:52.9367945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:52.9368081Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:54:52.9368327Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T04:54:52.9368390Z 2025-03-14T04:54:52.9368881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:52.9369047Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:52.9369118Z 2025-03-14T04:54:52.9369414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9369546Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T04:54:52.9369609Z 2025-03-14T04:54:52.9370061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:52.9370182Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T04:54:52.9370286Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T04:54:52.9370408Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T04:54:52.9370472Z 2025-03-14T04:54:52.9370963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:52.9371113Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:54:52.9371366Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T04:54:52.9371500Z 2025-03-14T04:54:52.9372004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:52.9372207Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:52.9372280Z 2025-03-14T04:54:52.9372595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9372721Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T04:54:52.9372780Z 2025-03-14T04:54:52.9373204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:52.9373309Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T04:54:52.9373417Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T04:54:52.9373528Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T04:54:52.9373599Z 2025-03-14T04:54:52.9374051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:52.9374220Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:54:52.9374446Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T04:54:52.9374517Z 2025-03-14T04:54:52.9374983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:52.9375149Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:52.9375210Z 2025-03-14T04:54:52.9375505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:52.9375623Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T04:54:52.9375692Z 2025-03-14T04:54:52.9375966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:54:52.9376345Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T04:54:52.9376414Z 2025-03-14T04:54:52.9376689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:54:52.9377174Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T04:54:52.9377250Z 2025-03-14T04:54:52.9377535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:54:52.9377737Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T04:54:52.9377807Z 2025-03-14T04:54:52.9378201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:54:52.9378346Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T04:54:52.9378408Z 2025-03-14T04:54:52.9378710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:54:52.9378855Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T04:54:52.9378924Z 2025-03-14T04:54:52.9379294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:54:52.9379432Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T04:54:52.9379496Z 2025-03-14T04:54:52.9379980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:54:52.9380115Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T04:54:52.9380238Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:54:52.9380397Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:54:52.9380534Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:54:52.9380595Z 2025-03-14T04:54:52.9380967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:54:52.9381096Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:54:52.9381167Z 2025-03-14T04:54:52.9382154Z 2025-03-14T04:54:52.9382264Z class GraphModule(torch.nn.Module): 2025-03-14T04:54:52.9507288Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T04:54:52.9508205Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:54:52.9508644Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9509107Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9509557Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9510008Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9510450Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9510926Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9511423Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9511953Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9512429Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9512894Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9513309Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9513780Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9514252Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9514713Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9515161Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9515578Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9516065Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9516542Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9516975Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9517469Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9517902Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:54:52.9518414Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9518896Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9519395Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9519868Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9520298Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9520779Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9521251Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9521713Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9522121Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9522470Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9522882Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9523282Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9523729Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9524141Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9524507Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9524924Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9525327Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9525737Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9526117Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9526743Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9527151Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9527591Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9527982Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9528359Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9528721Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9529130Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9529542Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9529927Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9530330Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9530687Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9531102Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9531581Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9531977Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9532381Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9532776Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9533219Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9533700Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9534117Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9534531Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9534895Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9535339Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9535781Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9536186Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9536598Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9536966Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9537432Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9537870Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9538279Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9538681Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9539068Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:54:52.9539547Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9539985Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9540433Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9540845Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9541237Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9541681Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9542114Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9542528Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9542926Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9543285Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9543691Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9544120Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9544517Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9544893Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9545255Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9545669Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9546084Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9546487Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9546877Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9547244Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9547650Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9548074Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9548458Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9548841Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9549187Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9549600Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9550008Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9550390Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9550785Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9551134Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9551545Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9551950Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9552338Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9552724Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9553088Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9553515Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9553914Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9554316Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9554695Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9555049Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9555454Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9555854Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9556243Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9556615Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9556969Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9557387Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9557802Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9558192Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9558565Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9558920Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9559342Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9559766Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9560163Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9560648Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9561047Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9561443Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9561844Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9562220Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9562597Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9562951Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9563350Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9563797Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9564177Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9564552Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9564920Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:54:52.9565350Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9565779Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9566199Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9566620Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9566965Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9567398Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9567801Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9568199Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9568581Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9568930Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9569346Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9569750Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9570143Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9570536Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9570898Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9571341Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9571864Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9572331Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9572759Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9573134Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9573585Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9573997Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9574408Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9574859Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9575235Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9575675Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9576108Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9576519Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9576930Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9577319Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9577771Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9578211Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9578611Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9579021Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9579387Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9579852Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9580285Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9580709Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9581139Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9581511Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9581948Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9582373Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9582789Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9583196Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9583566Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9584003Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9584449Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9584847Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9585224Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9585585Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9586001Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9586417Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9586809Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9587197Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9587552Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9587989Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9588398Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9588791Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9589169Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9589526Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9589932Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9590337Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9590731Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9591119Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9591481Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9591885Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9592292Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9592675Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9593075Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9593433Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9593857Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9594264Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9594663Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9595050Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9595398Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9595810Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9596217Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9596593Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9596978Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9597342Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9597761Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9598163Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9598558Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9598934Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9599280Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9599712Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9600131Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9600522Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9600914Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9601269Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9601678Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9602085Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9602474Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9602848Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9603204Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9603612Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9604039Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9604434Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9604809Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9605163Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9605567Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9606000Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9606383Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9606807Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9607184Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9607631Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9608062Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9608467Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9608885Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9609252Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9609692Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9610127Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9610542Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9610949Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9611322Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9611832Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9612275Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9612688Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9613171Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9613545Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9614014Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9614449Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9614888Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9615295Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9615674Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9616135Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9616575Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9616998Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9617396Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9617790Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9618233Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9618675Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9619089Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9619492Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9619870Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9620325Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9620781Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9621201Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9621618Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9621996Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9622429Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9622866Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9623276Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9623696Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9624056Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9624465Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9624893Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9625286Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9625671Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9626026Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9626445Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9626876Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9627264Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9627666Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9628021Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9628462Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9628866Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9629263Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9629650Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9630001Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9630418Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9630824Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9631235Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9631616Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9631980Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9632399Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9632801Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9633211Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9633589Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9633980Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9634397Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9634819Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9635213Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9635586Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9635939Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9636346Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9636757Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9637140Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9637521Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9637899Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9638306Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9638712Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9639097Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9639481Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9639883Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9640297Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9640720Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9641105Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9641511Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9641864Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9642282Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9642687Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9643080Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9643464Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9643818Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9644255Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9644659Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9645053Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9645434Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9645790Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9646221Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9646623Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9647032Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9647407Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9647780Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9648190Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9648600Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9649001Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9649400Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9649776Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9650215Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9650699Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9651104Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9651589Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9651976Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9652409Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9652843Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9653283Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9653704Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9654098Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9654537Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9654996Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9655422Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9655842Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9656219Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9656665Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9657103Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9657518Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9657949Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9658325Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9658761Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9659199Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9659622Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9660057Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9660425Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9660985Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9661424Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9661889Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9662294Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9662676Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9663119Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9663545Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9663960Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9664358Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9664729Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9665192Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9665603Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9665995Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9666370Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9666729Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9667155Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9667572Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9667983Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9668386Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9668745Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9669152Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9669561Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9669947Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9670335Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9670684Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9671100Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9671525Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9671916Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9672301Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9672655Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9673075Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9673496Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9673892Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9674292Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9674642Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9675077Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9675479Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9675876Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9676256Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9676621Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9677041Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9677447Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9677851Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9678228Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9678584Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9678993Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9679398Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9679792Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9680184Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9680540Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9680964Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9681390Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9681784Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9682157Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9682512Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9682924Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9683335Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9683718Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9684100Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9684477Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9684889Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9685297Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9685681Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9686071Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9686441Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9686859Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9687283Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9687668Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9688078Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9688426Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9688844Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9689249Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9689641Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9690025Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9690377Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9690805Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9691233Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9691719Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9692127Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9692525Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9692989Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9693433Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9693870Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9694277Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9694672Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9695113Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9695555Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9695979Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9696389Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9696764Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9697203Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9697647Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9698084Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9698501Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9698880Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9699323Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9699765Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9700204Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9700624Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9701011Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9701458Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9701920Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9702322Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9702740Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9703115Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9703555Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9703956Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9704360Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9704786Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9705144Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9705560Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9705963Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9706377Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9706779Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9707180Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:54:52.9707607Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9708037Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9708462Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9708849Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9709201Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9709614Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9710013Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9710406Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9710778Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9711133Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9711552Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9711966Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9712359Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9712735Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9713093Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9713514Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9713923Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9714330Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9714709Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9715082Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:54:52.9715490Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9715899Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9716280Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9716665Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9717012Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:54:52.9717425Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9717846Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9718228Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9718609Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9718956Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:54:52.9719368Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:52.9719772Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:52.9720179Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:52.9720559Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:52.9720806Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T04:54:52.9721029Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T04:54:52.9721265Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T04:54:52.9721483Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T04:54:52.9721704Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T04:54:52.9721925Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T04:54:52.9722143Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T04:54:52.9722357Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T04:54:52.9722573Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T04:54:52.9722792Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T04:54:52.9723007Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T04:54:52.9723221Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T04:54:52.9723440Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T04:54:52.9723659Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T04:54:52.9723886Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T04:54:52.9724143Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T04:54:52.9724512Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:54:52.9724860Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T04:54:52.9725215Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T04:54:52.9725570Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T04:54:52.9725920Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T04:54:52.9726261Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:54:52.9726593Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:54:52.9726975Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:54:52.9727325Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:54:52.9727695Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:54:52.9728031Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:54:52.9728102Z 2025-03-14T04:54:52.9728389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9728940Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9729004Z 2025-03-14T04:54:52.9729293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9731082Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9731149Z 2025-03-14T04:54:52.9731510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:54:52.9731660Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:54:52.9731734Z 2025-03-14T04:54:52.9732136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:54:52.9732413Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:54:52.9732478Z 2025-03-14T04:54:52.9732763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9733296Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9733370Z 2025-03-14T04:54:52.9733657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9735489Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9735579Z 2025-03-14T04:54:52.9735870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9736015Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:54:52.9736078Z 2025-03-14T04:54:52.9736335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9736839Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9736903Z 2025-03-14T04:54:52.9737172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9739018Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9739096Z 2025-03-14T04:54:52.9739412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9739551Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:54:52.9739621Z 2025-03-14T04:54:52.9739871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9740410Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9740488Z 2025-03-14T04:54:52.9740761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9742595Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9742678Z 2025-03-14T04:54:52.9742931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9743427Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:54:52.9743496Z 2025-03-14T04:54:52.9743762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9745695Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9745768Z 2025-03-14T04:54:52.9746049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9746199Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:54:52.9746262Z 2025-03-14T04:54:52.9746550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9746712Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:54:52.9746782Z 2025-03-14T04:54:52.9747036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9747552Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9747615Z 2025-03-14T04:54:52.9747884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9749717Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9749782Z 2025-03-14T04:54:52.9750070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9750210Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:54:52.9750280Z 2025-03-14T04:54:52.9750525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9751026Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9751095Z 2025-03-14T04:54:52.9751372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9753190Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9753262Z 2025-03-14T04:54:52.9753559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9753703Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:54:52.9753785Z 2025-03-14T04:54:52.9754043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9754539Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9754625Z 2025-03-14T04:54:52.9754888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9756688Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9756759Z 2025-03-14T04:54:52.9757031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9757187Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:54:52.9757248Z 2025-03-14T04:54:52.9757537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9757681Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:54:52.9757752Z 2025-03-14T04:54:52.9758016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9758516Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9758578Z 2025-03-14T04:54:52.9758855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9760839Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9760931Z 2025-03-14T04:54:52.9761227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9761374Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:54:52.9761457Z 2025-03-14T04:54:52.9761709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9762211Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9762281Z 2025-03-14T04:54:52.9762544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9764350Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9764422Z 2025-03-14T04:54:52.9764736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9764881Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:54:52.9764942Z 2025-03-14T04:54:52.9765199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9765695Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9765765Z 2025-03-14T04:54:52.9766026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9767852Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9767941Z 2025-03-14T04:54:52.9768219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9768396Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:54:52.9768457Z 2025-03-14T04:54:52.9768746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9768895Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:54:52.9768965Z 2025-03-14T04:54:52.9769214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9769719Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9769781Z 2025-03-14T04:54:52.9770052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9771979Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9772050Z 2025-03-14T04:54:52.9772381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9772548Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:54:52.9772627Z 2025-03-14T04:54:52.9772914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9773487Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9773562Z 2025-03-14T04:54:52.9773863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9775689Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9775790Z 2025-03-14T04:54:52.9776081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9776231Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:54:52.9776292Z 2025-03-14T04:54:52.9776549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9777050Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9777120Z 2025-03-14T04:54:52.9777383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9779219Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9779291Z 2025-03-14T04:54:52.9779545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9780058Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:54:52.9780120Z 2025-03-14T04:54:52.9780391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9782288Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9782387Z 2025-03-14T04:54:52.9782672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9782819Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:54:52.9782886Z 2025-03-14T04:54:52.9783169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9783326Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:54:52.9783389Z 2025-03-14T04:54:52.9783648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9784159Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9784232Z 2025-03-14T04:54:52.9784494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9786320Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9786395Z 2025-03-14T04:54:52.9786684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9786837Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:54:52.9786900Z 2025-03-14T04:54:52.9787163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9787979Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9788069Z 2025-03-14T04:54:52.9788348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9790207Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9790305Z 2025-03-14T04:54:52.9790590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9790736Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:54:52.9790796Z 2025-03-14T04:54:52.9791053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9791546Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9791609Z 2025-03-14T04:54:52.9791870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9793654Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9793728Z 2025-03-14T04:54:52.9794010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9794176Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:54:52.9794246Z 2025-03-14T04:54:52.9794526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9794697Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:54:52.9794756Z 2025-03-14T04:54:52.9795006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9795499Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9795585Z 2025-03-14T04:54:52.9795852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9797640Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9797709Z 2025-03-14T04:54:52.9797986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9798133Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:54:52.9798191Z 2025-03-14T04:54:52.9798444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9798945Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9799015Z 2025-03-14T04:54:52.9799276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9801053Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9801138Z 2025-03-14T04:54:52.9801410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9801551Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:54:52.9801611Z 2025-03-14T04:54:52.9801862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9802360Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9802428Z 2025-03-14T04:54:52.9802691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9804512Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9804584Z 2025-03-14T04:54:52.9804858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9805014Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:54:52.9805097Z 2025-03-14T04:54:52.9805376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9805532Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:54:52.9805594Z 2025-03-14T04:54:52.9805850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9806337Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9806407Z 2025-03-14T04:54:52.9806669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9808518Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9808620Z 2025-03-14T04:54:52.9808917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9809071Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:54:52.9809133Z 2025-03-14T04:54:52.9809399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9809918Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9809990Z 2025-03-14T04:54:52.9810279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9812393Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9812479Z 2025-03-14T04:54:52.9812800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9812953Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:54:52.9813019Z 2025-03-14T04:54:52.9813297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9813797Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9813872Z 2025-03-14T04:54:52.9814139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9815982Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9816098Z 2025-03-14T04:54:52.9816385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9816547Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:54:52.9816611Z 2025-03-14T04:54:52.9816904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9817053Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:54:52.9817127Z 2025-03-14T04:54:52.9817378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9817874Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9817944Z 2025-03-14T04:54:52.9818210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9820027Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9820100Z 2025-03-14T04:54:52.9820383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9820527Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:54:52.9820590Z 2025-03-14T04:54:52.9820850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9821357Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9821441Z 2025-03-14T04:54:52.9821700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9823491Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9823577Z 2025-03-14T04:54:52.9823867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9824008Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:54:52.9824067Z 2025-03-14T04:54:52.9824329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9824820Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9824890Z 2025-03-14T04:54:52.9825157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9827013Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9827085Z 2025-03-14T04:54:52.9827343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9827858Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:54:52.9827922Z 2025-03-14T04:54:52.9828192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9830072Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9830151Z 2025-03-14T04:54:52.9830438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9830573Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:54:52.9830645Z 2025-03-14T04:54:52.9830925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9831076Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:54:52.9831139Z 2025-03-14T04:54:52.9831394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9831874Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9831943Z 2025-03-14T04:54:52.9832226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9834025Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9834100Z 2025-03-14T04:54:52.9834386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9834542Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:54:52.9834613Z 2025-03-14T04:54:52.9834866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9835378Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9835459Z 2025-03-14T04:54:52.9835723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9837503Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9837574Z 2025-03-14T04:54:52.9837863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9837990Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:54:52.9838060Z 2025-03-14T04:54:52.9838306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9838812Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9838875Z 2025-03-14T04:54:52.9839151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9840996Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9841086Z 2025-03-14T04:54:52.9841371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9841535Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:54:52.9841605Z 2025-03-14T04:54:52.9841893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9842040Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:54:52.9842120Z 2025-03-14T04:54:52.9842386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9842868Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9842941Z 2025-03-14T04:54:52.9843198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9845033Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9845107Z 2025-03-14T04:54:52.9845392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9845550Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:54:52.9845614Z 2025-03-14T04:54:52.9845873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9846363Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9846436Z 2025-03-14T04:54:52.9846706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9848530Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9848619Z 2025-03-14T04:54:52.9848929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9849119Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:54:52.9849183Z 2025-03-14T04:54:52.9849463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9850000Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9850069Z 2025-03-14T04:54:52.9850372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9852437Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9852524Z 2025-03-14T04:54:52.9852873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9853031Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:54:52.9853105Z 2025-03-14T04:54:52.9853416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9853570Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:54:52.9853638Z 2025-03-14T04:54:52.9853916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9854428Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9854502Z 2025-03-14T04:54:52.9854785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9856697Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9856801Z 2025-03-14T04:54:52.9857100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9857247Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:54:52.9857312Z 2025-03-14T04:54:52.9857583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9858103Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9858177Z 2025-03-14T04:54:52.9858455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9860392Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9860469Z 2025-03-14T04:54:52.9860911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9861066Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:54:52.9861132Z 2025-03-14T04:54:52.9861403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9861917Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9862028Z 2025-03-14T04:54:52.9862305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9864138Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9864233Z 2025-03-14T04:54:52.9864510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9864662Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:54:52.9864725Z 2025-03-14T04:54:52.9865012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9865158Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:54:52.9865221Z 2025-03-14T04:54:52.9865477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9865950Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9866020Z 2025-03-14T04:54:52.9866285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9868122Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9868193Z 2025-03-14T04:54:52.9868482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9868615Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:54:52.9868674Z 2025-03-14T04:54:52.9868944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9869428Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9869511Z 2025-03-14T04:54:52.9869777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9871604Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9871676Z 2025-03-14T04:54:52.9871953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9872089Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:54:52.9872149Z 2025-03-14T04:54:52.9872400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9872891Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9872959Z 2025-03-14T04:54:52.9873235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9875072Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9875146Z 2025-03-14T04:54:52.9875444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9875595Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:54:52.9875656Z 2025-03-14T04:54:52.9875953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9876086Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:54:52.9876152Z 2025-03-14T04:54:52.9876394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9876882Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9876949Z 2025-03-14T04:54:52.9877204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9878981Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9879046Z 2025-03-14T04:54:52.9879335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9879472Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:54:52.9879530Z 2025-03-14T04:54:52.9879797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9880278Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9880343Z 2025-03-14T04:54:52.9880599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9882398Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9882495Z 2025-03-14T04:54:52.9882769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9882902Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:54:52.9882978Z 2025-03-14T04:54:52.9883237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9883706Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9883774Z 2025-03-14T04:54:52.9884037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9885827Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9885896Z 2025-03-14T04:54:52.9886175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9886337Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:54:52.9886402Z 2025-03-14T04:54:52.9886688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9886827Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:54:52.9886896Z 2025-03-14T04:54:52.9887142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9887624Z x_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9887686Z 2025-03-14T04:54:52.9887958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9889766Z x_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9889864Z 2025-03-14T04:54:52.9890168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9890305Z out_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:54:52.9890380Z 2025-03-14T04:54:52.9890646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9891175Z x_90: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9891240Z 2025-03-14T04:54:52.9891607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9893509Z x_91: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9893575Z 2025-03-14T04:54:52.9893868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9893996Z out_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:54:52.9894066Z 2025-03-14T04:54:52.9894310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9894803Z x_92: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9894873Z 2025-03-14T04:54:52.9895162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9897044Z x_93: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9897146Z 2025-03-14T04:54:52.9897426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9897578Z x_93 += out_51; out_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:54:52.9897638Z 2025-03-14T04:54:52.9897925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9898063Z out_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:54:52.9898134Z 2025-03-14T04:54:52.9898380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9898867Z x_94: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9898930Z 2025-03-14T04:54:52.9899200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9901028Z x_95: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9901094Z 2025-03-14T04:54:52.9901388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9901520Z out_56: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:54:52.9901588Z 2025-03-14T04:54:52.9901835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9902346Z x_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9902424Z 2025-03-14T04:54:52.9902693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9904476Z x_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9904555Z 2025-03-14T04:54:52.9904849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9904978Z out_57: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:54:52.9905047Z 2025-03-14T04:54:52.9905295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9905790Z x_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9905852Z 2025-03-14T04:54:52.9906120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9907952Z x_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9908017Z 2025-03-14T04:54:52.9908301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9908443Z x_99 += out_55; out_58: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:54:52.9908527Z 2025-03-14T04:54:52.9908810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9908967Z out_59: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:54:52.9909027Z 2025-03-14T04:54:52.9909281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9909779Z x_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9909856Z 2025-03-14T04:54:52.9910128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9911934Z x_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9912005Z 2025-03-14T04:54:52.9912293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9912429Z out_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:54:52.9912497Z 2025-03-14T04:54:52.9912744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9913263Z x_102: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9913328Z 2025-03-14T04:54:52.9913598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9915393Z x_103: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9915465Z 2025-03-14T04:54:52.9915779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9915912Z out_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:54:52.9915979Z 2025-03-14T04:54:52.9916227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9916753Z x_104: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9916817Z 2025-03-14T04:54:52.9917089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9918932Z x_105: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9919000Z 2025-03-14T04:54:52.9919312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9919471Z x_105 += out_59; out_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:54:52.9919546Z 2025-03-14T04:54:52.9919855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9920001Z out_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:54:52.9920061Z 2025-03-14T04:54:52.9920346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9920826Z x_106: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9920897Z 2025-03-14T04:54:52.9921173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9922995Z x_107: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9923096Z 2025-03-14T04:54:52.9923385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9923530Z out_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:54:52.9923593Z 2025-03-14T04:54:52.9923853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9924347Z x_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9924409Z 2025-03-14T04:54:52.9924682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9926510Z x_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9926585Z 2025-03-14T04:54:52.9926875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9927009Z out_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:54:52.9927078Z 2025-03-14T04:54:52.9927323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9927814Z x_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9927877Z 2025-03-14T04:54:52.9928145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9930038Z x_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9930144Z 2025-03-14T04:54:52.9930443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9930604Z x_111 += out_63; out_66: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:54:52.9930675Z 2025-03-14T04:54:52.9930986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9931137Z out_67: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:54:52.9931200Z 2025-03-14T04:54:52.9931552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9932128Z x_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9932204Z 2025-03-14T04:54:52.9932508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9934479Z x_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9934558Z 2025-03-14T04:54:52.9934857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9935005Z out_68: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:54:52.9935074Z 2025-03-14T04:54:52.9935349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9935890Z x_114: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9935981Z 2025-03-14T04:54:52.9936266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9938182Z x_115: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9938275Z 2025-03-14T04:54:52.9938577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9938730Z out_69: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:54:52.9938800Z 2025-03-14T04:54:52.9939061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9939592Z x_116: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9939659Z 2025-03-14T04:54:52.9939943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9941791Z x_117: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9941862Z 2025-03-14T04:54:52.9942142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9942286Z x_117 += out_67; out_70: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:54:52.9942354Z 2025-03-14T04:54:52.9942649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9942793Z out_71: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:54:52.9942870Z 2025-03-14T04:54:52.9943120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9943592Z x_118: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9943677Z 2025-03-14T04:54:52.9943931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9945704Z x_119: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9945774Z 2025-03-14T04:54:52.9946045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9946183Z out_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:54:52.9946243Z 2025-03-14T04:54:52.9946488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9946975Z x_120: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9947045Z 2025-03-14T04:54:52.9947307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9949109Z x_121: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9949181Z 2025-03-14T04:54:52.9949458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9949608Z out_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:54:52.9949668Z 2025-03-14T04:54:52.9949919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9950415Z x_122: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9950484Z 2025-03-14T04:54:52.9950754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9952583Z x_123: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9952654Z 2025-03-14T04:54:52.9952938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9953087Z x_123 += out_71; out_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:54:52.9953155Z 2025-03-14T04:54:52.9953446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9953595Z out_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:54:52.9953655Z 2025-03-14T04:54:52.9953907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9954382Z x_124: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9954452Z 2025-03-14T04:54:52.9954711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9956546Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9956680Z 2025-03-14T04:54:52.9956962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9957101Z out_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:54:52.9957164Z 2025-03-14T04:54:52.9957417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9957906Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9957975Z 2025-03-14T04:54:52.9958236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9960056Z x_127: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9960128Z 2025-03-14T04:54:52.9960413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9960638Z out_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:54:52.9960708Z 2025-03-14T04:54:52.9960963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9961453Z x_128: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9961525Z 2025-03-14T04:54:52.9961785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9963644Z x_129: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9963758Z 2025-03-14T04:54:52.9964035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9964189Z x_129 += out_75; out_78: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:54:52.9964251Z 2025-03-14T04:54:52.9964537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9964671Z out_79: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:54:52.9964740Z 2025-03-14T04:54:52.9964989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9965483Z x_130: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9965555Z 2025-03-14T04:54:52.9965818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9967650Z x_131: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9967723Z 2025-03-14T04:54:52.9968008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9968148Z out_80: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:54:52.9968212Z 2025-03-14T04:54:52.9968471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9968971Z x_132: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9969055Z 2025-03-14T04:54:52.9969314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9971186Z x_133: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9971275Z 2025-03-14T04:54:52.9971637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9971793Z out_81: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:54:52.9971855Z 2025-03-14T04:54:52.9972124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9972651Z x_134: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9972727Z 2025-03-14T04:54:52.9973006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9974919Z x_135: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9974995Z 2025-03-14T04:54:52.9975274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9975432Z x_135 += out_79; out_82: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:54:52.9975495Z 2025-03-14T04:54:52.9975799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9975938Z out_83: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:54:52.9976023Z 2025-03-14T04:54:52.9976270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9976762Z x_136: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9976839Z 2025-03-14T04:54:52.9977108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9978951Z x_137: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9979016Z 2025-03-14T04:54:52.9979306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9979436Z out_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:54:52.9979507Z 2025-03-14T04:54:52.9979751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9980260Z x_138: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9980330Z 2025-03-14T04:54:52.9980597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9982443Z x_139: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9982516Z 2025-03-14T04:54:52.9982801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9982959Z out_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:54:52.9983020Z 2025-03-14T04:54:52.9983276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9983767Z x_140: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9983856Z 2025-03-14T04:54:52.9984118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9985951Z x_141: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9986022Z 2025-03-14T04:54:52.9986302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9986457Z x_141 += out_83; out_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:54:52.9986519Z 2025-03-14T04:54:52.9986847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9986995Z out_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:54:52.9987066Z 2025-03-14T04:54:52.9987333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9987818Z x_142: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9987883Z 2025-03-14T04:54:52.9988165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9990026Z x_143: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9990124Z 2025-03-14T04:54:52.9990415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9990546Z out_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:54:52.9990615Z 2025-03-14T04:54:52.9990861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9991351Z x_144: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:52.9991420Z 2025-03-14T04:54:52.9991683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9993524Z x_145: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9993589Z 2025-03-14T04:54:52.9993881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9994021Z out_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:54:52.9994082Z 2025-03-14T04:54:52.9994339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9994831Z x_146: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:52.9994900Z 2025-03-14T04:54:52.9995170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:52.9997003Z x_147: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:52.9997103Z 2025-03-14T04:54:52.9997382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:52.9997538Z x_147 += out_87; out_90: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:54:52.9997601Z 2025-03-14T04:54:52.9997887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:52.9998025Z out_91: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:54:52.9998091Z 2025-03-14T04:54:52.9998340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:52.9998836Z x_148: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:52.9998898Z 2025-03-14T04:54:52.9999166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0000994Z x_149: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0001058Z 2025-03-14T04:54:53.0001357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0001495Z out_92: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:54:53.0001567Z 2025-03-14T04:54:53.0001843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0002419Z x_150: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0002485Z 2025-03-14T04:54:53.0002792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0004681Z x_151: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0004776Z 2025-03-14T04:54:53.0005103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0005242Z out_93: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:54:53.0005316Z 2025-03-14T04:54:53.0005589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0006161Z x_152: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0006241Z 2025-03-14T04:54:53.0006534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0008567Z x_153: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0008646Z 2025-03-14T04:54:53.0008956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0009132Z x_153 += out_91; out_94: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:54:53.0009199Z 2025-03-14T04:54:53.0009544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0009699Z out_95: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:54:53.0009791Z 2025-03-14T04:54:53.0010077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0010637Z x_154: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0010724Z 2025-03-14T04:54:53.0011038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0013155Z x_155: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0013234Z 2025-03-14T04:54:53.0013551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0013687Z out_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:54:53.0013760Z 2025-03-14T04:54:53.0014029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0014588Z x_156: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0014652Z 2025-03-14T04:54:53.0014925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0016851Z x_157: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0016919Z 2025-03-14T04:54:53.0017223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0017384Z out_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:54:53.0017455Z 2025-03-14T04:54:53.0017713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0018254Z x_158: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0018335Z 2025-03-14T04:54:53.0018623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0020535Z x_159: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0020601Z 2025-03-14T04:54:53.0020906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0021061Z x_159 += out_95; out_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:54:53.0021136Z 2025-03-14T04:54:53.0021448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0021603Z out_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:54:53.0021666Z 2025-03-14T04:54:53.0021937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0022450Z x_160: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0022518Z 2025-03-14T04:54:53.0022799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0024736Z x_161: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0024835Z 2025-03-14T04:54:53.0025173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0025338Z out_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:54:53.0025409Z 2025-03-14T04:54:53.0025669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0026197Z x_162: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0026264Z 2025-03-14T04:54:53.0026552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0028475Z x_163: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0028553Z 2025-03-14T04:54:53.0028862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0029007Z out_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:54:53.0029080Z 2025-03-14T04:54:53.0029346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0029876Z x_164: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0029940Z 2025-03-14T04:54:53.0030229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0032181Z x_165: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0032278Z 2025-03-14T04:54:53.0032580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0032744Z x_165 += out_99; out_102: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:54:53.0032818Z 2025-03-14T04:54:53.0033117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0033276Z out_103: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:54:53.0033340Z 2025-03-14T04:54:53.0033611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0034153Z x_166: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0034229Z 2025-03-14T04:54:53.0034526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0036502Z x_167: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0036584Z 2025-03-14T04:54:53.0036897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0037058Z out_104: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:54:53.0037122Z 2025-03-14T04:54:53.0037389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0037928Z x_168: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0037992Z 2025-03-14T04:54:53.0038295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0040293Z x_169: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0040389Z 2025-03-14T04:54:53.0040723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0040867Z out_105: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:54:53.0040940Z 2025-03-14T04:54:53.0041204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0041773Z x_170: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0041843Z 2025-03-14T04:54:53.0042140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0044209Z x_171: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0044290Z 2025-03-14T04:54:53.0044610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0044789Z x_171 += out_103; out_106: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:54:53.0044866Z 2025-03-14T04:54:53.0045199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0045369Z out_107: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:54:53.0045454Z 2025-03-14T04:54:53.0045744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0046284Z x_172: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0046377Z 2025-03-14T04:54:53.0046673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0048739Z x_173: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0048822Z 2025-03-14T04:54:53.0049148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0049310Z out_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:54:53.0049380Z 2025-03-14T04:54:53.0049673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0050254Z x_174: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0050333Z 2025-03-14T04:54:53.0050642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0052807Z x_175: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0052893Z 2025-03-14T04:54:53.0053214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0053387Z out_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:54:53.0053459Z 2025-03-14T04:54:53.0053730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0054288Z x_176: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0054374Z 2025-03-14T04:54:53.0054676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0056655Z x_177: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0056731Z 2025-03-14T04:54:53.0057031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0057200Z x_177 += out_107; out_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:54:53.0057272Z 2025-03-14T04:54:53.0057600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0057770Z out_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:54:53.0057837Z 2025-03-14T04:54:53.0058127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0058689Z x_178: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0058766Z 2025-03-14T04:54:53.0059042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0061106Z x_179: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0061210Z 2025-03-14T04:54:53.0061535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0061685Z out_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:54:53.0061751Z 2025-03-14T04:54:53.0062020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0062535Z x_180: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0062610Z 2025-03-14T04:54:53.0062886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0064833Z x_181: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0064910Z 2025-03-14T04:54:53.0065210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0065358Z out_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:54:53.0065422Z 2025-03-14T04:54:53.0065694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0066218Z x_182: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0066290Z 2025-03-14T04:54:53.0066576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0068584Z x_183: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0068687Z 2025-03-14T04:54:53.0068991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0069154Z x_183 += out_111; out_114: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:54:53.0069228Z 2025-03-14T04:54:53.0069526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0069683Z out_115: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:54:53.0069746Z 2025-03-14T04:54:53.0070013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0070528Z x_184: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0070602Z 2025-03-14T04:54:53.0070879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0072824Z x_185: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0072901Z 2025-03-14T04:54:53.0073204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0073352Z out_116: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:54:53.0073418Z 2025-03-14T04:54:53.0073682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0074216Z x_186: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0074304Z 2025-03-14T04:54:53.0074579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0076495Z x_187: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0076587Z 2025-03-14T04:54:53.0076887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0077030Z out_117: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:54:53.0077096Z 2025-03-14T04:54:53.0077360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0077884Z x_188: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0077962Z 2025-03-14T04:54:53.0078242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0080192Z x_189: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0080271Z 2025-03-14T04:54:53.0080568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0080743Z x_189 += out_115; out_118: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:54:53.0080809Z 2025-03-14T04:54:53.0081138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0081280Z out_119: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:54:53.0081364Z 2025-03-14T04:54:53.0081609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0082126Z x_190: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0082215Z 2025-03-14T04:54:53.0082489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0084410Z x_191: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0084484Z 2025-03-14T04:54:53.0084793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0084947Z out_120: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T04:54:53.0085017Z 2025-03-14T04:54:53.0085296Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0085857Z x_192: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_120 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0085936Z 2025-03-14T04:54:53.0086234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0088308Z x_193: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0088390Z 2025-03-14T04:54:53.0088721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0088899Z out_121: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T04:54:53.0088969Z 2025-03-14T04:54:53.0089261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0089829Z x_194: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0089924Z 2025-03-14T04:54:53.0090226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0092365Z x_195: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0092456Z 2025-03-14T04:54:53.0092751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0093312Z x_196: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:54:53.0093381Z 2025-03-14T04:54:53.0093663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0095650Z x_197: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0095717Z 2025-03-14T04:54:53.0096045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0096205Z x_195 += x_197; out_122: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T04:54:53.0096293Z 2025-03-14T04:54:53.0096589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0096744Z out_123: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T04:54:53.0096810Z 2025-03-14T04:54:53.0097103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0097613Z x_198: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0097679Z 2025-03-14T04:54:53.0097968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0099873Z x_199: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0099952Z 2025-03-14T04:54:53.0100258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0100417Z out_124: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T04:54:53.0100492Z 2025-03-14T04:54:53.0100756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0101285Z x_200: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_124 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0101351Z 2025-03-14T04:54:53.0101639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0103656Z x_201: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0103752Z 2025-03-14T04:54:53.0104075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0104242Z out_125: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T04:54:53.0104319Z 2025-03-14T04:54:53.0104595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0105152Z x_202: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0105221Z 2025-03-14T04:54:53.0105519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0107553Z x_203: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0107626Z 2025-03-14T04:54:53.0107966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0108151Z x_203 += out_123; out_126: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T04:54:53.0108239Z 2025-03-14T04:54:53.0108551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0108717Z out_127: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T04:54:53.0108785Z 2025-03-14T04:54:53.0109069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0109603Z x_204: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0109681Z 2025-03-14T04:54:53.0109987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0111986Z x_205: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0112097Z 2025-03-14T04:54:53.0112410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0112567Z out_128: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T04:54:53.0112632Z 2025-03-14T04:54:53.0112916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0113468Z x_206: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_128 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0113539Z 2025-03-14T04:54:53.0113837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0115832Z x_207: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0115912Z 2025-03-14T04:54:53.0116235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0116388Z out_129: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T04:54:53.0116466Z 2025-03-14T04:54:53.0116743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0117305Z x_208: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0117391Z 2025-03-14T04:54:53.0117691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0119701Z x_209: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0119797Z 2025-03-14T04:54:53.0120112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0120283Z x_209 += out_127; out_130: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T04:54:53.0120359Z 2025-03-14T04:54:53.0120671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0120837Z out_131: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T04:54:53.0120905Z 2025-03-14T04:54:53.0121189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0121848Z x_210: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_131, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_131 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T04:54:53.0121922Z 2025-03-14T04:54:53.0122182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0122800Z x_211: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_210, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T04:54:53.0122876Z 2025-03-14T04:54:53.0123329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:54:53.0123622Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_210, scale_factor = 2.0, mode = 'nearest'); x_210 = None 2025-03-14T04:54:53.0123687Z 2025-03-14T04:54:53.0123958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0124587Z x_212: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T04:54:53.0124659Z 2025-03-14T04:54:53.0125033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:54:53.0125266Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_212 + top_down_features; x_212 = top_down_features = None 2025-03-14T04:54:53.0125331Z 2025-03-14T04:54:53.0125597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0126235Z x_213: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T04:54:53.0126313Z 2025-03-14T04:54:53.0126767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:54:53.0127136Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T04:54:53.0127214Z 2025-03-14T04:54:53.0127495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0128157Z x_214: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T04:54:53.0128225Z 2025-03-14T04:54:53.0128622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:54:53.0128854Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_214 + top_down_features_1; x_214 = top_down_features_1 = None 2025-03-14T04:54:53.0128931Z 2025-03-14T04:54:53.0129224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0129904Z x_215: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T04:54:53.0129973Z 2025-03-14T04:54:53.0130427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:54:53.0130790Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T04:54:53.0130866Z 2025-03-14T04:54:53.0131155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0131901Z x_216: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T04:54:53.0132019Z 2025-03-14T04:54:53.0132422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:54:53.0132666Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_216 + top_down_features_2; x_216 = top_down_features_2 = None 2025-03-14T04:54:53.0132735Z 2025-03-14T04:54:53.0133046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0133710Z x_217: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T04:54:53.0133782Z 2025-03-14T04:54:53.0134147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T04:54:53.0134367Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_211, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T04:54:53.0134426Z 2025-03-14T04:54:53.0134878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.0135037Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T04:54:53.0135099Z 2025-03-14T04:54:53.0135403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0135542Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:54:53.0135611Z 2025-03-14T04:54:53.0136047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.0136221Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T04:54:53.0136285Z 2025-03-14T04:54:53.0136581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0136721Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:54:53.0136788Z 2025-03-14T04:54:53.0137159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:53.0137346Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:54:53.0137448Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T04:54:53.0137584Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:54:53.0137654Z 2025-03-14T04:54:53.0138008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:53.0138141Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:54:53.0138230Z 2025-03-14T04:54:53.0138573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:53.0138726Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:54:53.0138792Z 2025-03-14T04:54:53.0139198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:53.0139424Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:54:53.0139517Z 2025-03-14T04:54:53.0139962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:53.0140102Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:54:53.0140548Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:54:53.0140690Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:54:53.0140811Z x_218: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T04:54:53.0140885Z 2025-03-14T04:54:53.0141344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.0141509Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T04:54:53.0141572Z 2025-03-14T04:54:53.0141890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0142048Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:54:53.0142111Z 2025-03-14T04:54:53.0142576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.0142750Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T04:54:53.0142828Z 2025-03-14T04:54:53.0143135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0143287Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T04:54:53.0143352Z 2025-03-14T04:54:53.0143757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:53.0143965Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T04:54:53.0144078Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T04:54:53.0144208Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T04:54:53.0144282Z 2025-03-14T04:54:53.0144633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:53.0144817Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T04:54:53.0144884Z 2025-03-14T04:54:53.0145232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:53.0145379Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T04:54:53.0145451Z 2025-03-14T04:54:53.0145854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:53.0146114Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T04:54:53.0146179Z 2025-03-14T04:54:53.0146622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:53.0146759Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T04:54:53.0147212Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T04:54:53.0147342Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T04:54:53.0147473Z x_219: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T04:54:53.0147541Z 2025-03-14T04:54:53.0148003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.0148155Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T04:54:53.0148228Z 2025-03-14T04:54:53.0148540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0148695Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T04:54:53.0148766Z 2025-03-14T04:54:53.0149235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.0149394Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T04:54:53.0149459Z 2025-03-14T04:54:53.0149775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0149916Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T04:54:53.0149992Z 2025-03-14T04:54:53.0150404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:53.0150633Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T04:54:53.0150735Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T04:54:53.0150870Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T04:54:53.0150934Z 2025-03-14T04:54:53.0151310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:53.0151440Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T04:54:53.0151513Z 2025-03-14T04:54:53.0151855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:53.0152005Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T04:54:53.0152070Z 2025-03-14T04:54:53.0152543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:53.0152861Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T04:54:53.0152937Z 2025-03-14T04:54:53.0153389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:53.0153533Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T04:54:53.0153974Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T04:54:53.0154182Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T04:54:53.0154316Z x_220: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T04:54:53.0154388Z 2025-03-14T04:54:53.0154934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.0155092Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T04:54:53.0155156Z 2025-03-14T04:54:53.0155464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0155609Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T04:54:53.0155671Z 2025-03-14T04:54:53.0156139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.0156285Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T04:54:53.0156357Z 2025-03-14T04:54:53.0156653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0156795Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T04:54:53.0156859Z 2025-03-14T04:54:53.0157238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:53.0157432Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T04:54:53.0157541Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T04:54:53.0157660Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T04:54:53.0157731Z 2025-03-14T04:54:53.0158076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:53.0158206Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T04:54:53.0158269Z 2025-03-14T04:54:53.0158623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:53.0158745Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T04:54:53.0158814Z 2025-03-14T04:54:53.0159202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:53.0159438Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T04:54:53.0159500Z 2025-03-14T04:54:53.0159925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:53.0160056Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T04:54:53.0160499Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T04:54:53.0160730Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T04:54:53.0160864Z x_221: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T04:54:53.0160930Z 2025-03-14T04:54:53.0161397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.0161543Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:54:53.0161616Z 2025-03-14T04:54:53.0161926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0162074Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T04:54:53.0162146Z 2025-03-14T04:54:53.0162645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.0162805Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:54:53.0162870Z 2025-03-14T04:54:53.0163194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0163337Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T04:54:53.0163408Z 2025-03-14T04:54:53.0163800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:53.0164011Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T04:54:53.0164112Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T04:54:53.0164240Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T04:54:53.0164307Z 2025-03-14T04:54:53.0164695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:53.0164828Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T04:54:53.0164923Z 2025-03-14T04:54:53.0165261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:53.0165397Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T04:54:53.0165462Z 2025-03-14T04:54:53.0165874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:53.0166122Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T04:54:53.0166196Z 2025-03-14T04:54:53.0166635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:53.0166778Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T04:54:53.0167245Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T04:54:53.0167393Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T04:54:53.0167521Z x_222: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T04:54:53.0167598Z 2025-03-14T04:54:53.0167938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:54:53.0168088Z tensor: "f32[269952, 4][4, 1]cpu" = x_218.to(torch.float32); x_218 = None 2025-03-14T04:54:53.0168230Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_219.to(torch.float32); x_219 = None 2025-03-14T04:54:53.0168372Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_220.to(torch.float32); x_220 = None 2025-03-14T04:54:53.0168505Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_221.to(torch.float32); x_221 = None 2025-03-14T04:54:53.0168642Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_222.to(torch.float32); x_222 = None 2025-03-14T04:54:53.0168710Z 2025-03-14T04:54:53.0169021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0169601Z x_223: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_217, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_217 = None 2025-03-14T04:54:53.0169672Z 2025-03-14T04:54:53.0169998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:53.0170218Z x_224: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_223, inplace = False); x_223 = None 2025-03-14T04:54:53.0170294Z 2025-03-14T04:54:53.0170732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:53.0171340Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:54:53.0171412Z 2025-03-14T04:54:53.0171904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:53.0172531Z x_233: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_224 = None 2025-03-14T04:54:53.0172633Z 2025-03-14T04:54:53.0172926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0173450Z x_225: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_215, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_215 = None 2025-03-14T04:54:53.0173524Z 2025-03-14T04:54:53.0173810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:53.0174022Z x_226: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_225, inplace = False); x_225 = None 2025-03-14T04:54:53.0174087Z 2025-03-14T04:54:53.0174491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:53.0175043Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:54:53.0175119Z 2025-03-14T04:54:53.0175493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:53.0176112Z x_234: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_226 = None 2025-03-14T04:54:53.0176181Z 2025-03-14T04:54:53.0176455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0176960Z x_227: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_213, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_213 = None 2025-03-14T04:54:53.0177034Z 2025-03-14T04:54:53.0177317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:53.0177503Z x_228: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_227, inplace = False); x_227 = None 2025-03-14T04:54:53.0177563Z 2025-03-14T04:54:53.0177940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:53.0178466Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:54:53.0178529Z 2025-03-14T04:54:53.0178906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:53.0179406Z x_235: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_228 = None 2025-03-14T04:54:53.0179493Z 2025-03-14T04:54:53.0179741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0180214Z x_229: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_211, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_211 = None 2025-03-14T04:54:53.0180277Z 2025-03-14T04:54:53.0180551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:53.0180725Z x_230: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_229, inplace = False); x_229 = None 2025-03-14T04:54:53.0180795Z 2025-03-14T04:54:53.0181162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:53.0181665Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:54:53.0181737Z 2025-03-14T04:54:53.0182098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:53.0182617Z x_236: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_230 = None 2025-03-14T04:54:53.0182682Z 2025-03-14T04:54:53.0182942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0183726Z x_231: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:54:53.0183797Z 2025-03-14T04:54:53.0184064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:53.0184246Z x_232: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_231, inplace = False); x_231 = None 2025-03-14T04:54:53.0184309Z 2025-03-14T04:54:53.0184711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:53.0185715Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:54:53.0185809Z 2025-03-14T04:54:53.0186179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:53.0187018Z x_237: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_232 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:54:53.0187093Z 2025-03-14T04:54:53.0187428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:54:53.0187605Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:54:53.0187750Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:54:53.0187921Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T04:54:53.0188065Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T04:54:53.0188223Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T04:54:53.0188366Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T04:54:53.0188515Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T04:54:53.0188655Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T04:54:53.0188799Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T04:54:53.0188951Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T04:54:53.0189013Z 2025-03-14T04:54:53.0189449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:54:53.0189626Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_233.view(4, -1, 4, 296, 304); x_233 = None 2025-03-14T04:54:53.0189821Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T04:54:53.0189999Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T04:54:53.0190168Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_234.view(4, -1, 4, 148, 152); x_234 = None 2025-03-14T04:54:53.0190344Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T04:54:53.0190524Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T04:54:53.0190683Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_235.view(4, -1, 4, 74, 76); x_235 = None 2025-03-14T04:54:53.0190856Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T04:54:53.0191079Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T04:54:53.0191226Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_236.view(4, -1, 4, 37, 38); x_236 = None 2025-03-14T04:54:53.0191387Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T04:54:53.0191576Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T04:54:53.0191716Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_237.view(4, -1, 4, 19, 19); x_237 = None 2025-03-14T04:54:53.0191881Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T04:54:53.0192044Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T04:54:53.0192115Z 2025-03-14T04:54:53.0192528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:53.0192737Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:54:53.0192811Z 2025-03-14T04:54:53.0193268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:53.0193429Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:54:53.0193576Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:54:53.0193719Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:54:53.0193781Z 2025-03-14T04:54:53.0194163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:53.0194329Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:54:53.0194412Z 2025-03-14T04:54:53.0194730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:53.0194879Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:54:53.0194939Z 2025-03-14T04:54:53.0195259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:53.0195391Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:54:53.0195522Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:54:53.0195674Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:54:53.0195743Z 2025-03-14T04:54:53.0196064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:53.0196196Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:54:53.0196334Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:54:53.0196496Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T04:54:53.0196558Z 2025-03-14T04:54:53.0196872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:53.0197011Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:54:53.0197105Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T04:54:53.0197231Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T04:54:53.0197325Z 2025-03-14T04:54:53.0197636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:53.0197796Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:54:53.0197886Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T04:54:53.0198027Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T04:54:53.0198094Z 2025-03-14T04:54:53.0198442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:53.0198602Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:53.0198726Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T04:54:53.0198794Z 2025-03-14T04:54:53.0199106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:53.0199260Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:53.0199384Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T04:54:53.0199449Z 2025-03-14T04:54:53.0199751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:53.0199914Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:53.0200026Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T04:54:53.0200098Z 2025-03-14T04:54:53.0200418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:53.0200613Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:54:53.0200724Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T04:54:53.0200793Z 2025-03-14T04:54:53.0201128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:53.0201277Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:54:53.0201340Z 2025-03-14T04:54:53.0201688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:53.0201830Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:54:53.0201903Z 2025-03-14T04:54:53.0202260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:53.0202427Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:54:53.0202559Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T04:54:53.0202741Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:54:53.0202882Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T04:54:53.0202952Z 2025-03-14T04:54:53.0203302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:53.0203465Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:54:53.0203590Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T04:54:53.0203753Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:54:53.0203890Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T04:54:53.0203961Z 2025-03-14T04:54:53.0204295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:53.0204438Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:54:53.0204600Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:54:53.0204743Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T04:54:53.0204805Z 2025-03-14T04:54:53.0205152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:53.0205272Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:54:53.0205447Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:54:53.0205584Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T04:54:53.0205654Z 2025-03-14T04:54:53.0205972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:53.0206075Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:54:53.0206220Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:54:53.0206285Z 2025-03-14T04:54:53.0206615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:53.0206708Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:54:53.0206832Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:54:53.0206895Z 2025-03-14T04:54:53.0207211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:53.0207326Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:54:53.0207464Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:54:53.0207527Z 2025-03-14T04:54:53.0207843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:53.0207957Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:54:53.0208110Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:54:53.0208174Z 2025-03-14T04:54:53.0208537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:53.0208737Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:54:53.0208808Z 2025-03-14T04:54:53.0209152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:53.0209347Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T04:54:53.0209411Z 2025-03-14T04:54:53.0209819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:53.0210005Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:54:53.0210080Z 2025-03-14T04:54:53.0210503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:53.0210743Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T04:54:53.0210808Z 2025-03-14T04:54:53.0211260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:53.0211510Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T04:54:53.0211687Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T04:54:53.0211838Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T04:54:53.0211919Z 2025-03-14T04:54:53.0212339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:53.0212535Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T04:54:53.0212627Z 2025-03-14T04:54:53.0212974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:53.0213130Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T04:54:53.0213203Z 2025-03-14T04:54:53.0213532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:53.0213676Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T04:54:53.0213805Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:54:53.0213970Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T04:54:53.0214035Z 2025-03-14T04:54:53.0214367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:53.0214502Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T04:54:53.0214641Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T04:54:53.0214806Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T04:54:53.0214869Z 2025-03-14T04:54:53.0215192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:53.0215332Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:54:53.0215433Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T04:54:53.0215568Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T04:54:53.0215654Z 2025-03-14T04:54:53.0215972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:53.0216132Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T04:54:53.0216227Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T04:54:53.0216365Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T04:54:53.0216428Z 2025-03-14T04:54:53.0216745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:53.0216900Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:53.0217023Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T04:54:53.0217089Z 2025-03-14T04:54:53.0217396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:53.0217549Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:53.0217671Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T04:54:53.0217731Z 2025-03-14T04:54:53.0218037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:53.0220858Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:53.0220995Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T04:54:53.0221059Z 2025-03-14T04:54:53.0221394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:53.0221581Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T04:54:53.0221704Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T04:54:53.0221764Z 2025-03-14T04:54:53.0222107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:53.0222248Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T04:54:53.0222356Z 2025-03-14T04:54:53.0222691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:53.0222826Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T04:54:53.0222893Z 2025-03-14T04:54:53.0223267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:53.0223415Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T04:54:53.0223539Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T04:54:53.0223725Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T04:54:53.0223865Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T04:54:53.0223935Z 2025-03-14T04:54:53.0224283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:53.0224430Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T04:54:53.0224557Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T04:54:53.0224709Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T04:54:53.0224853Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T04:54:53.0224916Z 2025-03-14T04:54:53.0225250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:53.0225366Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T04:54:53.0225536Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T04:54:53.0225669Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T04:54:53.0225739Z 2025-03-14T04:54:53.0226071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:53.0226191Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T04:54:53.0226358Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T04:54:53.0226498Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T04:54:53.0226637Z 2025-03-14T04:54:53.0226957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:53.0227069Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T04:54:53.0227197Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T04:54:53.0227261Z 2025-03-14T04:54:53.0227576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:53.0227669Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T04:54:53.0227792Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T04:54:53.0227857Z 2025-03-14T04:54:53.0228168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:53.0228289Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T04:54:53.0228430Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T04:54:53.0228491Z 2025-03-14T04:54:53.0228795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:53.0228926Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T04:54:53.0229063Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T04:54:53.0229124Z 2025-03-14T04:54:53.0229491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:53.0229684Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T04:54:53.0229754Z 2025-03-14T04:54:53.0230083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:53.0230256Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T04:54:53.0230319Z 2025-03-14T04:54:53.0230703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:53.0230880Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T04:54:53.0230951Z 2025-03-14T04:54:53.0231347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:53.0231557Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T04:54:53.0231619Z 2025-03-14T04:54:53.0232058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:53.0232216Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T04:54:53.0232364Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T04:54:53.0232510Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T04:54:53.0232607Z 2025-03-14T04:54:53.0232990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:53.0233168Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T04:54:53.0233236Z 2025-03-14T04:54:53.0233546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:53.0233693Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T04:54:53.0233753Z 2025-03-14T04:54:53.0234074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:53.0234203Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T04:54:53.0234329Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:54:53.0234477Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T04:54:53.0234548Z 2025-03-14T04:54:53.0234862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:53.0235006Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T04:54:53.0235125Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T04:54:53.0235279Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T04:54:53.0235360Z 2025-03-14T04:54:53.0235679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:53.0235798Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:54:53.0235893Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T04:54:53.0236023Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T04:54:53.0236094Z 2025-03-14T04:54:53.0236407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:53.0236560Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T04:54:53.0236650Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T04:54:53.0236787Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T04:54:53.0236847Z 2025-03-14T04:54:53.0237159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:53.0237311Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:53.0237431Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T04:54:53.0237491Z 2025-03-14T04:54:53.0237800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:53.0237950Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:53.0238066Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T04:54:53.0238128Z 2025-03-14T04:54:53.0238434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:53.0238603Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:53.0238719Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T04:54:53.0238794Z 2025-03-14T04:54:53.0239103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:53.0239295Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T04:54:53.0239402Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T04:54:53.0239470Z 2025-03-14T04:54:53.0239803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:53.0239950Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T04:54:53.0240010Z 2025-03-14T04:54:53.0240346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:53.0240479Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T04:54:53.0240546Z 2025-03-14T04:54:53.0240900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:53.0241043Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T04:54:53.0241180Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T04:54:53.0241340Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T04:54:53.0241481Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T04:54:53.0241552Z 2025-03-14T04:54:53.0241901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:53.0242046Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T04:54:53.0242170Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T04:54:53.0242328Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T04:54:53.0242469Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T04:54:53.0242542Z 2025-03-14T04:54:53.0242878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:53.0243003Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T04:54:53.0243168Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T04:54:53.0243311Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T04:54:53.0243377Z 2025-03-14T04:54:53.0243725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:53.0243841Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T04:54:53.0244028Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T04:54:53.0244178Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T04:54:53.0244246Z 2025-03-14T04:54:53.0244577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:53.0244680Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T04:54:53.0244794Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T04:54:53.0244862Z 2025-03-14T04:54:53.0245168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:53.0245265Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T04:54:53.0245376Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T04:54:53.0245443Z 2025-03-14T04:54:53.0245744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:53.0245865Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T04:54:53.0245996Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T04:54:53.0246064Z 2025-03-14T04:54:53.0246381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:53.0246501Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T04:54:53.0246633Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T04:54:53.0246710Z 2025-03-14T04:54:53.0247058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:53.0247243Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T04:54:53.0247313Z 2025-03-14T04:54:53.0247637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:53.0247804Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T04:54:53.0247866Z 2025-03-14T04:54:53.0248241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:53.0248411Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T04:54:53.0248478Z 2025-03-14T04:54:53.0248871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:53.0249087Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T04:54:53.0249149Z 2025-03-14T04:54:53.0249591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:53.0249738Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T04:54:53.0249897Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T04:54:53.0250057Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T04:54:53.0250126Z 2025-03-14T04:54:53.0250520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:53.0250698Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T04:54:53.0250760Z 2025-03-14T04:54:53.0251082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:53.0251228Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T04:54:53.0251308Z 2025-03-14T04:54:53.0251763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:53.0251927Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T04:54:53.0252065Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:54:53.0252240Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T04:54:53.0252310Z 2025-03-14T04:54:53.0252678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:53.0252830Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T04:54:53.0252962Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T04:54:53.0253143Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T04:54:53.0253216Z 2025-03-14T04:54:53.0253531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:53.0253660Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:54:53.0253760Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T04:54:53.0253893Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T04:54:53.0253964Z 2025-03-14T04:54:53.0254281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:53.0254435Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T04:54:53.0254527Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T04:54:53.0254664Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T04:54:53.0254728Z 2025-03-14T04:54:53.0255040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:53.0255196Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:53.0255399Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T04:54:53.0255466Z 2025-03-14T04:54:53.0255785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:53.0255938Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:53.0256056Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T04:54:53.0256120Z 2025-03-14T04:54:53.0256432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:53.0256601Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:53.0256803Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T04:54:53.0256877Z 2025-03-14T04:54:53.0257294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:53.0257526Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T04:54:53.0257646Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T04:54:53.0257711Z 2025-03-14T04:54:53.0258061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:53.0258201Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T04:54:53.0258272Z 2025-03-14T04:54:53.0258609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:53.0258751Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T04:54:53.0258813Z 2025-03-14T04:54:53.0259186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:53.0259340Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T04:54:53.0259471Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T04:54:53.0259631Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T04:54:53.0259779Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T04:54:53.0259852Z 2025-03-14T04:54:53.0260205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:53.0260348Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T04:54:53.0260470Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T04:54:53.0260821Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T04:54:53.0260965Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T04:54:53.0261039Z 2025-03-14T04:54:53.0261383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:53.0261507Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T04:54:53.0261669Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T04:54:53.0261811Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T04:54:53.0261876Z 2025-03-14T04:54:53.0262224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:53.0262337Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T04:54:53.0262511Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T04:54:53.0262695Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T04:54:53.0262768Z 2025-03-14T04:54:53.0263105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:53.0263209Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T04:54:53.0263326Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T04:54:53.0263397Z 2025-03-14T04:54:53.0263723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:53.0263825Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T04:54:53.0263936Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T04:54:53.0264006Z 2025-03-14T04:54:53.0264305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:53.0264428Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T04:54:53.0264558Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T04:54:53.0264629Z 2025-03-14T04:54:53.0264952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:53.0265075Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T04:54:53.0265226Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T04:54:53.0265298Z 2025-03-14T04:54:53.0265640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:53.0265833Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T04:54:53.0265912Z 2025-03-14T04:54:53.0266238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:53.0266406Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T04:54:53.0266465Z 2025-03-14T04:54:53.0266846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:53.0267011Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T04:54:53.0267081Z 2025-03-14T04:54:53.0267474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:53.0267682Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T04:54:53.0267744Z 2025-03-14T04:54:53.0268177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:53.0268318Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T04:54:53.0268471Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T04:54:53.0268634Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T04:54:53.0268695Z 2025-03-14T04:54:53.0269081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:53.0269246Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T04:54:53.0269316Z 2025-03-14T04:54:53.0269622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:53.0269766Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T04:54:53.0269827Z 2025-03-14T04:54:53.0270143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:53.0270270Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T04:54:53.0270399Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:54:53.0270540Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T04:54:53.0270608Z 2025-03-14T04:54:53.0270935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:53.0271063Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T04:54:53.0271177Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T04:54:53.0271371Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T04:54:53.0271432Z 2025-03-14T04:54:53.0271749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:53.0271870Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:54:53.0271963Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T04:54:53.0272091Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T04:54:53.0272160Z 2025-03-14T04:54:53.0272465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:53.0272612Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T04:54:53.0272701Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T04:54:53.0272832Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T04:54:53.0272893Z 2025-03-14T04:54:53.0273203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:53.0273353Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:53.0273472Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T04:54:53.0273534Z 2025-03-14T04:54:53.0273845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:53.0274001Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:53.0274117Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T04:54:53.0274196Z 2025-03-14T04:54:53.0274502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:53.0274662Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:53.0274777Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T04:54:53.0274838Z 2025-03-14T04:54:53.0275142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:53.0275328Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T04:54:53.0275433Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T04:54:53.0275503Z 2025-03-14T04:54:53.0275833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:53.0275974Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T04:54:53.0276035Z 2025-03-14T04:54:53.0276369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:53.0276499Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T04:54:53.0276584Z 2025-03-14T04:54:53.0276926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:53.0277080Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T04:54:53.0277200Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T04:54:53.0277356Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T04:54:53.0277486Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T04:54:53.0277556Z 2025-03-14T04:54:53.0277898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:53.0278036Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T04:54:53.0278151Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T04:54:53.0278307Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T04:54:53.0278435Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T04:54:53.0278506Z 2025-03-14T04:54:53.0278833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:53.0278954Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T04:54:53.0279113Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T04:54:53.0279252Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T04:54:53.0279315Z 2025-03-14T04:54:53.0279655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:53.0279767Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T04:54:53.0279959Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T04:54:53.0280088Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T04:54:53.0280161Z 2025-03-14T04:54:53.0280485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:53.0280593Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T04:54:53.0280708Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T04:54:53.0280779Z 2025-03-14T04:54:53.0281098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:53.0281198Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T04:54:53.0281306Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T04:54:53.0281377Z 2025-03-14T04:54:53.0281683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:53.0281805Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T04:54:53.0281936Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T04:54:53.0282006Z 2025-03-14T04:54:53.0282340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:53.0282463Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T04:54:53.0282607Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T04:54:53.0282678Z 2025-03-14T04:54:53.0283032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:53.0283230Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T04:54:53.0283299Z 2025-03-14T04:54:53.0283636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:53.0283802Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T04:54:53.0283864Z 2025-03-14T04:54:53.0284260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:53.0284434Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T04:54:53.0284504Z 2025-03-14T04:54:53.0285003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:54:53.0285147Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:54:53.0285210Z 2025-03-14T04:54:53.0285522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0285665Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T04:54:53.0285736Z 2025-03-14T04:54:53.0286189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:53.0286329Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T04:54:53.0286447Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T04:54:53.0286575Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:54:53.0286638Z 2025-03-14T04:54:53.0287117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:53.0287248Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:54:53.0287488Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T04:54:53.0287552Z 2025-03-14T04:54:53.0288025Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:53.0288193Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:53.0288263Z 2025-03-14T04:54:53.0288577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0288708Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T04:54:53.0288770Z 2025-03-14T04:54:53.0289223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:53.0289369Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T04:54:53.0289485Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T04:54:53.0289604Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T04:54:53.0289676Z 2025-03-14T04:54:53.0290143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:53.0290290Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:54:53.0290541Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T04:54:53.0290609Z 2025-03-14T04:54:53.0291092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:53.0291267Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:53.0291338Z 2025-03-14T04:54:53.0291760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0291917Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T04:54:53.0291989Z 2025-03-14T04:54:53.0292487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:53.0292616Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T04:54:53.0292768Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T04:54:53.0292903Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T04:54:53.0292985Z 2025-03-14T04:54:53.0293471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:53.0293615Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:54:53.0293856Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T04:54:53.0293928Z 2025-03-14T04:54:53.0294394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:53.0294569Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:53.0294633Z 2025-03-14T04:54:53.0294940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0295064Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T04:54:53.0295133Z 2025-03-14T04:54:53.0295591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:53.0295728Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T04:54:53.0295835Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T04:54:53.0295959Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T04:54:53.0296023Z 2025-03-14T04:54:53.0296494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:53.0296633Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:54:53.0296867Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T04:54:53.0296937Z 2025-03-14T04:54:53.0297395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:53.0297566Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:53.0297628Z 2025-03-14T04:54:53.0297934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0298052Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T04:54:53.0298122Z 2025-03-14T04:54:53.0298546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:53.0298661Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T04:54:53.0298762Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T04:54:53.0298898Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T04:54:53.0298957Z 2025-03-14T04:54:53.0299436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:53.0299597Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:54:53.0299833Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T04:54:53.0299894Z 2025-03-14T04:54:53.0300356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:53.0300514Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:53.0300584Z 2025-03-14T04:54:53.0300878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.0301008Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T04:54:53.0301068Z 2025-03-14T04:54:53.0301372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:54:53.0301746Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T04:54:53.0302081Z 2025-03-14T04:54:53.0302365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:54:53.0302840Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T04:54:53.0302913Z 2025-03-14T04:54:53.0303196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:54:53.0303402Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T04:54:53.0303464Z 2025-03-14T04:54:53.0303860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:54:53.0304001Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T04:54:53.0304073Z 2025-03-14T04:54:53.0304373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:54:53.0304528Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T04:54:53.0304589Z 2025-03-14T04:54:53.0304979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:54:53.0305109Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T04:54:53.0305178Z 2025-03-14T04:54:53.0305664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:54:53.0305824Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T04:54:53.0305956Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:54:53.0306118Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:54:53.0306249Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:54:53.0306318Z 2025-03-14T04:54:53.0306688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:54:53.0306811Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:54:53.0306873Z 2025-03-14T04:54:53.0306881Z 2025-03-14T04:54:53.0306983Z class GraphModule(torch.nn.Module): 2025-03-14T04:54:53.0438053Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T04:54:53.0439108Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:54:53.0439502Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0440017Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0440478Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0440948Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0441404Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0441838Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0442331Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0442799Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0443282Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0443754Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0444194Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0444674Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0445149Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0445637Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0446096Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0446549Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0447021Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0447501Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0447975Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0448427Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0448886Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:54:53.0449474Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0450043Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0450592Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0451112Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0451663Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0452200Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0452730Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0453164Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0453599Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0454028Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0454465Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0454908Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0455317Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0455732Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0456099Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0456566Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0457011Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0457444Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0457856Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0458236Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0458681Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0459116Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0459542Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0459956Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0460327Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0460898Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0461360Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0461754Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0462133Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0462494Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0462910Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0463326Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0463722Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0464117Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0464481Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0464886Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0465297Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0465694Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0466073Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0466433Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0466841Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0467251Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0467654Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0468054Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0468411Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0468819Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0469236Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0469622Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0470022Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0470391Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:54:53.0470836Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0471260Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0471657Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0472050Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0472403Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0472819Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0473220Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0473629Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0474033Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0474434Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0474872Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0475293Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0475706Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0476102Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0476472Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0476923Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0477363Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0477780Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0478177Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0478555Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0478979Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0479413Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0479826Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0480221Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0480593Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0481046Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0481498Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0481919Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0482317Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0482699Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0483128Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0483575Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0483983Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0484407Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0484782Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0485207Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0485656Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0486093Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0486496Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0486864Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0487312Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0487741Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0488209Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0488639Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0489029Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0489490Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0489940Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0490371Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0490816Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0491222Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0491751Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0492235Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0492707Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0493152Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0493562Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0494052Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0494527Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0494987Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0495461Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0495900Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0496383Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0496869Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0497333Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0497778Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0498235Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:54:53.0498735Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0499256Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0499658Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0500077Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0500451Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0500868Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0501278Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0501662Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0502045Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0502389Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0502867Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0503278Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0503662Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0504044Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0504408Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0504842Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0505292Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0505682Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0506079Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0506426Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0506837Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0507246Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0507655Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0508186Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0508562Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0508994Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0509413Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0509860Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0510261Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0510637Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0511080Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0511509Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0511941Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0512339Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0512743Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0513174Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0513602Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0514016Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0514417Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0514792Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0515221Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0515654Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0516059Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0516477Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0516864Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0517291Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0517717Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0518121Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0518528Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0518914Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0519355Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0519799Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0520207Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0520606Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0520976Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0521409Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0521832Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0522241Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0522637Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0523002Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0523473Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0523897Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0524312Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0524708Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0525085Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0525519Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0525955Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0526384Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0526781Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0527159Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0527586Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0528018Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0528429Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0528831Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0529204Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0529635Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0530084Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0530506Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0530910Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0531287Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0531785Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0532264Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0532723Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0533166Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0533571Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0534013Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0534528Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0534968Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0535410Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0535811Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0536281Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0536738Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0537185Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0537662Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0538065Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0538543Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0538999Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0539451Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0539852Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0540226Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0540640Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0541060Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0541447Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0541821Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0542173Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0542586Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0542984Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0543377Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0543752Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0544104Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0544539Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0544950Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0545337Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0545712Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0546067Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0546475Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0546892Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0547291Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0547678Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0548031Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0548435Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0548847Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0549230Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0549610Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0549960Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0550373Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0550816Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0551237Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0551622Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0551973Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0552397Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0552822Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0553249Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0553651Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0554035Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0554468Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0554863Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0555255Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0555629Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0555987Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0556400Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0556818Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0557237Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0557681Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0558068Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0558510Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0558958Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0559377Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0559773Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0560175Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0560743Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0561205Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0561625Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0562045Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0562425Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0562869Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0563310Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0563728Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0564146Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0564562Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0565037Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0565485Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0565918Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0566356Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0566753Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0567246Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0567705Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0568166Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0568591Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0568983Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0569448Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0569896Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0570335Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0570761Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0571150Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0571683Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0572183Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0572639Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0573060Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0573436Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0573875Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0574296Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0574724Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0575131Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0575492Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0575902Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0576314Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0576707Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0577082Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0577438Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0577854Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0578284Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0578709Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0579112Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0579489Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0579916Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0580352Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0580757Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0581175Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0581529Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0581962Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0582369Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0582756Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0583139Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0583490Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0583907Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0584318Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0584714Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0585098Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0585481Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0585896Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0586298Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0586690Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0587064Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0587425Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0587916Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0588339Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0588731Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0589107Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0589468Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0589879Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0590291Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0590685Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0591058Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0591415Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0591852Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0592279Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0592666Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0593048Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0593406Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0593817Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0594242Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0594625Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0595021Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0595370Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0595785Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0596189Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0596571Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0596954Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0597300Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0597711Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0598127Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0598571Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0598980Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0599350Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0599792Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0600219Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0600640Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0601064Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0601449Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0601891Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0602315Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0602734Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0603133Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0603511Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0620705Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0621271Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0621692Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0622179Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0622580Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0623006Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0623416Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0623813Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0624200Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0624583Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0625005Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0625442Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0625838Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0626219Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0626578Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0626999Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0627408Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0627805Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0628185Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0628547Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0629034Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0629452Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0629846Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0630223Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0630582Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0630986Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0631404Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0633918Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0634330Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0634683Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0635103Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0635521Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0635939Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0636318Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0636680Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0637091Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0637530Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0637924Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0638323Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0638690Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0639118Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0639529Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0639928Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0640319Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0640756Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0641190Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0641617Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0642017Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0642422Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0642781Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0643208Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0643621Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0644028Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0644451Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0644816Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0645248Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0645668Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0646075Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0646479Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0646855Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0647331Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0647751Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0648155Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0648543Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0648913Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0649338Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0649760Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0650164Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0650552Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0650942Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0651360Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0651932Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0652378Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0652803Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0653183Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0653620Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0654047Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0654490Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0654888Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0655259Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0655675Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0656105Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0656499Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0656892Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0657261Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0657677Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0658105Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0658489Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0658874Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0659223Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0659634Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0660063Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0660459Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0660977Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0661391Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:54:53.0661826Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0662245Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0662659Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0663104Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0663461Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0663877Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0664277Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0664703Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0665080Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0665438Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0665839Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0666255Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0666645Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0667038Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0667400Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0667847Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0668266Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0668655Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0669040Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0669400Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:54:53.0669817Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0670218Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0670588Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0670962Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0671314Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:54:53.0671720Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0672115Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0672492Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0672871Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0673209Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:54:53.0673639Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:54:53.0674056Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:54:53.0674472Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:54:53.0674860Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:54:53.0675093Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T04:54:53.0675321Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T04:54:53.0675542Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T04:54:53.0675764Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T04:54:53.0675987Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T04:54:53.0676209Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T04:54:53.0676425Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T04:54:53.0676645Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T04:54:53.0676864Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T04:54:53.0677085Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T04:54:53.0677317Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T04:54:53.0677532Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T04:54:53.0677757Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T04:54:53.0677973Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T04:54:53.0678201Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T04:54:53.0678409Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T04:54:53.0678774Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:54:53.0679125Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T04:54:53.0679480Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T04:54:53.0679840Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T04:54:53.0680208Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T04:54:53.0680546Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:54:53.0680864Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:54:53.0681245Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:54:53.0681600Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:54:53.0681968Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:54:53.0682320Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:54:53.0682407Z 2025-03-14T04:54:53.0682699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0683256Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0683332Z 2025-03-14T04:54:53.0683617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0685431Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0685500Z 2025-03-14T04:54:53.0685811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:54:53.0685959Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:54:53.0686033Z 2025-03-14T04:54:53.0686415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:54:53.0686689Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:54:53.0686778Z 2025-03-14T04:54:53.0687054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0687595Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0687661Z 2025-03-14T04:54:53.0687951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0689874Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0689952Z 2025-03-14T04:54:53.0690265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0690409Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:54:53.0690483Z 2025-03-14T04:54:53.0690746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0691313Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0691379Z 2025-03-14T04:54:53.0691765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0693852Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0693925Z 2025-03-14T04:54:53.0694236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0694403Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:54:53.0694476Z 2025-03-14T04:54:53.0694758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0695301Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0695372Z 2025-03-14T04:54:53.0695668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0697582Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0697652Z 2025-03-14T04:54:53.0697932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0698465Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:54:53.0698557Z 2025-03-14T04:54:53.0698844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0700764Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0700838Z 2025-03-14T04:54:53.0701132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0701288Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:54:53.0701371Z 2025-03-14T04:54:53.0701653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0701826Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:54:53.0701887Z 2025-03-14T04:54:53.0702151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0702639Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0702707Z 2025-03-14T04:54:53.0702970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0704782Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0704853Z 2025-03-14T04:54:53.0705159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0705306Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:54:53.0705367Z 2025-03-14T04:54:53.0705622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0706117Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0706187Z 2025-03-14T04:54:53.0706449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0708274Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0708361Z 2025-03-14T04:54:53.0708667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0708814Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:54:53.0708874Z 2025-03-14T04:54:53.0709129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0709623Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0709694Z 2025-03-14T04:54:53.0709955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0711784Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0711870Z 2025-03-14T04:54:53.0712146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0712306Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:54:53.0712369Z 2025-03-14T04:54:53.0712659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0712806Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:54:53.0712877Z 2025-03-14T04:54:53.0713122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0713617Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0713689Z 2025-03-14T04:54:53.0713949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0715770Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0715849Z 2025-03-14T04:54:53.0716138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0716280Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:54:53.0716345Z 2025-03-14T04:54:53.0716616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0717136Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0717209Z 2025-03-14T04:54:53.0717486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0719383Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0719478Z 2025-03-14T04:54:53.0719776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0719927Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:54:53.0719993Z 2025-03-14T04:54:53.0720264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0720783Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0720854Z 2025-03-14T04:54:53.0721145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0723079Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0723172Z 2025-03-14T04:54:53.0723464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0723632Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:54:53.0723697Z 2025-03-14T04:54:53.0724001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0724157Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:54:53.0724231Z 2025-03-14T04:54:53.0724493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0725014Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0725096Z 2025-03-14T04:54:53.0725383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0727305Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0727372Z 2025-03-14T04:54:53.0727676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0727824Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:54:53.0727897Z 2025-03-14T04:54:53.0728174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0728707Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0728816Z 2025-03-14T04:54:53.0729094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0730997Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0731074Z 2025-03-14T04:54:53.0731383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0731634Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:54:53.0731709Z 2025-03-14T04:54:53.0732000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0732575Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0732677Z 2025-03-14T04:54:53.0732982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0734864Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0734937Z 2025-03-14T04:54:53.0735186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0735710Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:54:53.0735828Z 2025-03-14T04:54:53.0736118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0737980Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0738044Z 2025-03-14T04:54:53.0738326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0738468Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:54:53.0738537Z 2025-03-14T04:54:53.0738814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0738967Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:54:53.0739030Z 2025-03-14T04:54:53.0739282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0739782Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0739854Z 2025-03-14T04:54:53.0740116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0741946Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0742022Z 2025-03-14T04:54:53.0742312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0742480Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:54:53.0742543Z 2025-03-14T04:54:53.0742822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0743312Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0743381Z 2025-03-14T04:54:53.0743653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0745453Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0745525Z 2025-03-14T04:54:53.0745814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0745952Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:54:53.0746043Z 2025-03-14T04:54:53.0746299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0746782Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0746844Z 2025-03-14T04:54:53.0747104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0748894Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0748971Z 2025-03-14T04:54:53.0749255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0749454Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:54:53.0749526Z 2025-03-14T04:54:53.0749810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0749964Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:54:53.0750026Z 2025-03-14T04:54:53.0750283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0750771Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0750840Z 2025-03-14T04:54:53.0751113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0752899Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0752982Z 2025-03-14T04:54:53.0753262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0753407Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:54:53.0753471Z 2025-03-14T04:54:53.0753728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0754231Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0754297Z 2025-03-14T04:54:53.0754570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0756401Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0756488Z 2025-03-14T04:54:53.0756777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0756914Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:54:53.0756983Z 2025-03-14T04:54:53.0757244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0757785Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0757847Z 2025-03-14T04:54:53.0758120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0759964Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0760052Z 2025-03-14T04:54:53.0760341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0760496Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:54:53.0760770Z 2025-03-14T04:54:53.0761059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0761219Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:54:53.0761280Z 2025-03-14T04:54:53.0761535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0762072Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0762149Z 2025-03-14T04:54:53.0762425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0764327Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0764403Z 2025-03-14T04:54:53.0764708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0764861Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:54:53.0764924Z 2025-03-14T04:54:53.0765193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0765714Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0765787Z 2025-03-14T04:54:53.0766074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0767999Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0768071Z 2025-03-14T04:54:53.0768368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0768517Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:54:53.0768583Z 2025-03-14T04:54:53.0768849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0769393Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0769474Z 2025-03-14T04:54:53.0769782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0771761Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0771850Z 2025-03-14T04:54:53.0772179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0772354Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:54:53.0772432Z 2025-03-14T04:54:53.0772756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0772940Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:54:53.0773008Z 2025-03-14T04:54:53.0773292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0773847Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0773921Z 2025-03-14T04:54:53.0774198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0776091Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0776181Z 2025-03-14T04:54:53.0776463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0776623Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:54:53.0776685Z 2025-03-14T04:54:53.0776951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0777446Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0777519Z 2025-03-14T04:54:53.0777783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0779567Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0779639Z 2025-03-14T04:54:53.0779919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0780059Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:54:53.0780138Z 2025-03-14T04:54:53.0780395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0780890Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0780957Z 2025-03-14T04:54:53.0781226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0783049Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0783121Z 2025-03-14T04:54:53.0783383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0783903Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:54:53.0783973Z 2025-03-14T04:54:53.0784239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0786091Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0786166Z 2025-03-14T04:54:53.0786448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0786597Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:54:53.0786664Z 2025-03-14T04:54:53.0786960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0787123Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:54:53.0787189Z 2025-03-14T04:54:53.0787434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0787925Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0787986Z 2025-03-14T04:54:53.0788253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0790050Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0790135Z 2025-03-14T04:54:53.0790441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0790577Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:54:53.0790647Z 2025-03-14T04:54:53.0790893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0791384Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0791446Z 2025-03-14T04:54:53.0791714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0793541Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0793625Z 2025-03-14T04:54:53.0793930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0794064Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:54:53.0794135Z 2025-03-14T04:54:53.0794393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0794897Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0794960Z 2025-03-14T04:54:53.0795244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0797172Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0797255Z 2025-03-14T04:54:53.0797551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0797703Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:54:53.0797773Z 2025-03-14T04:54:53.0798069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0798220Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:54:53.0798284Z 2025-03-14T04:54:53.0798557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0799071Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0799135Z 2025-03-14T04:54:53.0799422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0801318Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0801413Z 2025-03-14T04:54:53.0801719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0801859Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:54:53.0801932Z 2025-03-14T04:54:53.0802193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0802721Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0802785Z 2025-03-14T04:54:53.0803082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0804992Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0805083Z 2025-03-14T04:54:53.0805392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0805529Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:54:53.0805601Z 2025-03-14T04:54:53.0805861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0806381Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0806445Z 2025-03-14T04:54:53.0806732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0808634Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0808715Z 2025-03-14T04:54:53.0809015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0809169Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:54:53.0809244Z 2025-03-14T04:54:53.0809536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0809687Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:54:53.0809750Z 2025-03-14T04:54:53.0810054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0810592Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0810688Z 2025-03-14T04:54:53.0811003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0813261Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0813346Z 2025-03-14T04:54:53.0813662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0813812Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:54:53.0813878Z 2025-03-14T04:54:53.0814163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0814714Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0814807Z 2025-03-14T04:54:53.0815111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0817100Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0817180Z 2025-03-14T04:54:53.0817501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0817662Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:54:53.0817736Z 2025-03-14T04:54:53.0818010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0818602Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0818672Z 2025-03-14T04:54:53.0818973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0820975Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0821054Z 2025-03-14T04:54:53.0821354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0821495Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:54:53.0821567Z 2025-03-14T04:54:53.0821842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0821988Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:54:53.0822063Z 2025-03-14T04:54:53.0822323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0822798Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0822872Z 2025-03-14T04:54:53.0823136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0824954Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0825038Z 2025-03-14T04:54:53.0825319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0825474Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:54:53.0825534Z 2025-03-14T04:54:53.0825789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0826275Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0826340Z 2025-03-14T04:54:53.0826601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0828414Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0828484Z 2025-03-14T04:54:53.0828765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0828920Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:54:53.0828978Z 2025-03-14T04:54:53.0829232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0829729Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0829791Z 2025-03-14T04:54:53.0830062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0831880Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0831967Z 2025-03-14T04:54:53.0832269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0832413Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:54:53.0832480Z 2025-03-14T04:54:53.0832761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0832915Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:54:53.0832977Z 2025-03-14T04:54:53.0833246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0833745Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0833814Z 2025-03-14T04:54:53.0834075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0835963Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0836050Z 2025-03-14T04:54:53.0836351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0836504Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:54:53.0836565Z 2025-03-14T04:54:53.0836821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0837309Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0837380Z 2025-03-14T04:54:53.0837643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0839488Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0839576Z 2025-03-14T04:54:53.0839874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0840016Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:54:53.0840081Z 2025-03-14T04:54:53.0840347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0840831Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0840902Z 2025-03-14T04:54:53.0841163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0842951Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0843038Z 2025-03-14T04:54:53.0843327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0843484Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:54:53.0843547Z 2025-03-14T04:54:53.0843855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0843992Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:54:53.0844060Z 2025-03-14T04:54:53.0844303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0844829Z x_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0844913Z 2025-03-14T04:54:53.0845192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0847089Z x_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0847166Z 2025-03-14T04:54:53.0847464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0847606Z out_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:54:53.0847669Z 2025-03-14T04:54:53.0847939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0848448Z x_90: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0848520Z 2025-03-14T04:54:53.0848795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0850717Z x_91: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0850795Z 2025-03-14T04:54:53.0851091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0851229Z out_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:54:53.0851292Z 2025-03-14T04:54:53.0851653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0852173Z x_92: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0852267Z 2025-03-14T04:54:53.0852560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0854475Z x_93: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0854557Z 2025-03-14T04:54:53.0854859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0855021Z x_93 += out_51; out_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:54:53.0855089Z 2025-03-14T04:54:53.0855400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0855548Z out_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:54:53.0855626Z 2025-03-14T04:54:53.0855892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0856421Z x_94: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0856484Z 2025-03-14T04:54:53.0856772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0858671Z x_95: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0858738Z 2025-03-14T04:54:53.0859044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0859195Z out_56: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:54:53.0859270Z 2025-03-14T04:54:53.0859553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0860076Z x_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0860148Z 2025-03-14T04:54:53.0860431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0862376Z x_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0862453Z 2025-03-14T04:54:53.0862738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0862874Z out_57: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:54:53.0862970Z 2025-03-14T04:54:53.0863228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0863711Z x_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0863782Z 2025-03-14T04:54:53.0864041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0865857Z x_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0865951Z 2025-03-14T04:54:53.0866232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0866406Z x_99 += out_55; out_58: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:54:53.0866469Z 2025-03-14T04:54:53.0866758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0866896Z out_59: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:54:53.0866965Z 2025-03-14T04:54:53.0867213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0867714Z x_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0867777Z 2025-03-14T04:54:53.0868046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0869863Z x_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0870187Z 2025-03-14T04:54:53.0870478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0870617Z out_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:54:53.0870689Z 2025-03-14T04:54:53.0870936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0871436Z x_102: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0871500Z 2025-03-14T04:54:53.0871777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0873607Z x_103: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0873686Z 2025-03-14T04:54:53.0873978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0874116Z out_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:54:53.0874184Z 2025-03-14T04:54:53.0874433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0874936Z x_104: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0875004Z 2025-03-14T04:54:53.0875268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0877084Z x_105: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0877171Z 2025-03-14T04:54:53.0877446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0877605Z x_105 += out_59; out_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:54:53.0877668Z 2025-03-14T04:54:53.0877952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0878093Z out_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:54:53.0878162Z 2025-03-14T04:54:53.0878407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0878903Z x_106: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0878965Z 2025-03-14T04:54:53.0879233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0881094Z x_107: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0881168Z 2025-03-14T04:54:53.0881458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0881593Z out_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:54:53.0881661Z 2025-03-14T04:54:53.0881905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0882396Z x_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0882456Z 2025-03-14T04:54:53.0882723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0884546Z x_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0884611Z 2025-03-14T04:54:53.0884902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0885035Z out_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:54:53.0885102Z 2025-03-14T04:54:53.0885347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0885877Z x_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0885957Z 2025-03-14T04:54:53.0886238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0888126Z x_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0888194Z 2025-03-14T04:54:53.0888492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0888648Z x_111 += out_63; out_66: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:54:53.0888718Z 2025-03-14T04:54:53.0889008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0889158Z out_67: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:54:53.0889222Z 2025-03-14T04:54:53.0889493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0890037Z x_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0890102Z 2025-03-14T04:54:53.0890383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0892530Z x_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0892616Z 2025-03-14T04:54:53.0892964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0893129Z out_68: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:54:53.0893220Z 2025-03-14T04:54:53.0893482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0894025Z x_114: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0894090Z 2025-03-14T04:54:53.0894381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0896300Z x_115: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0896376Z 2025-03-14T04:54:53.0896688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0896829Z out_69: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:54:53.0896917Z 2025-03-14T04:54:53.0897178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0897704Z x_116: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0897767Z 2025-03-14T04:54:53.0898053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0899984Z x_117: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0900053Z 2025-03-14T04:54:53.0900354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0900526Z x_117 += out_67; out_70: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:54:53.0900614Z 2025-03-14T04:54:53.0900908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0901064Z out_71: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:54:53.0901128Z 2025-03-14T04:54:53.0901397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0901913Z x_118: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0901984Z 2025-03-14T04:54:53.0902254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0904048Z x_119: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0904135Z 2025-03-14T04:54:53.0904421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0904562Z out_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:54:53.0904629Z 2025-03-14T04:54:53.0904881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0905380Z x_120: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0905443Z 2025-03-14T04:54:53.0905717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0907564Z x_121: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0907659Z 2025-03-14T04:54:53.0907964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0908105Z out_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:54:53.0908176Z 2025-03-14T04:54:53.0908435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0908959Z x_122: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0909026Z 2025-03-14T04:54:53.0909308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0911218Z x_123: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0911303Z 2025-03-14T04:54:53.0911603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0911759Z x_123 += out_71; out_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:54:53.0911832Z 2025-03-14T04:54:53.0912125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0912280Z out_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:54:53.0912347Z 2025-03-14T04:54:53.0912616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0913140Z x_124: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0913212Z 2025-03-14T04:54:53.0913493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0915446Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0915524Z 2025-03-14T04:54:53.0915820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0915969Z out_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:54:53.0916033Z 2025-03-14T04:54:53.0916302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0916824Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0916894Z 2025-03-14T04:54:53.0917176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0918991Z x_127: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0919077Z 2025-03-14T04:54:53.0919368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0919498Z out_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:54:53.0919567Z 2025-03-14T04:54:53.0919812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0920320Z x_128: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0920395Z 2025-03-14T04:54:53.0920668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0922546Z x_129: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0922619Z 2025-03-14T04:54:53.0922904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0923049Z x_129 += out_75; out_78: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:54:53.0923119Z 2025-03-14T04:54:53.0923395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0923540Z out_79: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:54:53.0923603Z 2025-03-14T04:54:53.0923858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0924342Z x_130: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0924432Z 2025-03-14T04:54:53.0924699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0926573Z x_131: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0926651Z 2025-03-14T04:54:53.0926973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0927123Z out_80: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:54:53.0927207Z 2025-03-14T04:54:53.0927475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0928007Z x_132: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0928081Z 2025-03-14T04:54:53.0928359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0930331Z x_133: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0930412Z 2025-03-14T04:54:53.0930727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0930881Z out_81: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:54:53.0930947Z 2025-03-14T04:54:53.0931246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0931868Z x_134: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0931944Z 2025-03-14T04:54:53.0932259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0934210Z x_135: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0934289Z 2025-03-14T04:54:53.0934587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0934763Z x_135 += out_79; out_82: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:54:53.0934840Z 2025-03-14T04:54:53.0935153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0935311Z out_83: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:54:53.0935376Z 2025-03-14T04:54:53.0935640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0936149Z x_136: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0936222Z 2025-03-14T04:54:53.0936496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0938405Z x_137: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0938499Z 2025-03-14T04:54:53.0938794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0938936Z out_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:54:53.0939000Z 2025-03-14T04:54:53.0939267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0939781Z x_138: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0939857Z 2025-03-14T04:54:53.0940136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0941977Z x_139: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0942070Z 2025-03-14T04:54:53.0942349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0942485Z out_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:54:53.0942548Z 2025-03-14T04:54:53.0942804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0943294Z x_140: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0943363Z 2025-03-14T04:54:53.0943627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0945477Z x_141: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0945563Z 2025-03-14T04:54:53.0945844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0946003Z x_141 += out_83; out_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:54:53.0946064Z 2025-03-14T04:54:53.0946353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0946492Z out_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:54:53.0946562Z 2025-03-14T04:54:53.0946811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0947302Z x_142: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0947391Z 2025-03-14T04:54:53.0947664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0949534Z x_143: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0949606Z 2025-03-14T04:54:53.0949888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0950029Z out_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:54:53.0950089Z 2025-03-14T04:54:53.0950344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0950831Z x_144: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0950900Z 2025-03-14T04:54:53.0951166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0952976Z x_145: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0953095Z 2025-03-14T04:54:53.0953383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0953520Z out_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:54:53.0953580Z 2025-03-14T04:54:53.0953831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0954331Z x_146: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0954413Z 2025-03-14T04:54:53.0954672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0956513Z x_147: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0956587Z 2025-03-14T04:54:53.0956869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0957024Z x_147 += out_87; out_90: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:54:53.0957085Z 2025-03-14T04:54:53.0957376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0957522Z out_91: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:54:53.0957596Z 2025-03-14T04:54:53.0957856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0958373Z x_148: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0958464Z 2025-03-14T04:54:53.0958740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0960762Z x_149: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0960836Z 2025-03-14T04:54:53.0961221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0961379Z out_92: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:54:53.0961469Z 2025-03-14T04:54:53.0961758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0962364Z x_150: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0962443Z 2025-03-14T04:54:53.0962739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0964770Z x_151: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0964852Z 2025-03-14T04:54:53.0965173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0965329Z out_93: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:54:53.0965398Z 2025-03-14T04:54:53.0965710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0966255Z x_152: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0966330Z 2025-03-14T04:54:53.0966623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0968715Z x_153: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0968796Z 2025-03-14T04:54:53.0969117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0969310Z x_153 += out_91; out_94: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:54:53.0969380Z 2025-03-14T04:54:53.0969732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0969890Z out_95: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:54:53.0969967Z 2025-03-14T04:54:53.0970248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0970812Z x_154: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0970880Z 2025-03-14T04:54:53.0971182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0973376Z x_155: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0973473Z 2025-03-14T04:54:53.0973806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0973942Z out_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:54:53.0974017Z 2025-03-14T04:54:53.0974277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0974797Z x_156: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0974874Z 2025-03-14T04:54:53.0975150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0977115Z x_157: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0977206Z 2025-03-14T04:54:53.0977503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0977647Z out_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:54:53.0977714Z 2025-03-14T04:54:53.0977981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0978491Z x_158: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0978568Z 2025-03-14T04:54:53.0978844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0980718Z x_159: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0980803Z 2025-03-14T04:54:53.0981082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0981237Z x_159 += out_95; out_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:54:53.0981298Z 2025-03-14T04:54:53.0981592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0981735Z out_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:54:53.0981807Z 2025-03-14T04:54:53.0982067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0982579Z x_160: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0982642Z 2025-03-14T04:54:53.0982941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0984832Z x_161: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0984911Z 2025-03-14T04:54:53.0985198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0985340Z out_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:54:53.0985407Z 2025-03-14T04:54:53.0985652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0986157Z x_162: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0986218Z 2025-03-14T04:54:53.0986487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0988289Z x_163: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0988371Z 2025-03-14T04:54:53.0988682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0988828Z out_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:54:53.0988899Z 2025-03-14T04:54:53.0989159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0989708Z x_164: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.0989779Z 2025-03-14T04:54:53.0990055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0991893Z x_165: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0991970Z 2025-03-14T04:54:53.0992263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.0992431Z x_165 += out_99; out_102: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:54:53.0992497Z 2025-03-14T04:54:53.0992804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0992961Z out_103: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:54:53.0993032Z 2025-03-14T04:54:53.0993293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0993819Z x_166: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.0993912Z 2025-03-14T04:54:53.0994198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0996112Z x_167: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0996186Z 2025-03-14T04:54:53.0996510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.0996651Z out_104: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:54:53.0996746Z 2025-03-14T04:54:53.0997008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.0997554Z x_168: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.0997621Z 2025-03-14T04:54:53.0997906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.0999812Z x_169: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.0999878Z 2025-03-14T04:54:53.1000183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1000323Z out_105: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:54:53.1000395Z 2025-03-14T04:54:53.1000651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1001220Z x_170: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.1001287Z 2025-03-14T04:54:53.1001590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1003636Z x_171: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1003710Z 2025-03-14T04:54:53.1004028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.1004223Z x_171 += out_103; out_106: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:54:53.1004302Z 2025-03-14T04:54:53.1004632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1004805Z out_107: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:54:53.1004872Z 2025-03-14T04:54:53.1005159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1005704Z x_172: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.1005773Z 2025-03-14T04:54:53.1006077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1008106Z x_173: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1008206Z 2025-03-14T04:54:53.1008534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1008680Z out_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:54:53.1008755Z 2025-03-14T04:54:53.1009034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1009602Z x_174: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.1009673Z 2025-03-14T04:54:53.1009981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1012156Z x_175: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1012259Z 2025-03-14T04:54:53.1012593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1012752Z out_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:54:53.1012829Z 2025-03-14T04:54:53.1013102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1013662Z x_176: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.1013734Z 2025-03-14T04:54:53.1014037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1016051Z x_177: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1016139Z 2025-03-14T04:54:53.1016459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.1016635Z x_177 += out_107; out_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:54:53.1016714Z 2025-03-14T04:54:53.1017028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1017198Z out_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:54:53.1017267Z 2025-03-14T04:54:53.1017552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1018101Z x_178: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.1018194Z 2025-03-14T04:54:53.1018496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1020559Z x_179: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1020663Z 2025-03-14T04:54:53.1020977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1021135Z out_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:54:53.1021208Z 2025-03-14T04:54:53.1021483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1022032Z x_180: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.1022097Z 2025-03-14T04:54:53.1022369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1024226Z x_181: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1024324Z 2025-03-14T04:54:53.1024635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1024775Z out_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:54:53.1024847Z 2025-03-14T04:54:53.1025108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1025660Z x_182: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.1025736Z 2025-03-14T04:54:53.1026005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1027859Z x_183: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1027921Z 2025-03-14T04:54:53.1028208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.1028362Z x_183 += out_111; out_114: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:54:53.1028429Z 2025-03-14T04:54:53.1028712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1028864Z out_115: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:54:53.1028924Z 2025-03-14T04:54:53.1029180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1029663Z x_184: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.1029749Z 2025-03-14T04:54:53.1030010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1031823Z x_185: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1031896Z 2025-03-14T04:54:53.1032188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1032332Z out_116: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:54:53.1032408Z 2025-03-14T04:54:53.1032674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1033212Z x_186: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.1033285Z 2025-03-14T04:54:53.1033567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1035446Z x_187: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1035517Z 2025-03-14T04:54:53.1035804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1035937Z out_117: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:54:53.1036005Z 2025-03-14T04:54:53.1036266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1036772Z x_188: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.1036834Z 2025-03-14T04:54:53.1037101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1038929Z x_189: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1039003Z 2025-03-14T04:54:53.1039289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.1039456Z x_189 += out_115; out_118: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:54:53.1039527Z 2025-03-14T04:54:53.1039820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1039971Z out_119: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:54:53.1040033Z 2025-03-14T04:54:53.1040286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1040767Z x_190: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.1040838Z 2025-03-14T04:54:53.1041100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1042895Z x_191: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1042985Z 2025-03-14T04:54:53.1043268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1043411Z out_120: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T04:54:53.1043472Z 2025-03-14T04:54:53.1043726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1044215Z x_192: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_120 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.1044285Z 2025-03-14T04:54:53.1044547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1046407Z x_193: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1046498Z 2025-03-14T04:54:53.1046783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1046921Z out_121: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T04:54:53.1046983Z 2025-03-14T04:54:53.1047240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1047752Z x_194: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.1047820Z 2025-03-14T04:54:53.1048106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1050003Z x_195: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1050097Z 2025-03-14T04:54:53.1050368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1050894Z x_196: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:54:53.1050967Z 2025-03-14T04:54:53.1051249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1053462Z x_197: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1053557Z 2025-03-14T04:54:53.1053849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.1054014Z x_195 += x_197; out_122: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T04:54:53.1054078Z 2025-03-14T04:54:53.1054380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1054528Z out_123: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T04:54:53.1054603Z 2025-03-14T04:54:53.1054865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1055378Z x_198: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.1055444Z 2025-03-14T04:54:53.1055770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1057668Z x_199: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1057753Z 2025-03-14T04:54:53.1058064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1058206Z out_124: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T04:54:53.1058280Z 2025-03-14T04:54:53.1058547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1059073Z x_200: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_124 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.1059138Z 2025-03-14T04:54:53.1059438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1061347Z x_201: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1061478Z 2025-03-14T04:54:53.1061770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1061907Z out_125: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T04:54:53.1061982Z 2025-03-14T04:54:53.1062229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1062730Z x_202: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.1062802Z 2025-03-14T04:54:53.1063064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1064906Z x_203: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1065000Z 2025-03-14T04:54:53.1065278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.1065441Z x_203 += out_123; out_126: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T04:54:53.1065503Z 2025-03-14T04:54:53.1065788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1065931Z out_127: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T04:54:53.1065998Z 2025-03-14T04:54:53.1066267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1066758Z x_204: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:54:53.1066837Z 2025-03-14T04:54:53.1067124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1068918Z x_205: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1068992Z 2025-03-14T04:54:53.1069281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1069415Z out_128: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T04:54:53.1069483Z 2025-03-14T04:54:53.1069730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1070223Z x_206: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_128 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:54:53.1070303Z 2025-03-14T04:54:53.1070575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1072367Z x_207: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1072433Z 2025-03-14T04:54:53.1072723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1072876Z out_129: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T04:54:53.1072946Z 2025-03-14T04:54:53.1073195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1073722Z x_208: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:54:53.1073786Z 2025-03-14T04:54:53.1074058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:54:53.1075874Z x_209: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:54:53.1075939Z 2025-03-14T04:54:53.1076223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:54:53.1076378Z x_209 += out_127; out_130: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T04:54:53.1076447Z 2025-03-14T04:54:53.1076728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:54:53.1076877Z out_131: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T04:54:53.1076957Z 2025-03-14T04:54:53.1077217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1077831Z x_210: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_131, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_131 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T04:54:53.1077895Z 2025-03-14T04:54:53.1078163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1078745Z x_211: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_210, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T04:54:53.1078817Z 2025-03-14T04:54:53.1079250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:54:53.1079565Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_210, scale_factor = 2.0, mode = 'nearest'); x_210 = None 2025-03-14T04:54:53.1079627Z 2025-03-14T04:54:53.1079880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1080520Z x_212: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T04:54:53.1080594Z 2025-03-14T04:54:53.1080956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:54:53.1081163Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_212 + top_down_features; x_212 = top_down_features = None 2025-03-14T04:54:53.1081232Z 2025-03-14T04:54:53.1081487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1082086Z x_213: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T04:54:53.1082151Z 2025-03-14T04:54:53.1082587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:54:53.1082906Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T04:54:53.1082976Z 2025-03-14T04:54:53.1083221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1083802Z x_214: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T04:54:53.1083880Z 2025-03-14T04:54:53.1084233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:54:53.1084446Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_214 + top_down_features_1; x_214 = top_down_features_1 = None 2025-03-14T04:54:53.1084514Z 2025-03-14T04:54:53.1084764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1085351Z x_215: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T04:54:53.1085421Z 2025-03-14T04:54:53.1085822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:54:53.1086164Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T04:54:53.1086239Z 2025-03-14T04:54:53.1086506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1087135Z x_216: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T04:54:53.1087208Z 2025-03-14T04:54:53.1087566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:54:53.1087795Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_216 + top_down_features_2; x_216 = top_down_features_2 = None 2025-03-14T04:54:53.1087859Z 2025-03-14T04:54:53.1088132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1088790Z x_217: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T04:54:53.1088854Z 2025-03-14T04:54:53.1089239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T04:54:53.1089457Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_211, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T04:54:53.1089528Z 2025-03-14T04:54:53.1089998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.1090180Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T04:54:53.1090244Z 2025-03-14T04:54:53.1090560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1090705Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:54:53.1090777Z 2025-03-14T04:54:53.1091246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.1091577Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T04:54:53.1091692Z 2025-03-14T04:54:53.1092051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1092213Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:54:53.1092293Z 2025-03-14T04:54:53.1092727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:53.1092942Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:54:53.1093043Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T04:54:53.1093172Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:54:53.1093256Z 2025-03-14T04:54:53.1093596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:53.1093736Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:54:53.1093807Z 2025-03-14T04:54:53.1094137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:53.1094264Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:54:53.1094326Z 2025-03-14T04:54:53.1094720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:53.1094936Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:54:53.1095005Z 2025-03-14T04:54:53.1095442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:53.1095568Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:54:53.1096008Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:54:53.1096130Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:54:53.1096255Z x_218: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T04:54:53.1096316Z 2025-03-14T04:54:53.1096768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.1096938Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T04:54:53.1097008Z 2025-03-14T04:54:53.1097298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1097444Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:54:53.1097503Z 2025-03-14T04:54:53.1097940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.1098086Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T04:54:53.1098157Z 2025-03-14T04:54:53.1098449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1098593Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T04:54:53.1098652Z 2025-03-14T04:54:53.1099031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:53.1099242Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T04:54:53.1099353Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T04:54:53.1099475Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T04:54:53.1099560Z 2025-03-14T04:54:53.1099900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:53.1100037Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T04:54:53.1100097Z 2025-03-14T04:54:53.1100426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:53.1100552Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T04:54:53.1100621Z 2025-03-14T04:54:53.1101021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:53.1101252Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T04:54:53.1101317Z 2025-03-14T04:54:53.1101760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:53.1101901Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T04:54:53.1102341Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T04:54:53.1102479Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T04:54:53.1102601Z x_219: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T04:54:53.1102673Z 2025-03-14T04:54:53.1103124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.1103303Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T04:54:53.1103367Z 2025-03-14T04:54:53.1103682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1103826Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T04:54:53.1103896Z 2025-03-14T04:54:53.1104353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.1104510Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T04:54:53.1104574Z 2025-03-14T04:54:53.1104888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1105032Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T04:54:53.1105103Z 2025-03-14T04:54:53.1105510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:53.1105735Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T04:54:53.1105838Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T04:54:53.1105988Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T04:54:53.1106052Z 2025-03-14T04:54:53.1106417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:53.1106546Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T04:54:53.1106618Z 2025-03-14T04:54:53.1106961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:53.1107094Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T04:54:53.1107158Z 2025-03-14T04:54:53.1107565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:53.1107789Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T04:54:53.1107861Z 2025-03-14T04:54:53.1108303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:53.1108435Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T04:54:53.1108881Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T04:54:53.1109007Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T04:54:53.1109134Z x_220: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T04:54:53.1109200Z 2025-03-14T04:54:53.1109677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.1109827Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T04:54:53.1109898Z 2025-03-14T04:54:53.1110201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1110351Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T04:54:53.1110415Z 2025-03-14T04:54:53.1110872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.1111025Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T04:54:53.1111097Z 2025-03-14T04:54:53.1111403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1111549Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T04:54:53.1111612Z 2025-03-14T04:54:53.1112027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:53.1112226Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T04:54:53.1112356Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T04:54:53.1112477Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T04:54:53.1112551Z 2025-03-14T04:54:53.1112907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:53.1113042Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T04:54:53.1113107Z 2025-03-14T04:54:53.1113453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:53.1113577Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T04:54:53.1113649Z 2025-03-14T04:54:53.1114039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:53.1114268Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T04:54:53.1114332Z 2025-03-14T04:54:53.1114767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:53.1114901Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T04:54:53.1115337Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T04:54:53.1115471Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T04:54:53.1115591Z x_221: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T04:54:53.1115685Z 2025-03-14T04:54:53.1116163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.1116327Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:54:53.1116395Z 2025-03-14T04:54:53.1116727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1116875Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T04:54:53.1116960Z 2025-03-14T04:54:53.1117404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:54:53.1117561Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:54:53.1117624Z 2025-03-14T04:54:53.1117932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1118069Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T04:54:53.1118141Z 2025-03-14T04:54:53.1118538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:54:53.1118750Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T04:54:53.1118868Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T04:54:53.1118998Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T04:54:53.1119062Z 2025-03-14T04:54:53.1119434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:54:53.1119560Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T04:54:53.1119635Z 2025-03-14T04:54:53.1119982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:54:53.1120114Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T04:54:53.1120178Z 2025-03-14T04:54:53.1120584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:54:53.1120806Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T04:54:53.1120880Z 2025-03-14T04:54:53.1121318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:54:53.1121455Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T04:54:53.1121914Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T04:54:53.1122045Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T04:54:53.1122195Z x_222: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T04:54:53.1122266Z 2025-03-14T04:54:53.1122610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:54:53.1122758Z tensor: "f32[269952, 4][4, 1]cpu" = x_218.to(torch.float32); x_218 = None 2025-03-14T04:54:53.1122909Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_219.to(torch.float32); x_219 = None 2025-03-14T04:54:53.1123044Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_220.to(torch.float32); x_220 = None 2025-03-14T04:54:53.1123186Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_221.to(torch.float32); x_221 = None 2025-03-14T04:54:53.1123316Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_222.to(torch.float32); x_222 = None 2025-03-14T04:54:53.1123393Z 2025-03-14T04:54:53.1123684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1124261Z x_223: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_217, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_217 = None 2025-03-14T04:54:53.1124331Z 2025-03-14T04:54:53.1124642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:53.1124884Z x_224: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_223, inplace = False); x_223 = None 2025-03-14T04:54:53.1124962Z 2025-03-14T04:54:53.1125387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:53.1126017Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:54:53.1126087Z 2025-03-14T04:54:53.1126494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:53.1127090Z x_233: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_224 = None 2025-03-14T04:54:53.1127159Z 2025-03-14T04:54:53.1127452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1127999Z x_225: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_215, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_215 = None 2025-03-14T04:54:53.1128076Z 2025-03-14T04:54:53.1128380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:53.1128603Z x_226: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_225, inplace = False); x_225 = None 2025-03-14T04:54:53.1128674Z 2025-03-14T04:54:53.1129100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:53.1129709Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:54:53.1129784Z 2025-03-14T04:54:53.1130177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:53.1130758Z x_234: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_226 = None 2025-03-14T04:54:53.1130837Z 2025-03-14T04:54:53.1131116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1131777Z x_227: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_213, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_213 = None 2025-03-14T04:54:53.1131856Z 2025-03-14T04:54:53.1132174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:53.1132407Z x_228: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_227, inplace = False); x_227 = None 2025-03-14T04:54:53.1132487Z 2025-03-14T04:54:53.1132948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:53.1133631Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:54:53.1133704Z 2025-03-14T04:54:53.1134111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:53.1134672Z x_235: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_228 = None 2025-03-14T04:54:53.1134750Z 2025-03-14T04:54:53.1135029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1135567Z x_229: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_211, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_211 = None 2025-03-14T04:54:53.1135643Z 2025-03-14T04:54:53.1135943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:53.1136147Z x_230: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_229, inplace = False); x_229 = None 2025-03-14T04:54:53.1136215Z 2025-03-14T04:54:53.1136638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:53.1137221Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:54:53.1137297Z 2025-03-14T04:54:53.1137697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:53.1138272Z x_236: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_230 = None 2025-03-14T04:54:53.1138340Z 2025-03-14T04:54:53.1138634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:54:53.1139484Z x_231: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:54:53.1139562Z 2025-03-14T04:54:53.1139844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:54:53.1140031Z x_232: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_231, inplace = False); x_231 = None 2025-03-14T04:54:53.1140104Z 2025-03-14T04:54:53.1140485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:54:53.1141355Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:54:53.1141416Z 2025-03-14T04:54:53.1141774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:54:53.1142603Z x_237: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_232 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:54:53.1142666Z 2025-03-14T04:54:53.1143013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:54:53.1143179Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:54:53.1143329Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:54:53.1143506Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T04:54:53.1143658Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T04:54:53.1143810Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T04:54:53.1143952Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T04:54:53.1144096Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T04:54:53.1144237Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T04:54:53.1144376Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T04:54:53.1144515Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T04:54:53.1144577Z 2025-03-14T04:54:53.1145007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:54:53.1145186Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_233.view(4, -1, 4, 296, 304); x_233 = None 2025-03-14T04:54:53.1145380Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T04:54:53.1145572Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T04:54:53.1145741Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_234.view(4, -1, 4, 148, 152); x_234 = None 2025-03-14T04:54:53.1145939Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T04:54:53.1146131Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T04:54:53.1146292Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_235.view(4, -1, 4, 74, 76); x_235 = None 2025-03-14T04:54:53.1146455Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T04:54:53.1146628Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T04:54:53.1146770Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_236.view(4, -1, 4, 37, 38); x_236 = None 2025-03-14T04:54:53.1146934Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T04:54:53.1147097Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T04:54:53.1147242Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_237.view(4, -1, 4, 19, 19); x_237 = None 2025-03-14T04:54:53.1147400Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T04:54:53.1147569Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T04:54:53.1147631Z 2025-03-14T04:54:53.1148050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:53.1148254Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:54:53.1148324Z 2025-03-14T04:54:53.1148763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:53.1148944Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:54:53.1149088Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:54:53.1149233Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:54:53.1149293Z 2025-03-14T04:54:53.1149672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:53.1149837Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:54:53.1149909Z 2025-03-14T04:54:53.1150218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:53.1150367Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:54:53.1150426Z 2025-03-14T04:54:53.1150742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:53.1150872Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:54:53.1151017Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:54:53.1151170Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:54:53.1151239Z 2025-03-14T04:54:53.1151566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:53.1151696Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:54:53.1151841Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:54:53.1151993Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T04:54:53.1152064Z 2025-03-14T04:54:53.1152374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:53.1152502Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:54:53.1152588Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T04:54:53.1152720Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T04:54:53.1152781Z 2025-03-14T04:54:53.1153094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:53.1153241Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:54:53.1153336Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T04:54:53.1153464Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T04:54:53.1153529Z 2025-03-14T04:54:53.1153866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:53.1154033Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:53.1154152Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T04:54:53.1154223Z 2025-03-14T04:54:53.1154549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:53.1154729Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:53.1154840Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T04:54:53.1154911Z 2025-03-14T04:54:53.1155207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:53.1155365Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:53.1155477Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T04:54:53.1155547Z 2025-03-14T04:54:53.1155844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:53.1156036Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:54:53.1156147Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T04:54:53.1156215Z 2025-03-14T04:54:53.1156563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:53.1156718Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:54:53.1156780Z 2025-03-14T04:54:53.1157150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:53.1157309Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:54:53.1157382Z 2025-03-14T04:54:53.1157758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:53.1157911Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:54:53.1158040Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T04:54:53.1158217Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:54:53.1158364Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T04:54:53.1158427Z 2025-03-14T04:54:53.1158777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:53.1158916Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:54:53.1159049Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T04:54:53.1159197Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:54:53.1159340Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T04:54:53.1159402Z 2025-03-14T04:54:53.1159739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:53.1159855Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:54:53.1160025Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:54:53.1160159Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T04:54:53.1160226Z 2025-03-14T04:54:53.1160716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:53.1160859Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:54:53.1161033Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:54:53.1161184Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T04:54:53.1161249Z 2025-03-14T04:54:53.1161586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:53.1161689Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:54:53.1161822Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:54:53.1161887Z 2025-03-14T04:54:53.1162222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:53.1162330Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:54:53.1162454Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:54:53.1162519Z 2025-03-14T04:54:53.1162831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:53.1162985Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:54:53.1163127Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:54:53.1163259Z 2025-03-14T04:54:53.1163582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:53.1163724Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:54:53.1163870Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:54:53.1163932Z 2025-03-14T04:54:53.1164281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:53.1164464Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:54:53.1164535Z 2025-03-14T04:54:53.1164862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:53.1165034Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T04:54:53.1165097Z 2025-03-14T04:54:53.1165484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:53.1165661Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:54:53.1165731Z 2025-03-14T04:54:53.1166132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:53.1166351Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T04:54:53.1166412Z 2025-03-14T04:54:53.1166852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:53.1167043Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T04:54:53.1167194Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T04:54:53.1167340Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T04:54:53.1167403Z 2025-03-14T04:54:53.1167789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:53.1167960Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T04:54:53.1168031Z 2025-03-14T04:54:53.1168345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:53.1168503Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T04:54:53.1168565Z 2025-03-14T04:54:53.1168885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:53.1169018Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T04:54:53.1169178Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:54:53.1169333Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T04:54:53.1169402Z 2025-03-14T04:54:53.1169726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:53.1169876Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T04:54:53.1170013Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T04:54:53.1170176Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T04:54:53.1170238Z 2025-03-14T04:54:53.1170557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:53.1170683Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:54:53.1170781Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T04:54:53.1170914Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T04:54:53.1170986Z 2025-03-14T04:54:53.1171301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:53.1171549Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T04:54:53.1171653Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T04:54:53.1171795Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T04:54:53.1171865Z 2025-03-14T04:54:53.1172213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:53.1172384Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:53.1172519Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T04:54:53.1172590Z 2025-03-14T04:54:53.1172915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:53.1173093Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:53.1173230Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T04:54:53.1173293Z 2025-03-14T04:54:53.1173596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:53.1173755Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:53.1173866Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T04:54:53.1173937Z 2025-03-14T04:54:53.1174234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:53.1174428Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T04:54:53.1174537Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T04:54:53.1174605Z 2025-03-14T04:54:53.1174935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:53.1175083Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T04:54:53.1175161Z 2025-03-14T04:54:53.1175503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:53.1175657Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T04:54:53.1175726Z 2025-03-14T04:54:53.1176083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:53.1176227Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T04:54:53.1176351Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T04:54:53.1176514Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T04:54:53.1176654Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T04:54:53.1176722Z 2025-03-14T04:54:53.1177067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:53.1177211Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T04:54:53.1177334Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T04:54:53.1177492Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T04:54:53.1177627Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T04:54:53.1177697Z 2025-03-14T04:54:53.1178030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:53.1178151Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T04:54:53.1178310Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T04:54:53.1178453Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T04:54:53.1178532Z 2025-03-14T04:54:53.1178869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:53.1178983Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T04:54:53.1179156Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T04:54:53.1179288Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T04:54:53.1179358Z 2025-03-14T04:54:53.1179668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:53.1179774Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T04:54:53.1179890Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T04:54:53.1179959Z 2025-03-14T04:54:53.1180265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:53.1180365Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T04:54:53.1180484Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T04:54:53.1180545Z 2025-03-14T04:54:53.1180870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:53.1180985Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T04:54:53.1181124Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T04:54:53.1181204Z 2025-03-14T04:54:53.1181532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:53.1181649Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T04:54:53.1181785Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T04:54:53.1181844Z 2025-03-14T04:54:53.1182194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:53.1182387Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T04:54:53.1182455Z 2025-03-14T04:54:53.1182781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:53.1182954Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T04:54:53.1183014Z 2025-03-14T04:54:53.1183396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:53.1183568Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T04:54:53.1183637Z 2025-03-14T04:54:53.1184032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:53.1184244Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T04:54:53.1184308Z 2025-03-14T04:54:53.1184761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:53.1184911Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T04:54:53.1185068Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T04:54:53.1185205Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T04:54:53.1185273Z 2025-03-14T04:54:53.1185643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:53.1185817Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T04:54:53.1185882Z 2025-03-14T04:54:53.1186200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:53.1186344Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T04:54:53.1186415Z 2025-03-14T04:54:53.1186722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:53.1186870Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T04:54:53.1186991Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:54:53.1187145Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T04:54:53.1187223Z 2025-03-14T04:54:53.1187548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:53.1187692Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T04:54:53.1187813Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T04:54:53.1187966Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T04:54:53.1188026Z 2025-03-14T04:54:53.1188341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:53.1188460Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:54:53.1188555Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T04:54:53.1188685Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T04:54:53.1188754Z 2025-03-14T04:54:53.1189063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:53.1189214Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T04:54:53.1189303Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T04:54:53.1189435Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T04:54:53.1189498Z 2025-03-14T04:54:53.1189806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:53.1189956Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:53.1190075Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T04:54:53.1190162Z 2025-03-14T04:54:53.1190466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:53.1190614Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:53.1190732Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T04:54:53.1190791Z 2025-03-14T04:54:53.1191096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:53.1191241Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:53.1191358Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T04:54:53.1191419Z 2025-03-14T04:54:53.1191725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:53.1191909Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T04:54:53.1192023Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T04:54:53.1192085Z 2025-03-14T04:54:53.1192433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:53.1192588Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T04:54:53.1192658Z 2025-03-14T04:54:53.1192997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:53.1193157Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T04:54:53.1193223Z 2025-03-14T04:54:53.1193597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:53.1193743Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T04:54:53.1193867Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T04:54:53.1194030Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T04:54:53.1194166Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T04:54:53.1194238Z 2025-03-14T04:54:53.1194590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:53.1194750Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T04:54:53.1194869Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T04:54:53.1195026Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T04:54:53.1195158Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T04:54:53.1195231Z 2025-03-14T04:54:53.1195569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:53.1195692Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T04:54:53.1195852Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T04:54:53.1196010Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T04:54:53.1196074Z 2025-03-14T04:54:53.1196411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:53.1196522Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T04:54:53.1196692Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T04:54:53.1196823Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T04:54:53.1196893Z 2025-03-14T04:54:53.1197201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:53.1197308Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T04:54:53.1197424Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T04:54:53.1197494Z 2025-03-14T04:54:53.1197800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:53.1197902Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T04:54:53.1198016Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T04:54:53.1198085Z 2025-03-14T04:54:53.1198404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:53.1198531Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T04:54:53.1198681Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T04:54:53.1198753Z 2025-03-14T04:54:53.1199076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:53.1199199Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T04:54:53.1199330Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T04:54:53.1199402Z 2025-03-14T04:54:53.1199755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:53.1199952Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T04:54:53.1200016Z 2025-03-14T04:54:53.1200360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:53.1200527Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T04:54:53.1200596Z 2025-03-14T04:54:53.1200981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:53.1201161Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T04:54:53.1201232Z 2025-03-14T04:54:53.1201640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:53.1201855Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T04:54:53.1201939Z 2025-03-14T04:54:53.1202386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:53.1202537Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T04:54:53.1202697Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T04:54:53.1202837Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T04:54:53.1202908Z 2025-03-14T04:54:53.1203286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:53.1203463Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T04:54:53.1203526Z 2025-03-14T04:54:53.1203847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:53.1203991Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T04:54:53.1204062Z 2025-03-14T04:54:53.1204379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:53.1204532Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T04:54:53.1204658Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:54:53.1204833Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T04:54:53.1204895Z 2025-03-14T04:54:53.1205240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:53.1205365Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T04:54:53.1205495Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T04:54:53.1205642Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T04:54:53.1205714Z 2025-03-14T04:54:53.1206029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:53.1206159Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:54:53.1206250Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T04:54:53.1206388Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T04:54:53.1206451Z 2025-03-14T04:54:53.1206773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:53.1206919Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T04:54:53.1207030Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T04:54:53.1207156Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T04:54:53.1207224Z 2025-03-14T04:54:53.1207521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:53.1207680Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:53.1207789Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T04:54:53.1207873Z 2025-03-14T04:54:53.1208170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:53.1208325Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:53.1208442Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T04:54:53.1208501Z 2025-03-14T04:54:53.1208809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:53.1208952Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:53.1209068Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T04:54:53.1209130Z 2025-03-14T04:54:53.1209437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:53.1209617Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T04:54:53.1209732Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T04:54:53.1209792Z 2025-03-14T04:54:53.1210147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:53.1210283Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T04:54:53.1210350Z 2025-03-14T04:54:53.1210696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:53.1210860Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T04:54:53.1210923Z 2025-03-14T04:54:53.1211274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:53.1211418Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T04:54:53.1211658Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T04:54:53.1211830Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T04:54:53.1211989Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T04:54:53.1212058Z 2025-03-14T04:54:53.1212449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:53.1212601Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T04:54:53.1212744Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T04:54:53.1212896Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T04:54:53.1213038Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T04:54:53.1213102Z 2025-03-14T04:54:53.1213448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:53.1213562Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T04:54:53.1213733Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T04:54:53.1213892Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T04:54:53.1213973Z 2025-03-14T04:54:53.1214301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:53.1214419Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T04:54:53.1214593Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T04:54:53.1214724Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T04:54:53.1214794Z 2025-03-14T04:54:53.1215110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:53.1215215Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T04:54:53.1215332Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T04:54:53.1215402Z 2025-03-14T04:54:53.1215721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:53.1215821Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T04:54:53.1215933Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T04:54:53.1216019Z 2025-03-14T04:54:53.1216323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:53.1216461Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T04:54:53.1216596Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T04:54:53.1216672Z 2025-03-14T04:54:53.1216994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:53.1217117Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T04:54:53.1217241Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T04:54:53.1217307Z 2025-03-14T04:54:53.1217648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:53.1217839Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T04:54:53.1217903Z 2025-03-14T04:54:53.1218236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:53.1218394Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T04:54:53.1218462Z 2025-03-14T04:54:53.1218840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:53.1219019Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T04:54:53.1219080Z 2025-03-14T04:54:53.1219480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:54:53.1219682Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T04:54:53.1219768Z 2025-03-14T04:54:53.1220205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:54:53.1220358Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T04:54:53.1220506Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T04:54:53.1220650Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T04:54:53.1220713Z 2025-03-14T04:54:53.1221087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:54:53.1221252Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T04:54:53.1221323Z 2025-03-14T04:54:53.1221631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:54:53.1221778Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T04:54:53.1221848Z 2025-03-14T04:54:53.1222172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:54:53.1222304Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T04:54:53.1222425Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:54:53.1222592Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T04:54:53.1222654Z 2025-03-14T04:54:53.1222994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:54:53.1223114Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T04:54:53.1223236Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T04:54:53.1223380Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T04:54:53.1223449Z 2025-03-14T04:54:53.1223754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:54:53.1223879Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:54:53.1223965Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T04:54:53.1224101Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T04:54:53.1224164Z 2025-03-14T04:54:53.1224477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:54:53.1224618Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T04:54:53.1224712Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T04:54:53.1224836Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T04:54:53.1224905Z 2025-03-14T04:54:53.1225201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:54:53.1225360Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:54:53.1225487Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T04:54:53.1225558Z 2025-03-14T04:54:53.1225852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:54:53.1226004Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:54:53.1226110Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T04:54:53.1226178Z 2025-03-14T04:54:53.1226473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:54:53.1226627Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:54:53.1226730Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T04:54:53.1226801Z 2025-03-14T04:54:53.1227100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:54:53.1227285Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T04:54:53.1227390Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T04:54:53.1227459Z 2025-03-14T04:54:53.1227810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:54:53.1227952Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T04:54:53.1228031Z 2025-03-14T04:54:53.1228370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:54:53.1228524Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T04:54:53.1228586Z 2025-03-14T04:54:53.1228931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:54:53.1229061Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T04:54:53.1229189Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T04:54:53.1229339Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T04:54:53.1229480Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T04:54:53.1229542Z 2025-03-14T04:54:53.1229898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:54:53.1230030Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T04:54:53.1230156Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T04:54:53.1230298Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T04:54:53.1230436Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T04:54:53.1230498Z 2025-03-14T04:54:53.1230837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:54:53.1230950Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T04:54:53.1231128Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T04:54:53.1231260Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T04:54:53.1231328Z 2025-03-14T04:54:53.1231653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:54:53.1231770Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T04:54:53.1231932Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T04:54:53.1232066Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T04:54:53.1232127Z 2025-03-14T04:54:53.1232437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:54:53.1232532Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T04:54:53.1232654Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T04:54:53.1232716Z 2025-03-14T04:54:53.1233028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:54:53.1233119Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T04:54:53.1233252Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T04:54:53.1233315Z 2025-03-14T04:54:53.1233623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:54:53.1233758Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T04:54:53.1233893Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T04:54:53.1233956Z 2025-03-14T04:54:53.1234279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:54:53.1234389Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T04:54:53.1234520Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T04:54:53.1234580Z 2025-03-14T04:54:53.1234928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:54:53.1235110Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T04:54:53.1235180Z 2025-03-14T04:54:53.1235507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:54:53.1235670Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T04:54:53.1235731Z 2025-03-14T04:54:53.1236113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:54:53.1236290Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T04:54:53.1236353Z 2025-03-14T04:54:53.1236844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:54:53.1236996Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:54:53.1237067Z 2025-03-14T04:54:53.1237360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1237504Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T04:54:53.1237564Z 2025-03-14T04:54:53.1238004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:53.1238115Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T04:54:53.1238229Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T04:54:53.1238340Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:54:53.1238412Z 2025-03-14T04:54:53.1238873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:53.1239010Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:54:53.1239239Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T04:54:53.1239308Z 2025-03-14T04:54:53.1239776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:53.1239963Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:53.1240024Z 2025-03-14T04:54:53.1240342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1240463Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T04:54:53.1240529Z 2025-03-14T04:54:53.1240960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:53.1241082Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T04:54:53.1241185Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T04:54:53.1241307Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T04:54:53.1241369Z 2025-03-14T04:54:53.1241836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:53.1241964Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:54:53.1242203Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T04:54:53.1242264Z 2025-03-14T04:54:53.1242734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:53.1242909Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:53.1242971Z 2025-03-14T04:54:53.1243274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1243416Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T04:54:53.1243483Z 2025-03-14T04:54:53.1243904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:53.1244023Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T04:54:53.1244127Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T04:54:53.1244246Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T04:54:53.1244307Z 2025-03-14T04:54:53.1244757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:53.1244887Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:54:53.1245124Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T04:54:53.1245186Z 2025-03-14T04:54:53.1245656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:53.1245818Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:53.1245905Z 2025-03-14T04:54:53.1246193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1246343Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T04:54:53.1246407Z 2025-03-14T04:54:53.1246838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:53.1246949Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T04:54:53.1247060Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T04:54:53.1247175Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T04:54:53.1247244Z 2025-03-14T04:54:53.1247692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:53.1247834Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:54:53.1248064Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T04:54:53.1248133Z 2025-03-14T04:54:53.1248581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:53.1248751Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:53.1248837Z 2025-03-14T04:54:53.1249125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1249255Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T04:54:53.1249335Z 2025-03-14T04:54:53.1249777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:54:53.1249885Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T04:54:53.1249992Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T04:54:53.1250107Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T04:54:53.1250175Z 2025-03-14T04:54:53.1250626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:54:53.1250797Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:54:53.1251030Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T04:54:53.1251097Z 2025-03-14T04:54:53.1251636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:54:53.1251835Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:54:53.1251900Z 2025-03-14T04:54:53.1252210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:54:53.1252353Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T04:54:53.1252428Z 2025-03-14T04:54:53.1252729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:54:53.1253128Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T04:54:53.1253192Z 2025-03-14T04:54:53.1253486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:54:53.1253965Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T04:54:53.1254035Z 2025-03-14T04:54:53.1254323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:54:53.1254518Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T04:54:53.1254588Z 2025-03-14T04:54:53.1254971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:54:53.1255116Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T04:54:53.1255177Z 2025-03-14T04:54:53.1255481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:54:53.1255627Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T04:54:53.1255711Z 2025-03-14T04:54:53.1256094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:54:53.1256230Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T04:54:53.1256291Z 2025-03-14T04:54:53.1256773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:54:53.1256905Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T04:54:53.1257029Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:54:53.1257180Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:54:53.1257320Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:54:53.1257380Z 2025-03-14T04:54:53.1257745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:54:53.1257858Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:54:53.1257927Z 2025-03-14T04:55:13.6046834Z 2025-03-14T04:55:13.6049960Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:13.6053916Z def forward(self, L_features_p2_: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu", L_features_p3_: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu", L_features_p4_: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu", L_features_p5_: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu", L_features_p6_: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T04:55:13.6056635Z l_features_p2_ = L_features_p2_ 2025-03-14T04:55:13.6056897Z l_features_p3_ = L_features_p3_ 2025-03-14T04:55:13.6057128Z l_features_p4_ = L_features_p4_ 2025-03-14T04:55:13.6057337Z l_features_p5_ = L_features_p5_ 2025-03-14T04:55:13.6057554Z l_features_p6_ = L_features_p6_ 2025-03-14T04:55:13.6057956Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:55:13.6058552Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T04:55:13.6059148Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T04:55:13.6059721Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T04:55:13.6060351Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T04:55:13.6062855Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:55:13.6063392Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:55:13.6063948Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:55:13.6064568Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:55:13.6065145Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:55:13.6065736Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:55:13.6066134Z 2025-03-14T04:55:13.6066726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6067484Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T04:55:13.6067764Z 2025-03-14T04:55:13.6068335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6068848Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:55:13.6069181Z 2025-03-14T04:55:13.6069780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6070442Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T04:55:13.6070723Z 2025-03-14T04:55:13.6071140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6071657Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:55:13.6071928Z 2025-03-14T04:55:13.6072414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:13.6073068Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:55:13.6073419Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T04:55:13.6073715Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:55:13.6073960Z 2025-03-14T04:55:13.6074381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:13.6074903Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:55:13.6075150Z 2025-03-14T04:55:13.6075581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:13.6076108Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:55:13.6076364Z 2025-03-14T04:55:13.6076852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:13.6077586Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:55:13.6077935Z 2025-03-14T04:55:13.6078463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:13.6079086Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:55:13.6079609Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:55:13.6080116Z add: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:55:13.6080426Z x: "f32[269952, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:55:13.6080658Z 2025-03-14T04:55:13.6081193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6081846Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T04:55:13.6082119Z 2025-03-14T04:55:13.6082527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6083030Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:55:13.6083320Z 2025-03-14T04:55:13.6083845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6084518Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T04:55:13.6084798Z 2025-03-14T04:55:13.6085184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6085696Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T04:55:13.6085964Z 2025-03-14T04:55:13.6086444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:13.6087097Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T04:55:13.6087467Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T04:55:13.6087756Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T04:55:13.6088011Z 2025-03-14T04:55:13.6088441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:13.6088981Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T04:55:13.6089240Z 2025-03-14T04:55:13.6089673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:13.6090204Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T04:55:13.6090466Z 2025-03-14T04:55:13.6090955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:13.6091810Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T04:55:13.6092160Z 2025-03-14T04:55:13.6092718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:13.6093390Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T04:55:13.6093931Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T04:55:13.6094446Z add_1: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T04:55:13.6094763Z x_1: "f32[67488, 4][4, 1]cpu" = add_1.reshape(-1, 4); add_1 = None 2025-03-14T04:55:13.6095009Z 2025-03-14T04:55:13.6095563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6096234Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T04:55:13.6096512Z 2025-03-14T04:55:13.6096942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6097458Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T04:55:13.6097748Z 2025-03-14T04:55:13.6098296Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6099005Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T04:55:13.6099285Z 2025-03-14T04:55:13.6099675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6100176Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T04:55:13.6100441Z 2025-03-14T04:55:13.6100912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:13.6101558Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T04:55:13.6101927Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T04:55:13.6102209Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T04:55:13.6102451Z 2025-03-14T04:55:13.6102874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:13.6103388Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T04:55:13.6103632Z 2025-03-14T04:55:13.6104050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:13.6104562Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T04:55:13.6104809Z 2025-03-14T04:55:13.6105277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:13.6105978Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T04:55:13.6106305Z 2025-03-14T04:55:13.6106805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:13.6107402Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T04:55:13.6107903Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T04:55:13.6108430Z add_2: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T04:55:13.6108739Z x_2: "f32[16872, 4][4, 1]cpu" = add_2.reshape(-1, 4); add_2 = None 2025-03-14T04:55:13.6108995Z 2025-03-14T04:55:13.6109520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6110163Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T04:55:13.6110433Z 2025-03-14T04:55:13.6110834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6111334Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T04:55:13.6111622Z 2025-03-14T04:55:13.6112157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6112823Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T04:55:13.6113097Z 2025-03-14T04:55:13.6113489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6113988Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T04:55:13.6114253Z 2025-03-14T04:55:13.6114726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:13.6115364Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T04:55:13.6115722Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T04:55:13.6116008Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T04:55:13.6116254Z 2025-03-14T04:55:13.6116681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:13.6117202Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T04:55:13.6117456Z 2025-03-14T04:55:13.6117877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:13.6118401Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T04:55:13.6118656Z 2025-03-14T04:55:13.6119130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:13.6119812Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T04:55:13.6120145Z 2025-03-14T04:55:13.6120647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:13.6121249Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T04:55:13.6121747Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T04:55:13.6122236Z add_3: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T04:55:13.6122528Z x_3: "f32[4218, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T04:55:13.6122761Z 2025-03-14T04:55:13.6123280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6123902Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:55:13.6124166Z 2025-03-14T04:55:13.6124557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6125037Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T04:55:13.6125312Z 2025-03-14T04:55:13.6125824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6126478Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:55:13.6126740Z 2025-03-14T04:55:13.6127116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6127607Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T04:55:13.6127870Z 2025-03-14T04:55:13.6128319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:13.6128934Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T04:55:13.6129285Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T04:55:13.6129561Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T04:55:13.6129804Z 2025-03-14T04:55:13.6130224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:13.6130739Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T04:55:13.6130987Z 2025-03-14T04:55:13.6131489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:13.6132040Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T04:55:13.6132302Z 2025-03-14T04:55:13.6132791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:13.6133467Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T04:55:13.6133785Z 2025-03-14T04:55:13.6134295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:13.6134868Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T04:55:13.6135343Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T04:55:13.6135820Z add_4: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T04:55:13.6136106Z x_4: "f32[1083, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T04:55:13.6136335Z 2025-03-14T04:55:13.6136717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:55:13.6137184Z tensor: "f32[269952, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:55:13.6137483Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_1.to(torch.float32); x_1 = None 2025-03-14T04:55:13.6137776Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_2.to(torch.float32); x_2 = None 2025-03-14T04:55:13.6138090Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_3.to(torch.float32); x_3 = None 2025-03-14T04:55:13.6138377Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_4.to(torch.float32); x_4 = None 2025-03-14T04:55:13.6138640Z 2025-03-14T04:55:13.6138981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:13.6139739Z x_5: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(l_features_p2_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p2_ = None 2025-03-14T04:55:13.6140271Z 2025-03-14T04:55:13.6140626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:13.6141146Z x_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_5, inplace = False); x_5 = None 2025-03-14T04:55:13.6141447Z 2025-03-14T04:55:13.6141908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:13.6142745Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:55:13.6143268Z 2025-03-14T04:55:13.6143707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:13.6144522Z x_15: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_6 = None 2025-03-14T04:55:13.6145040Z 2025-03-14T04:55:13.6145379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:13.6146095Z x_7: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(l_features_p3_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p3_ = None 2025-03-14T04:55:13.6146643Z 2025-03-14T04:55:13.6147000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:13.6147513Z x_8: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_7, inplace = False); x_7 = None 2025-03-14T04:55:13.6147810Z 2025-03-14T04:55:13.6148269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:13.6149107Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:55:13.6149627Z 2025-03-14T04:55:13.6150067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:13.6150884Z x_16: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_8 = None 2025-03-14T04:55:13.6151406Z 2025-03-14T04:55:13.6151769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:13.6152481Z x_9: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(l_features_p4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p4_ = None 2025-03-14T04:55:13.6153015Z 2025-03-14T04:55:13.6153409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:13.6153919Z x_10: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_9, inplace = False); x_9 = None 2025-03-14T04:55:13.6154214Z 2025-03-14T04:55:13.6154673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:13.6155495Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:55:13.6156007Z 2025-03-14T04:55:13.6156451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:13.6157255Z x_17: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_10 = None 2025-03-14T04:55:13.6157763Z 2025-03-14T04:55:13.6158102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:13.6158807Z x_11: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(l_features_p5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p5_ = None 2025-03-14T04:55:13.6159323Z 2025-03-14T04:55:13.6159684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:13.6160216Z x_12: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_11, inplace = False); x_11 = None 2025-03-14T04:55:13.6160727Z 2025-03-14T04:55:13.6161200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:13.6162024Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:55:13.6162534Z 2025-03-14T04:55:13.6162973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:13.6163780Z x_18: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_12 = None 2025-03-14T04:55:13.6164285Z 2025-03-14T04:55:13.6164622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:13.6165545Z x_13: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(l_features_p6_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p6_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:55:13.6166258Z 2025-03-14T04:55:13.6166607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:13.6167123Z x_14: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_13, inplace = False); x_13 = None 2025-03-14T04:55:13.6167412Z 2025-03-14T04:55:13.6167871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:13.6168938Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:55:13.6169689Z 2025-03-14T04:55:13.6170141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:13.6171187Z x_19: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_14 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:55:13.6171969Z 2025-03-14T04:55:13.6172405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:55:13.6172975Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:55:13.6173344Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:55:13.6173756Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T04:55:13.6174127Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T04:55:13.6174483Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T04:55:13.6174832Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T04:55:13.6175185Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T04:55:13.6175531Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T04:55:13.6175875Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T04:55:13.6176212Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T04:55:13.6176478Z 2025-03-14T04:55:13.6176997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:55:13.6177652Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_15.view(4, -1, 4, 296, 304); x_15 = None 2025-03-14T04:55:13.6178095Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T04:55:13.6178528Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T04:55:13.6178930Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_16.view(4, -1, 4, 148, 152); x_16 = None 2025-03-14T04:55:13.6179353Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T04:55:13.6179790Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T04:55:13.6180177Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_17.view(4, -1, 4, 74, 76); x_17 = None 2025-03-14T04:55:13.6180552Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T04:55:13.6180950Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T04:55:13.6181327Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_18.view(4, -1, 4, 37, 38); x_18 = None 2025-03-14T04:55:13.6181692Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T04:55:13.6182084Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T04:55:13.6182456Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_19.view(4, -1, 4, 19, 19); x_19 = None 2025-03-14T04:55:13.6182815Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T04:55:13.6183200Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T04:55:13.6183491Z 2025-03-14T04:55:13.6183994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:13.6184665Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:55:13.6184992Z 2025-03-14T04:55:13.6185517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:13.6186193Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:55:13.6186553Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:55:13.6186907Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:55:13.6187165Z 2025-03-14T04:55:13.6187621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:13.6188214Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:55:13.6188504Z 2025-03-14T04:55:13.6188900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:13.6189412Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:55:13.6189673Z 2025-03-14T04:55:13.6190066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:13.6190558Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:13.6190890Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6191232Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:55:13.6191532Z 2025-03-14T04:55:13.6191937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:13.6192452Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:13.6192755Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:13.6193086Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T04:55:13.6193366Z 2025-03-14T04:55:13.6193761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:13.6194250Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6194516Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T04:55:13.6194790Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T04:55:13.6195032Z 2025-03-14T04:55:13.6195420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:13.6195937Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:13.6196229Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T04:55:13.6196507Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T04:55:13.6196762Z 2025-03-14T04:55:13.6197183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:13.6197689Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:13.6198023Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T04:55:13.6198263Z 2025-03-14T04:55:13.6198648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:13.6199175Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:13.6199504Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T04:55:13.6199741Z 2025-03-14T04:55:13.6200122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:13.6200625Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:13.6200949Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T04:55:13.6201181Z 2025-03-14T04:55:13.6201563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:13.6202097Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:13.6202446Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T04:55:13.6202678Z 2025-03-14T04:55:13.6203096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:13.6203650Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:13.6203919Z 2025-03-14T04:55:13.6204334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:13.6204897Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:13.6205159Z 2025-03-14T04:55:13.6205609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:13.6206153Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:13.6206475Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T04:55:13.6206809Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:13.6207165Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T04:55:13.6207429Z 2025-03-14T04:55:13.6207872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:13.6208445Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:13.6208785Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T04:55:13.6209142Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:13.6209511Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T04:55:13.6209782Z 2025-03-14T04:55:13.6210228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:13.6210756Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:13.6211105Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:13.6212760Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T04:55:13.6213151Z 2025-03-14T04:55:13.6213615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:13.6214158Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:13.6214524Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:13.6214910Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T04:55:13.6215185Z 2025-03-14T04:55:13.6215605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:13.6216100Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:13.6216395Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:13.6216641Z 2025-03-14T04:55:13.6217063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:13.6217544Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:13.6217822Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:13.6218066Z 2025-03-14T04:55:13.6218497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:13.6220067Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:13.6220415Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:13.6220721Z 2025-03-14T04:55:13.6221135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:13.6221666Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:13.6221982Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:13.6222243Z 2025-03-14T04:55:13.6222701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:13.6223316Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:13.6223621Z 2025-03-14T04:55:13.6224060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:13.6224636Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T04:55:13.6224917Z 2025-03-14T04:55:13.6225381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:13.6225996Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:55:13.6226287Z 2025-03-14T04:55:13.6226771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:13.6227438Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T04:55:13.6227772Z 2025-03-14T04:55:13.6228302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:13.6228991Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T04:55:13.6229361Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T04:55:13.6229722Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T04:55:13.6229992Z 2025-03-14T04:55:13.6230471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:13.6231064Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T04:55:13.6231353Z 2025-03-14T04:55:13.6231754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:13.6232289Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T04:55:13.6232574Z 2025-03-14T04:55:13.6232974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:13.6233481Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T04:55:13.6233820Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6234155Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T04:55:13.6234441Z 2025-03-14T04:55:13.6234840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:13.6235352Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T04:55:13.6235656Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T04:55:13.6235989Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T04:55:13.6236263Z 2025-03-14T04:55:13.6236660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:13.6237154Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6237427Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T04:55:13.6237700Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T04:55:13.6237952Z 2025-03-14T04:55:13.6238347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:13.6238865Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T04:55:13.6239165Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T04:55:13.6239847Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T04:55:13.6240484Z 2025-03-14T04:55:13.6241217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:13.6242085Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:13.6242593Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T04:55:13.6242974Z 2025-03-14T04:55:13.6243611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:13.6244461Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:13.6244910Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T04:55:13.6245231Z 2025-03-14T04:55:13.6245796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:13.6246536Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:13.6246979Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T04:55:13.6247298Z 2025-03-14T04:55:13.6247859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:13.6248660Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T04:55:13.6249133Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T04:55:13.6249474Z 2025-03-14T04:55:13.6250125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:13.6251098Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T04:55:13.6251928Z 2025-03-14T04:55:13.6252408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:13.6253019Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T04:55:13.6253295Z 2025-03-14T04:55:13.6253782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:13.6254345Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T04:55:13.6254674Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T04:55:13.6255029Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T04:55:13.6260323Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T04:55:13.6261313Z 2025-03-14T04:55:13.6261774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:13.6262357Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T04:55:13.6262687Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T04:55:13.6263032Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T04:55:13.6263396Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T04:55:13.6263667Z 2025-03-14T04:55:13.6264093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:13.6264608Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T04:55:13.6264953Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T04:55:13.6265462Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T04:55:13.6265740Z 2025-03-14T04:55:13.6266178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:13.6266695Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T04:55:13.6267049Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T04:55:13.6267428Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T04:55:13.6267693Z 2025-03-14T04:55:13.6268109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:13.6268587Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T04:55:13.6268868Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T04:55:13.6269112Z 2025-03-14T04:55:13.6269519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:13.6269992Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T04:55:13.6270277Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T04:55:13.6270518Z 2025-03-14T04:55:13.6276456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:13.6277024Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T04:55:13.6277379Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T04:55:13.6277636Z 2025-03-14T04:55:13.6278064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:13.6278545Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T04:55:13.6278848Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T04:55:13.6279098Z 2025-03-14T04:55:13.6279526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:13.6280119Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T04:55:13.6280419Z 2025-03-14T04:55:13.6280880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:13.6281456Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T04:55:13.6281740Z 2025-03-14T04:55:13.6282207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:13.6282822Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T04:55:13.6283115Z 2025-03-14T04:55:13.6283622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:13.6284278Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T04:55:13.6284658Z 2025-03-14T04:55:13.6285165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:13.6285792Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T04:55:13.6286145Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T04:55:13.6286490Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T04:55:13.6286753Z 2025-03-14T04:55:13.6287208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:13.6287800Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T04:55:13.6288087Z 2025-03-14T04:55:13.6288477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:13.6288984Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T04:55:13.6289243Z 2025-03-14T04:55:13.6289632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:13.6290145Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T04:55:13.6290453Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6290812Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T04:55:13.6291084Z 2025-03-14T04:55:13.6291639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:13.6292264Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T04:55:13.6292579Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T04:55:13.6292924Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T04:55:13.6293197Z 2025-03-14T04:55:13.6293596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:13.6294088Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6294357Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T04:55:13.6294629Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T04:55:13.6294874Z 2025-03-14T04:55:13.6295272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:13.6295785Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T04:55:13.6296078Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T04:55:13.6296348Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T04:55:13.6296599Z 2025-03-14T04:55:13.6297000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:13.6297502Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:13.6297823Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T04:55:13.6298074Z 2025-03-14T04:55:13.6298509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:13.6299010Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:13.6299331Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T04:55:13.6299564Z 2025-03-14T04:55:13.6299945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:13.6300441Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:13.6300755Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T04:55:13.6300985Z 2025-03-14T04:55:13.6301372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:13.6301908Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T04:55:13.6302252Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T04:55:13.6302482Z 2025-03-14T04:55:13.6302922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:13.6303448Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T04:55:13.6303707Z 2025-03-14T04:55:13.6304137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:13.6304694Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T04:55:13.6304957Z 2025-03-14T04:55:13.6305388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:13.6305924Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T04:55:13.6306243Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T04:55:13.6306578Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T04:55:13.6306928Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T04:55:13.6307191Z 2025-03-14T04:55:13.6307621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:13.6308162Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T04:55:13.6308479Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T04:55:13.6308806Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T04:55:13.6309149Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T04:55:13.6309408Z 2025-03-14T04:55:13.6309820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:13.6310328Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T04:55:13.6310658Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T04:55:13.6311026Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T04:55:13.6311282Z 2025-03-14T04:55:13.6311699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:13.6312199Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T04:55:13.6312530Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T04:55:13.6312879Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T04:55:13.6313129Z 2025-03-14T04:55:13.6313524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:13.6313989Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T04:55:13.6314243Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T04:55:13.6314479Z 2025-03-14T04:55:13.6314868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:13.6315321Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T04:55:13.6315582Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T04:55:13.6315853Z 2025-03-14T04:55:13.6316254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:13.6316763Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T04:55:13.6317074Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T04:55:13.6317343Z 2025-03-14T04:55:13.6317743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:13.6318233Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T04:55:13.6318535Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T04:55:13.6318802Z 2025-03-14T04:55:13.6319248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:13.6319852Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T04:55:13.6320165Z 2025-03-14T04:55:13.6320597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:13.6321163Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T04:55:13.6321453Z 2025-03-14T04:55:13.6321938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:13.6322567Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T04:55:13.6322869Z 2025-03-14T04:55:13.6323418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:13.6324093Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T04:55:13.6324451Z 2025-03-14T04:55:13.6324972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:13.6325613Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T04:55:13.6325968Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T04:55:13.6326315Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T04:55:13.6326579Z 2025-03-14T04:55:13.6327043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:13.6327647Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T04:55:13.6327941Z 2025-03-14T04:55:13.6328339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:13.6328854Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T04:55:13.6329124Z 2025-03-14T04:55:13.6329541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:13.6330045Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T04:55:13.6330352Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6330698Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T04:55:13.6330966Z 2025-03-14T04:55:13.6331398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:13.6332010Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T04:55:13.6332325Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T04:55:13.6332673Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T04:55:13.6332938Z 2025-03-14T04:55:13.6333337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:13.6333824Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6334093Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T04:55:13.6334362Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T04:55:13.6334611Z 2025-03-14T04:55:13.6335004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:13.6335510Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T04:55:13.6335804Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T04:55:13.6336080Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T04:55:13.6336328Z 2025-03-14T04:55:13.6336720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:13.6337222Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:13.6337571Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T04:55:13.6337806Z 2025-03-14T04:55:13.6338188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:13.6338689Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:13.6339009Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T04:55:13.6339240Z 2025-03-14T04:55:13.6339622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:13.6340122Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:13.6340441Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T04:55:13.6340673Z 2025-03-14T04:55:13.6341061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:13.6341597Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T04:55:13.6341938Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T04:55:13.6342170Z 2025-03-14T04:55:13.6342609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:13.6343131Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T04:55:13.6343399Z 2025-03-14T04:55:13.6343812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:13.6344347Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T04:55:13.6344603Z 2025-03-14T04:55:13.6345032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:13.6345568Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T04:55:13.6345886Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T04:55:13.6346222Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T04:55:13.6346570Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T04:55:13.6346828Z 2025-03-14T04:55:13.6347259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:13.6347798Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T04:55:13.6348108Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T04:55:13.6348438Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T04:55:13.6348779Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T04:55:13.6349032Z 2025-03-14T04:55:13.6349441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:13.6349945Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T04:55:13.6350290Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T04:55:13.6350638Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T04:55:13.6350890Z 2025-03-14T04:55:13.6351304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:13.6351800Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T04:55:13.6352136Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T04:55:13.6352492Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T04:55:13.6352753Z 2025-03-14T04:55:13.6353147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:13.6353629Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T04:55:13.6353889Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T04:55:13.6354137Z 2025-03-14T04:55:13.6354526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:13.6354995Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T04:55:13.6355277Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T04:55:13.6355521Z 2025-03-14T04:55:13.6355925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:13.6356433Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T04:55:13.6356757Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T04:55:13.6357029Z 2025-03-14T04:55:13.6357426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:13.6357916Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T04:55:13.6358221Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T04:55:13.6358477Z 2025-03-14T04:55:13.6358920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:13.6359526Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T04:55:13.6359851Z 2025-03-14T04:55:13.6360273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:13.6361069Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T04:55:13.6361382Z 2025-03-14T04:55:13.6363055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:13.6363707Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T04:55:13.6364006Z 2025-03-14T04:55:13.6364503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:13.6365247Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T04:55:13.6365572Z 2025-03-14T04:55:13.6366098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:13.6366960Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T04:55:13.6367320Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T04:55:13.6367668Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T04:55:13.6367932Z 2025-03-14T04:55:13.6368399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:13.6368999Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T04:55:13.6369287Z 2025-03-14T04:55:13.6369684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:13.6370204Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T04:55:13.6370468Z 2025-03-14T04:55:13.6370904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:13.6371475Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T04:55:13.6371900Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6372248Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T04:55:13.6372534Z 2025-03-14T04:55:13.6373004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:13.6373537Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T04:55:13.6373833Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T04:55:13.6374158Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T04:55:13.6374421Z 2025-03-14T04:55:13.6374817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:13.6375315Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6375588Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T04:55:13.6375861Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T04:55:13.6376118Z 2025-03-14T04:55:13.6376520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:13.6377042Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T04:55:13.6377340Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T04:55:13.6377613Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T04:55:13.6377864Z 2025-03-14T04:55:13.6378267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:13.6378786Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:13.6379138Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T04:55:13.6379380Z 2025-03-14T04:55:13.6379775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:13.6380298Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:13.6380624Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T04:55:13.6380858Z 2025-03-14T04:55:13.6381250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:13.6381765Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:13.6382084Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T04:55:13.6382316Z 2025-03-14T04:55:13.6382714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:13.6383262Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T04:55:13.6383612Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T04:55:13.6383843Z 2025-03-14T04:55:13.6384290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:13.6384822Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T04:55:13.6385100Z 2025-03-14T04:55:13.6385545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:13.6386073Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T04:55:13.6386327Z 2025-03-14T04:55:13.6386760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:13.6387306Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T04:55:13.6387628Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T04:55:13.6387967Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T04:55:13.6388315Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T04:55:13.6388574Z 2025-03-14T04:55:13.6389018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:13.6389562Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T04:55:13.6389878Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T04:55:13.6390205Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T04:55:13.6390553Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T04:55:13.6390808Z 2025-03-14T04:55:13.6391229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:13.6391738Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T04:55:13.6392088Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T04:55:13.6392447Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T04:55:13.6392711Z 2025-03-14T04:55:13.6393140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:13.6393653Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T04:55:13.6393998Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T04:55:13.6394363Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T04:55:13.6394622Z 2025-03-14T04:55:13.6395028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:13.6395504Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T04:55:13.6395775Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T04:55:13.6396021Z 2025-03-14T04:55:13.6396425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:13.6396897Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T04:55:13.6397184Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T04:55:13.6397421Z 2025-03-14T04:55:13.6397819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:13.6398320Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T04:55:13.6398643Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T04:55:13.6398897Z 2025-03-14T04:55:13.6399297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:13.6399793Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T04:55:13.6400099Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T04:55:13.6400358Z 2025-03-14T04:55:13.6400809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:13.6401432Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T04:55:13.6401740Z 2025-03-14T04:55:13.6402162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:13.6402714Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T04:55:13.6402995Z 2025-03-14T04:55:13.6403468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:13.6404081Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T04:55:13.6404369Z 2025-03-14T04:55:13.6404957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:55:13.6405681Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:55:13.6405939Z 2025-03-14T04:55:13.6406327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6406830Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T04:55:13.6407093Z 2025-03-14T04:55:13.6407638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:13.6408266Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T04:55:13.6408540Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T04:55:13.6408826Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:55:13.6409056Z 2025-03-14T04:55:13.6409610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:13.6410275Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:55:13.6410731Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T04:55:13.6411095Z 2025-03-14T04:55:13.6411762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:13.6412566Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:13.6412857Z 2025-03-14T04:55:13.6413261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6413743Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T04:55:13.6413993Z 2025-03-14T04:55:13.6414532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:13.6415156Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T04:55:13.6415442Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T04:55:13.6415732Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T04:55:13.6415975Z 2025-03-14T04:55:13.6416533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:13.6417199Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:55:13.6417633Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T04:55:13.6417992Z 2025-03-14T04:55:13.6418540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:13.6419232Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:13.6419537Z 2025-03-14T04:55:13.6419916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6420408Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T04:55:13.6420653Z 2025-03-14T04:55:13.6421188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:13.6421810Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T04:55:13.6422090Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T04:55:13.6422372Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T04:55:13.6422612Z 2025-03-14T04:55:13.6423165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:13.6423826Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:55:13.6424262Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T04:55:13.6424623Z 2025-03-14T04:55:13.6425193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:13.6425875Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:13.6426184Z 2025-03-14T04:55:13.6426567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6427721Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T04:55:13.6427988Z 2025-03-14T04:55:13.6428525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:13.6429141Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T04:55:13.6429426Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T04:55:13.6429699Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T04:55:13.6429929Z 2025-03-14T04:55:13.6430464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:13.6431100Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:55:13.6431525Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T04:55:13.6431867Z 2025-03-14T04:55:13.6432400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:13.6433062Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:13.6433341Z 2025-03-14T04:55:13.6433711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6434201Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T04:55:13.6434440Z 2025-03-14T04:55:13.6434949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:13.6435535Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T04:55:13.6435805Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T04:55:13.6436082Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T04:55:13.6436314Z 2025-03-14T04:55:13.6436843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:13.6437511Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:55:13.6437966Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T04:55:13.6438317Z 2025-03-14T04:55:13.6438861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:13.6439554Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:13.6439837Z 2025-03-14T04:55:13.6440219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6440717Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T04:55:13.6440964Z 2025-03-14T04:55:13.6441351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:13.6442084Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T04:55:13.6442576Z 2025-03-14T04:55:13.6442945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:13.6443751Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T04:55:13.6444341Z 2025-03-14T04:55:13.6444708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:13.6445246Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T04:55:13.6445557Z 2025-03-14T04:55:13.6446033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:55:13.6446615Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T04:55:13.6446882Z 2025-03-14T04:55:13.6447268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:55:13.6447791Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T04:55:13.6448060Z 2025-03-14T04:55:13.6448529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:55:13.6449102Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T04:55:13.6449354Z 2025-03-14T04:55:13.6449935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:55:13.6450615Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T04:55:13.6450931Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:13.6451277Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:55:13.6451723Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:55:13.6452003Z 2025-03-14T04:55:13.6452507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:55:13.6453060Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:55:13.6453318Z 2025-03-14T04:55:13.6453408Z 2025-03-14T04:55:13.6453506Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:13.6455815Z def forward(self, L_features_p2_: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu", L_features_p3_: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu", L_features_p4_: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu", L_features_p5_: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu", L_features_p6_: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T04:55:13.6458213Z l_features_p2_ = L_features_p2_ 2025-03-14T04:55:13.6458436Z l_features_p3_ = L_features_p3_ 2025-03-14T04:55:13.6458652Z l_features_p4_ = L_features_p4_ 2025-03-14T04:55:13.6458866Z l_features_p5_ = L_features_p5_ 2025-03-14T04:55:13.6459078Z l_features_p6_ = L_features_p6_ 2025-03-14T04:55:13.6459470Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:55:13.6460042Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T04:55:13.6460796Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T04:55:13.6461385Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T04:55:13.6462003Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T04:55:13.6462542Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:55:13.6463040Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:55:13.6463594Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:55:13.6464207Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:55:13.6464792Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:55:13.6465357Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:55:13.6465729Z 2025-03-14T04:55:13.6466296Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6466979Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T04:55:13.6467261Z 2025-03-14T04:55:13.6467686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6468197Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:55:13.6468494Z 2025-03-14T04:55:13.6469069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6469742Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T04:55:13.6470020Z 2025-03-14T04:55:13.6470415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6470921Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:55:13.6471191Z 2025-03-14T04:55:13.6471669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:13.6472305Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:55:13.6472648Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T04:55:13.6472931Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:55:13.6473177Z 2025-03-14T04:55:13.6473605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:13.6474139Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:55:13.6474386Z 2025-03-14T04:55:13.6474815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:13.6475334Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:55:13.6475584Z 2025-03-14T04:55:13.6476070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:13.6476776Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:55:13.6477120Z 2025-03-14T04:55:13.6477644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:13.6478267Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:55:13.6478786Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:55:13.6479297Z add: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:55:13.6479607Z x: "f32[269952, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:55:13.6479847Z 2025-03-14T04:55:13.6480393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6481067Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T04:55:13.6481330Z 2025-03-14T04:55:13.6481757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6482249Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:55:13.6482535Z 2025-03-14T04:55:13.6483106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6483775Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T04:55:13.6484060Z 2025-03-14T04:55:13.6484461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6484970Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T04:55:13.6485245Z 2025-03-14T04:55:13.6485723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:13.6486379Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T04:55:13.6486754Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T04:55:13.6487051Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T04:55:13.6487306Z 2025-03-14T04:55:13.6487741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:13.6488311Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T04:55:13.6488584Z 2025-03-14T04:55:13.6489042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:13.6489609Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T04:55:13.6489881Z 2025-03-14T04:55:13.6490401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:13.6491148Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T04:55:13.6491578Z 2025-03-14T04:55:13.6492135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:13.6492797Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T04:55:13.6493341Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T04:55:13.6493855Z add_1: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T04:55:13.6494172Z x_1: "f32[67488, 4][4, 1]cpu" = add_1.reshape(-1, 4); add_1 = None 2025-03-14T04:55:13.6494417Z 2025-03-14T04:55:13.6494962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6495619Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T04:55:13.6495899Z 2025-03-14T04:55:13.6496318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6496831Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T04:55:13.6497116Z 2025-03-14T04:55:13.6497720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6498380Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T04:55:13.6498659Z 2025-03-14T04:55:13.6499050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6499557Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T04:55:13.6499825Z 2025-03-14T04:55:13.6500298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:13.6500941Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T04:55:13.6501304Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T04:55:13.6501590Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T04:55:13.6501837Z 2025-03-14T04:55:13.6502266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:13.6502799Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T04:55:13.6503053Z 2025-03-14T04:55:13.6503479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:13.6504001Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T04:55:13.6504254Z 2025-03-14T04:55:13.6504743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:13.6505442Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T04:55:13.6505784Z 2025-03-14T04:55:13.6506309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:13.6506935Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T04:55:13.6507456Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T04:55:13.6507972Z add_2: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T04:55:13.6508284Z x_2: "f32[16872, 4][4, 1]cpu" = add_2.reshape(-1, 4); add_2 = None 2025-03-14T04:55:13.6508533Z 2025-03-14T04:55:13.6509073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6509734Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T04:55:13.6510007Z 2025-03-14T04:55:13.6510424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6510934Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T04:55:13.6511204Z 2025-03-14T04:55:13.6511754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6512419Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T04:55:13.6512685Z 2025-03-14T04:55:13.6513077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6513587Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T04:55:13.6513857Z 2025-03-14T04:55:13.6514231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:13.6514422Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T04:55:13.6514529Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T04:55:13.6514647Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T04:55:13.6514719Z 2025-03-14T04:55:13.6515040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:13.6515167Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T04:55:13.6515226Z 2025-03-14T04:55:13.6515554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:13.6515675Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T04:55:13.6515736Z 2025-03-14T04:55:13.6516118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:13.6516352Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T04:55:13.6516418Z 2025-03-14T04:55:13.6516822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:13.6516951Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T04:55:13.6517252Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T04:55:13.6534733Z add_3: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T04:55:13.6535051Z x_3: "f32[4218, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T04:55:13.6535134Z 2025-03-14T04:55:13.6535643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6535824Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:55:13.6535891Z 2025-03-14T04:55:13.6536320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6536472Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T04:55:13.6536590Z 2025-03-14T04:55:13.6537057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:13.6537218Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:55:13.6537282Z 2025-03-14T04:55:13.6537586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6537727Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T04:55:13.6537802Z 2025-03-14T04:55:13.6538177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:13.6538386Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T04:55:13.6538488Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T04:55:13.6538621Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T04:55:13.6538683Z 2025-03-14T04:55:13.6539023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:13.6539150Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T04:55:13.6539224Z 2025-03-14T04:55:13.6539551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:13.6539678Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T04:55:13.6539739Z 2025-03-14T04:55:13.6540131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:13.6540380Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T04:55:13.6540443Z 2025-03-14T04:55:13.6540870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:13.6540997Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T04:55:13.6541320Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T04:55:13.6541443Z add_4: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T04:55:13.6541565Z x_4: "f32[1083, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T04:55:13.6541629Z 2025-03-14T04:55:13.6541937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:55:13.6542059Z tensor: "f32[269952, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:55:13.6542190Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_1.to(torch.float32); x_1 = None 2025-03-14T04:55:13.6542336Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_2.to(torch.float32); x_2 = None 2025-03-14T04:55:13.6542465Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_3.to(torch.float32); x_3 = None 2025-03-14T04:55:13.6542580Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_4.to(torch.float32); x_4 = None 2025-03-14T04:55:13.6542669Z 2025-03-14T04:55:13.6542950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:13.6543402Z x_5: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(l_features_p2_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p2_ = None 2025-03-14T04:55:13.6543466Z 2025-03-14T04:55:13.6543750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:13.6543938Z x_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_5, inplace = False); x_5 = None 2025-03-14T04:55:13.6544007Z 2025-03-14T04:55:13.6544383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:13.6544808Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:55:13.6544871Z 2025-03-14T04:55:13.6545235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:13.6545651Z x_15: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_6 = None 2025-03-14T04:55:13.6545713Z 2025-03-14T04:55:13.6545976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:13.6546401Z x_7: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(l_features_p3_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p3_ = None 2025-03-14T04:55:13.6546471Z 2025-03-14T04:55:13.6546744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:13.6546933Z x_8: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_7, inplace = False); x_7 = None 2025-03-14T04:55:13.6546995Z 2025-03-14T04:55:13.6547374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:13.6547778Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:55:13.6547848Z 2025-03-14T04:55:13.6548200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:13.6548622Z x_16: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_8 = None 2025-03-14T04:55:13.6548685Z 2025-03-14T04:55:13.6548956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:13.6549428Z x_9: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(l_features_p4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p4_ = None 2025-03-14T04:55:13.6549502Z 2025-03-14T04:55:13.6549793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:13.6549973Z x_10: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_9, inplace = False); x_9 = None 2025-03-14T04:55:13.6550043Z 2025-03-14T04:55:13.6550426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:13.6550824Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:55:13.6550889Z 2025-03-14T04:55:13.6551249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:13.6551639Z x_17: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_10 = None 2025-03-14T04:55:13.6551710Z 2025-03-14T04:55:13.6551962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:13.6552362Z x_11: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(l_features_p5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p5_ = None 2025-03-14T04:55:13.6552442Z 2025-03-14T04:55:13.6552723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:13.6552898Z x_12: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_11, inplace = False); x_11 = None 2025-03-14T04:55:13.6552971Z 2025-03-14T04:55:13.6553344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:13.6553739Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:55:13.6553810Z 2025-03-14T04:55:13.6554170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:13.6554567Z x_18: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_12 = None 2025-03-14T04:55:13.6554628Z 2025-03-14T04:55:13.6554884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:13.6555480Z x_13: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(l_features_p6_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p6_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:55:13.6555571Z 2025-03-14T04:55:13.6555860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:13.6556040Z x_14: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_13, inplace = False); x_13 = None 2025-03-14T04:55:13.6556106Z 2025-03-14T04:55:13.6556482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:13.6557130Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:55:13.6557202Z 2025-03-14T04:55:13.6557560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:13.6558165Z x_19: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_14 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:55:13.6558228Z 2025-03-14T04:55:13.6558574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:55:13.6558742Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:55:13.6558905Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:55:13.6559067Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T04:55:13.6559217Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T04:55:13.6559365Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T04:55:13.6559505Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T04:55:13.6559650Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T04:55:13.6559791Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T04:55:13.6559935Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T04:55:13.6560074Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T04:55:13.6560135Z 2025-03-14T04:55:13.6560760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:55:13.6560944Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_15.view(4, -1, 4, 296, 304); x_15 = None 2025-03-14T04:55:13.6561197Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T04:55:13.6561389Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T04:55:13.6561587Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_16.view(4, -1, 4, 148, 152); x_16 = None 2025-03-14T04:55:13.6561803Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T04:55:13.6561980Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T04:55:13.6562141Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_17.view(4, -1, 4, 74, 76); x_17 = None 2025-03-14T04:55:13.6562305Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T04:55:13.6562480Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T04:55:13.6562619Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_18.view(4, -1, 4, 37, 38); x_18 = None 2025-03-14T04:55:13.6562783Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T04:55:13.6562946Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T04:55:13.6563088Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_19.view(4, -1, 4, 19, 19); x_19 = None 2025-03-14T04:55:13.6563241Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T04:55:13.6563410Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T04:55:13.6563473Z 2025-03-14T04:55:13.6563887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:13.6564087Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:55:13.6564156Z 2025-03-14T04:55:13.6564623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:13.6564783Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:55:13.6564929Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:55:13.6565073Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:55:13.6565137Z 2025-03-14T04:55:13.6565524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:13.6565699Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:55:13.6565761Z 2025-03-14T04:55:13.6566078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:13.6566218Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:55:13.6566288Z 2025-03-14T04:55:13.6566600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:13.6566752Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:13.6566884Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6567045Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:55:13.6568096Z 2025-03-14T04:55:13.6568446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:13.6568576Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:13.6568705Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:13.6568859Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T04:55:13.6568931Z 2025-03-14T04:55:13.6569246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:13.6569378Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6569468Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T04:55:13.6569604Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T04:55:13.6569669Z 2025-03-14T04:55:13.6569992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:13.6570140Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:13.6570239Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T04:55:13.6570371Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T04:55:13.6570443Z 2025-03-14T04:55:13.6570769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:13.6570936Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:13.6571055Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T04:55:13.6571144Z 2025-03-14T04:55:13.6571570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:13.6571757Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:13.6571875Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T04:55:13.6571949Z 2025-03-14T04:55:13.6572262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:13.6572435Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:13.6572546Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T04:55:13.6572618Z 2025-03-14T04:55:13.6572923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:13.6573122Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:13.6573234Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T04:55:13.6573307Z 2025-03-14T04:55:13.6573647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:13.6573818Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:13.6573887Z 2025-03-14T04:55:13.6574227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:13.6574389Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:13.6574452Z 2025-03-14T04:55:13.6574828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:13.6574970Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:13.6575105Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T04:55:13.6575264Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:13.6575411Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T04:55:13.6575474Z 2025-03-14T04:55:13.6575840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:13.6575984Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:13.6576116Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T04:55:13.6576267Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:13.6576412Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T04:55:13.6576474Z 2025-03-14T04:55:13.6576818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:13.6576937Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:13.6577108Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:13.6577261Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T04:55:13.6577333Z 2025-03-14T04:55:13.6577669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:13.6577793Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:13.6577960Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:13.6578107Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T04:55:13.6578168Z 2025-03-14T04:55:13.6578492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:13.6578591Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:13.6578717Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:13.6578778Z 2025-03-14T04:55:13.6579098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:13.6579188Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:13.6579313Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:13.6579375Z 2025-03-14T04:55:13.6579709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:13.6579824Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:13.6579982Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:13.6580044Z 2025-03-14T04:55:13.6580372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:13.6580487Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:13.6580622Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:13.6580683Z 2025-03-14T04:55:13.6581041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:13.6581224Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:13.6581297Z 2025-03-14T04:55:13.6581630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:13.6581807Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T04:55:13.6581871Z 2025-03-14T04:55:13.6582267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:13.6582455Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:55:13.6582518Z 2025-03-14T04:55:13.6582940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:13.6583146Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T04:55:13.6583216Z 2025-03-14T04:55:13.6583666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:13.6583826Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T04:55:13.6583974Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T04:55:13.6584119Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T04:55:13.6584182Z 2025-03-14T04:55:13.6584561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:13.6584731Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T04:55:13.6584799Z 2025-03-14T04:55:13.6585110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:13.6585264Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T04:55:13.6585326Z 2025-03-14T04:55:13.6585642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:13.6585788Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T04:55:13.6585923Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6586068Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T04:55:13.6586164Z 2025-03-14T04:55:13.6586477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:13.6586625Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T04:55:13.6586747Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T04:55:13.6586905Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T04:55:13.6586968Z 2025-03-14T04:55:13.6587281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:13.6587402Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6587499Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T04:55:13.6587631Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T04:55:13.6587702Z 2025-03-14T04:55:13.6588006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:13.6588160Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T04:55:13.6588252Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T04:55:13.6588390Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T04:55:13.6588451Z 2025-03-14T04:55:13.6588758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:13.6588910Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:13.6589037Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T04:55:13.6589122Z 2025-03-14T04:55:13.6589416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:13.6589571Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:13.6589682Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T04:55:13.6589748Z 2025-03-14T04:55:13.6590040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:13.6590193Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:13.6590302Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T04:55:13.6590374Z 2025-03-14T04:55:13.6590676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:13.6590866Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T04:55:13.6590973Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T04:55:13.6591043Z 2025-03-14T04:55:13.6591373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:13.6591534Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T04:55:13.6591596Z 2025-03-14T04:55:13.6591932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:13.6592092Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T04:55:13.6592167Z 2025-03-14T04:55:13.6592516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:13.6592651Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T04:55:13.6592782Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T04:55:13.6592938Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T04:55:13.6593083Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T04:55:13.6593146Z 2025-03-14T04:55:13.6593494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:13.6593632Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T04:55:13.6593760Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T04:55:13.6593911Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T04:55:13.6594053Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T04:55:13.6594114Z 2025-03-14T04:55:13.6594447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:13.6594561Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T04:55:13.6594729Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T04:55:13.6594899Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T04:55:13.6594967Z 2025-03-14T04:55:13.6595295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:13.6595409Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T04:55:13.6595577Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T04:55:13.6595715Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T04:55:13.6595775Z 2025-03-14T04:55:13.6596085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:13.6596182Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T04:55:13.6596305Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T04:55:13.6596364Z 2025-03-14T04:55:13.6596672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:13.6596763Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T04:55:13.6596885Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T04:55:13.6596945Z 2025-03-14T04:55:13.6597267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:13.6597394Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T04:55:13.6597530Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T04:55:13.6597592Z 2025-03-14T04:55:13.6597913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:13.6598027Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T04:55:13.6598162Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T04:55:13.6598222Z 2025-03-14T04:55:13.6598571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:13.6598766Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T04:55:13.6598837Z 2025-03-14T04:55:13.6599171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:13.6599341Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T04:55:13.6599401Z 2025-03-14T04:55:13.6599790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:13.6599972Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T04:55:13.6600034Z 2025-03-14T04:55:13.6600442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:13.6600648Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T04:55:13.6600732Z 2025-03-14T04:55:13.6601165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:13.6601322Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T04:55:13.6601470Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T04:55:13.6601614Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T04:55:13.6601674Z 2025-03-14T04:55:13.6602052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:13.6602219Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T04:55:13.6602288Z 2025-03-14T04:55:13.6602595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:13.6602741Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T04:55:13.6602799Z 2025-03-14T04:55:13.6603126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:13.6603253Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T04:55:13.6603380Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6603542Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T04:55:13.6603611Z 2025-03-14T04:55:13.6603943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:13.6604071Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T04:55:13.6604187Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T04:55:13.6604341Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T04:55:13.6604400Z 2025-03-14T04:55:13.6604717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:13.6604837Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6604929Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T04:55:13.6605058Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T04:55:13.6605126Z 2025-03-14T04:55:13.6605439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:13.6605588Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T04:55:13.6605677Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T04:55:13.6605813Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T04:55:13.6605877Z 2025-03-14T04:55:13.6606196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:13.6606351Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:13.6606486Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T04:55:13.6606551Z 2025-03-14T04:55:13.6606858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:13.6607014Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:13.6607125Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T04:55:13.6607192Z 2025-03-14T04:55:13.6607494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:13.6607649Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:13.6607759Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T04:55:13.6607831Z 2025-03-14T04:55:13.6608135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:13.6608324Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T04:55:13.6608433Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T04:55:13.6608499Z 2025-03-14T04:55:13.6608863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:13.6609010Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T04:55:13.6609089Z 2025-03-14T04:55:13.6609433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:13.6609586Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T04:55:13.6609657Z 2025-03-14T04:55:13.6610004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:13.6610143Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T04:55:13.6610269Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T04:55:13.6610427Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T04:55:13.6610563Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T04:55:13.6610634Z 2025-03-14T04:55:13.6610981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:13.6611125Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T04:55:13.6611248Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T04:55:13.6611495Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T04:55:13.6611677Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T04:55:13.6611757Z 2025-03-14T04:55:13.6612121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:13.6612255Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T04:55:13.6612457Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T04:55:13.6612609Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T04:55:13.6612676Z 2025-03-14T04:55:13.6613041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:13.6613163Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T04:55:13.6613332Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T04:55:13.6613471Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T04:55:13.6613535Z 2025-03-14T04:55:13.6613853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:13.6613952Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T04:55:13.6614074Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T04:55:13.6614135Z 2025-03-14T04:55:13.6614453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:13.6614548Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T04:55:13.6614685Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T04:55:13.6614748Z 2025-03-14T04:55:13.6615060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:13.6615194Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T04:55:13.6615333Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T04:55:13.6615411Z 2025-03-14T04:55:13.6615728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:13.6615842Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T04:55:13.6615981Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T04:55:13.6616043Z 2025-03-14T04:55:13.6616413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:13.6616605Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T04:55:13.6616675Z 2025-03-14T04:55:13.6617018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:13.6617188Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T04:55:13.6617252Z 2025-03-14T04:55:13.6617654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:13.6617829Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T04:55:13.6617899Z 2025-03-14T04:55:13.6618312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:13.6618545Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T04:55:13.6618608Z 2025-03-14T04:55:13.6619053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:13.6619204Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T04:55:13.6619362Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T04:55:13.6619498Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T04:55:13.6619566Z 2025-03-14T04:55:13.6619940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:13.6620116Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T04:55:13.6620177Z 2025-03-14T04:55:13.6620498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:13.6620647Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T04:55:13.6620709Z 2025-03-14T04:55:13.6621048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:13.6621178Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T04:55:13.6621359Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6621508Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T04:55:13.6621581Z 2025-03-14T04:55:13.6621921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:13.6622056Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T04:55:13.6622176Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T04:55:13.6622335Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T04:55:13.6622397Z 2025-03-14T04:55:13.6622715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:13.6622836Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6622933Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T04:55:13.6623063Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T04:55:13.6623129Z 2025-03-14T04:55:13.6623452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:13.6623603Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T04:55:13.6623691Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T04:55:13.6623822Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T04:55:13.6623882Z 2025-03-14T04:55:13.6624188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:13.6624339Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:13.6624470Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T04:55:13.6624530Z 2025-03-14T04:55:13.6624826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:13.6624974Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:13.6625088Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T04:55:13.6625149Z 2025-03-14T04:55:13.6625446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:13.6625591Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:13.6625707Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T04:55:13.6625765Z 2025-03-14T04:55:13.6626071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:13.6626248Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T04:55:13.6626361Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T04:55:13.6626420Z 2025-03-14T04:55:13.6626772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:13.6626916Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T04:55:13.6627000Z 2025-03-14T04:55:13.6627349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:13.6627486Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T04:55:13.6627554Z 2025-03-14T04:55:13.6627897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:13.6628040Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T04:55:13.6628165Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T04:55:13.6628322Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T04:55:13.6628462Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T04:55:13.6628533Z 2025-03-14T04:55:13.6628881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:13.6629025Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T04:55:13.6629146Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T04:55:13.6629305Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T04:55:13.6629442Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T04:55:13.6629514Z 2025-03-14T04:55:13.6629842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:13.6629963Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T04:55:13.6630143Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T04:55:13.6630278Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T04:55:13.6630338Z 2025-03-14T04:55:13.6630674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:13.6630782Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T04:55:13.6630950Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T04:55:13.6631075Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T04:55:13.6631145Z 2025-03-14T04:55:13.6631453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:13.6631555Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T04:55:13.6631667Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T04:55:13.6631734Z 2025-03-14T04:55:13.6632034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:13.6632148Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T04:55:13.6632261Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T04:55:13.6632328Z 2025-03-14T04:55:13.6632625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:13.6632761Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T04:55:13.6632903Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T04:55:13.6632972Z 2025-03-14T04:55:13.6633277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:13.6633392Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T04:55:13.6633517Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T04:55:13.6633584Z 2025-03-14T04:55:13.6633931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:13.6634122Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T04:55:13.6634183Z 2025-03-14T04:55:13.6634514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:13.6634677Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T04:55:13.6634736Z 2025-03-14T04:55:13.6635124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:13.6635295Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T04:55:13.6635364Z 2025-03-14T04:55:13.6635770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:13.6636009Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T04:55:13.6636069Z 2025-03-14T04:55:13.6636501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:13.6636645Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T04:55:13.6636799Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T04:55:13.6636930Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T04:55:13.6636999Z 2025-03-14T04:55:13.6637366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:13.6637536Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T04:55:13.6637597Z 2025-03-14T04:55:13.6637909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:13.6638045Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T04:55:13.6638126Z 2025-03-14T04:55:13.6638434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:13.6638583Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T04:55:13.6638701Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6638866Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T04:55:13.6638928Z 2025-03-14T04:55:13.6639249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:13.6639365Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T04:55:13.6639487Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T04:55:13.6639631Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T04:55:13.6639699Z 2025-03-14T04:55:13.6640005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:13.6640131Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:55:13.6640217Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T04:55:13.6640349Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T04:55:13.6640409Z 2025-03-14T04:55:13.6640723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:13.6640863Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T04:55:13.6640957Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T04:55:13.6641081Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T04:55:13.6641148Z 2025-03-14T04:55:13.6641448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:13.6641619Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:13.6641734Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T04:55:13.6641794Z 2025-03-14T04:55:13.6642099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:13.6642246Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:13.6642360Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T04:55:13.6642421Z 2025-03-14T04:55:13.6642722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:13.6642864Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:13.6642980Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T04:55:13.6643041Z 2025-03-14T04:55:13.6643345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:13.6643521Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T04:55:13.6643631Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T04:55:13.6643707Z 2025-03-14T04:55:13.6644046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:13.6644195Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T04:55:13.6644261Z 2025-03-14T04:55:13.6644604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:13.6644742Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T04:55:13.6644801Z 2025-03-14T04:55:13.6645144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:13.6645275Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T04:55:13.6645399Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T04:55:13.6645545Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T04:55:13.6645684Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T04:55:13.6645746Z 2025-03-14T04:55:13.6646096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:13.6646227Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T04:55:13.6646361Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T04:55:13.6646507Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T04:55:13.6646644Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T04:55:13.6646704Z 2025-03-14T04:55:13.6647046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:13.6647187Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T04:55:13.6647349Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T04:55:13.6647487Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T04:55:13.6647551Z 2025-03-14T04:55:13.6647900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:13.6648012Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T04:55:13.6648184Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T04:55:13.6648315Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T04:55:13.6648384Z 2025-03-14T04:55:13.6648699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:13.6648800Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T04:55:13.6648914Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T04:55:13.6648983Z 2025-03-14T04:55:13.6649292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:13.6649410Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T04:55:13.6649525Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T04:55:13.6649593Z 2025-03-14T04:55:13.6649899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:13.6650042Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T04:55:13.6650197Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T04:55:13.6650269Z 2025-03-14T04:55:13.6650572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:13.6650690Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T04:55:13.6650821Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T04:55:13.6650891Z 2025-03-14T04:55:13.6651246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:13.6651534Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T04:55:13.6651609Z 2025-03-14T04:55:13.6651966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:13.6652131Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T04:55:13.6652203Z 2025-03-14T04:55:13.6652601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:13.6652783Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T04:55:13.6652850Z 2025-03-14T04:55:13.6653357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:55:13.6653530Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:55:13.6653601Z 2025-03-14T04:55:13.6653901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6654053Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T04:55:13.6654117Z 2025-03-14T04:55:13.6654570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:13.6654687Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T04:55:13.6654796Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T04:55:13.6654909Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:55:13.6654981Z 2025-03-14T04:55:13.6655449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:13.6655589Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:55:13.6655843Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T04:55:13.6655910Z 2025-03-14T04:55:13.6656396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:13.6656595Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:13.6656665Z 2025-03-14T04:55:13.6656964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6657093Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T04:55:13.6657154Z 2025-03-14T04:55:13.6657598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:13.6657714Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T04:55:13.6657829Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T04:55:13.6657947Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T04:55:13.6658019Z 2025-03-14T04:55:13.6658487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:13.6658628Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:55:13.6658861Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T04:55:13.6658933Z 2025-03-14T04:55:13.6659391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:13.6659566Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:13.6659647Z 2025-03-14T04:55:13.6659955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6660082Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T04:55:13.6660151Z 2025-03-14T04:55:13.6660793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:13.6660926Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T04:55:13.6661031Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T04:55:13.6661160Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T04:55:13.6661224Z 2025-03-14T04:55:13.6661708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:13.6661840Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:55:13.6662086Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T04:55:13.6662157Z 2025-03-14T04:55:13.6662666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:13.6662873Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:13.6662934Z 2025-03-14T04:55:13.6663258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6663387Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T04:55:13.6663462Z 2025-03-14T04:55:13.6663900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:13.6664022Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T04:55:13.6664129Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T04:55:13.6664253Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T04:55:13.6664318Z 2025-03-14T04:55:13.6664791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:13.6664924Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:55:13.6665166Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T04:55:13.6665229Z 2025-03-14T04:55:13.6665697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:13.6665859Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:13.6665932Z 2025-03-14T04:55:13.6666229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6666385Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T04:55:13.6666447Z 2025-03-14T04:55:13.6666892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:13.6667001Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T04:55:13.6667112Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T04:55:13.6667227Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T04:55:13.6667297Z 2025-03-14T04:55:13.6667760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:13.6667933Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:55:13.6668171Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T04:55:13.6668231Z 2025-03-14T04:55:13.6668696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:13.6668853Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:13.6668934Z 2025-03-14T04:55:13.6669225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:13.6669369Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T04:55:13.6669431Z 2025-03-14T04:55:13.6669713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:13.6670091Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T04:55:13.6670160Z 2025-03-14T04:55:13.6670435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:13.6670901Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T04:55:13.6670965Z 2025-03-14T04:55:13.6671244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:13.6671441Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T04:55:13.6671508Z 2025-03-14T04:55:13.6671889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:55:13.6672034Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T04:55:13.6672094Z 2025-03-14T04:55:13.6672392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:55:13.6672559Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T04:55:13.6672629Z 2025-03-14T04:55:13.6673009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:55:13.6673156Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T04:55:13.6673219Z 2025-03-14T04:55:13.6673706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:55:13.6673847Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T04:55:13.6673967Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:13.6674129Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:55:13.6674259Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:55:13.6674329Z 2025-03-14T04:55:13.6674702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:55:13.6674840Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:55:13.6674903Z 2025-03-14T04:55:18.9614260Z 2025-03-14T04:55:18.9615088Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:18.9617821Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 269952, 4][1079808, 4, 1]cpu", L_anchors_0_tensor: "f32[269952, 4][4, 1]cpu", L_pred_anchor_deltas_1_: "f32[4, 67488, 4][269952, 4, 1]cpu", L_anchors_1_tensor: "f32[67488, 4][4, 1]cpu", L_pred_anchor_deltas_2_: "f32[4, 16872, 4][67488, 4, 1]cpu", L_anchors_2_tensor: "f32[16872, 4][4, 1]cpu", L_pred_anchor_deltas_3_: "f32[4, 4218, 4][16872, 4, 1]cpu", L_anchors_3_tensor: "f32[4218, 4][4, 1]cpu", L_pred_anchor_deltas_4_: "f32[4, 1083, 4][4332, 4, 1]cpu", L_anchors_4_tensor: "f32[1083, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 269952][269952, 1]cpu", L_pred_objectness_logits_1_: "f32[4, 67488][67488, 1]cpu", L_pred_objectness_logits_2_: "f32[4, 16872][16872, 1]cpu", L_pred_objectness_logits_3_: "f32[4, 4218][4218, 1]cpu", L_pred_objectness_logits_4_: "f32[4, 1083][1083, 1]cpu"): 2025-03-14T04:55:18.9619354Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T04:55:18.9619615Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T04:55:18.9619860Z l_pred_anchor_deltas_1_ = L_pred_anchor_deltas_1_ 2025-03-14T04:55:18.9620110Z l_anchors_1_tensor = L_anchors_1_tensor 2025-03-14T04:55:18.9620356Z l_pred_anchor_deltas_2_ = L_pred_anchor_deltas_2_ 2025-03-14T04:55:18.9620599Z l_anchors_2_tensor = L_anchors_2_tensor 2025-03-14T04:55:18.9620840Z l_pred_anchor_deltas_3_ = L_pred_anchor_deltas_3_ 2025-03-14T04:55:18.9621080Z l_anchors_3_tensor = L_anchors_3_tensor 2025-03-14T04:55:18.9621317Z l_pred_anchor_deltas_4_ = L_pred_anchor_deltas_4_ 2025-03-14T04:55:18.9621549Z l_anchors_4_tensor = L_anchors_4_tensor 2025-03-14T04:55:18.9621807Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T04:55:18.9622095Z l_pred_objectness_logits_1_ = L_pred_objectness_logits_1_ 2025-03-14T04:55:18.9622378Z l_pred_objectness_logits_2_ = L_pred_objectness_logits_2_ 2025-03-14T04:55:18.9622658Z l_pred_objectness_logits_3_ = L_pred_objectness_logits_3_ 2025-03-14T04:55:18.9622933Z l_pred_objectness_logits_4_ = L_pred_objectness_logits_4_ 2025-03-14T04:55:18.9623168Z 2025-03-14T04:55:18.9623723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:18.9624492Z pred_anchor_deltas_i: "f32[1079808, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T04:55:18.9624840Z 2025-03-14T04:55:18.9625376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:18.9626066Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T04:55:18.9626473Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:55:18.9626833Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:55:18.9627109Z 2025-03-14T04:55:18.9627598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:18.9628206Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T04:55:18.9628501Z 2025-03-14T04:55:18.9628911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:18.9629491Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:55:18.9629772Z 2025-03-14T04:55:18.9630171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:18.9630697Z getitem: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:18.9631035Z getitem_1: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:18.9631370Z widths: "f32[1079808][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T04:55:18.9631639Z 2025-03-14T04:55:18.9632042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:18.9632547Z getitem_2: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:18.9632854Z getitem_3: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:18.9633173Z heights: "f32[1079808][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:55:18.9633984Z 2025-03-14T04:55:18.9634506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:18.9636481Z getitem_4: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:18.9636755Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T04:55:18.9637025Z ctr_x: "f32[1079808][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T04:55:18.9637645Z 2025-03-14T04:55:18.9638121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:18.9638643Z getitem_5: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:18.9638932Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T04:55:18.9639283Z ctr_y: "f32[1079808][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T04:55:18.9639656Z 2025-03-14T04:55:18.9640640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:18.9641255Z getitem_6: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:18.9641588Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T04:55:18.9641830Z 2025-03-14T04:55:18.9642228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:18.9642740Z getitem_7: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:18.9643066Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T04:55:18.9643298Z 2025-03-14T04:55:18.9643685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:18.9646087Z getitem_8: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:18.9646411Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:55:18.9646642Z 2025-03-14T04:55:18.9647033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:18.9647572Z getitem_9: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:18.9647987Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:55:18.9648223Z 2025-03-14T04:55:18.9648650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:18.9649230Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:18.9649492Z 2025-03-14T04:55:18.9649938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:18.9650642Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:18.9650900Z 2025-03-14T04:55:18.9651335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:18.9651974Z getitem_10: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:18.9652318Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T04:55:18.9652677Z getitem_11: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:18.9653043Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T04:55:18.9653314Z 2025-03-14T04:55:18.9653744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:18.9654279Z getitem_12: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:18.9654601Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T04:55:18.9654932Z getitem_13: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:18.9655280Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T04:55:18.9655539Z 2025-03-14T04:55:18.9655955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:18.9656491Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:18.9656823Z getitem_14: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:18.9657169Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T04:55:18.9658648Z 2025-03-14T04:55:18.9659951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:18.9661294Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:18.9661670Z getitem_15: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:18.9662032Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T04:55:18.9662292Z 2025-03-14T04:55:18.9662696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:18.9663157Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:18.9663422Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:18.9663657Z 2025-03-14T04:55:18.9664162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:18.9664627Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:18.9664892Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:18.9665172Z 2025-03-14T04:55:18.9665561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:18.9666073Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:18.9666375Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:18.9666620Z 2025-03-14T04:55:18.9667007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:18.9667472Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:18.9668106Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:18.9668377Z 2025-03-14T04:55:18.9668817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:18.9669412Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:18.9669696Z 2025-03-14T04:55:18.9670100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:18.9672006Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T04:55:18.9672300Z 2025-03-14T04:55:18.9672771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:18.9673377Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:55:18.9673671Z 2025-03-14T04:55:18.9674146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:18.9674916Z pred_anchor_deltas_i_1: "f32[269952, 4][4, 1]cpu" = l_pred_anchor_deltas_1_.reshape(-1, 4); l_pred_anchor_deltas_1_ = None 2025-03-14T04:55:18.9675253Z 2025-03-14T04:55:18.9675757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:18.9676415Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = l_anchors_1_tensor.unsqueeze(0); l_anchors_1_tensor = None 2025-03-14T04:55:18.9676803Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T04:55:18.9677151Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T04:55:18.9677412Z 2025-03-14T04:55:18.9677868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:18.9678494Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:55:18.9678798Z 2025-03-14T04:55:18.9679187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:18.9679721Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T04:55:18.9679988Z 2025-03-14T04:55:18.9680384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:18.9680908Z getitem_16: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T04:55:18.9681243Z getitem_17: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:55:18.9681579Z widths_1: "f32[269952][1]cpu" = getitem_16 - getitem_17; getitem_16 = getitem_17 = None 2025-03-14T04:55:18.9681844Z 2025-03-14T04:55:18.9682240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:18.9682771Z getitem_18: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T04:55:18.9683090Z getitem_19: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T04:55:18.9683414Z heights_1: "f32[269952][1]cpu" = getitem_18 - getitem_19; getitem_18 = getitem_19 = None 2025-03-14T04:55:18.9684553Z 2025-03-14T04:55:18.9684996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:18.9685512Z getitem_20: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:55:18.9685791Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T04:55:18.9686073Z ctr_x_1: "f32[269952][1]cpu" = getitem_20 + mul_10; getitem_20 = mul_10 = None 2025-03-14T04:55:18.9686334Z 2025-03-14T04:55:18.9686738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:18.9687264Z getitem_21: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T04:55:18.9687566Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T04:55:18.9687845Z ctr_y_1: "f32[269952][1]cpu" = getitem_21 + mul_11; getitem_21 = mul_11 = None 2025-03-14T04:55:18.9688098Z 2025-03-14T04:55:18.9688507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:18.9689052Z getitem_22: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:18.9689384Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_22 / 1.0; getitem_22 = None 2025-03-14T04:55:18.9689616Z 2025-03-14T04:55:18.9689997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:18.9690500Z getitem_23: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:18.9690827Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_23 / 1.0; getitem_23 = None 2025-03-14T04:55:18.9691063Z 2025-03-14T04:55:18.9691548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:18.9692073Z getitem_24: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:18.9692409Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_24 / 1.0; getitem_24 = None 2025-03-14T04:55:18.9692655Z 2025-03-14T04:55:18.9693061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:18.9693626Z getitem_25: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T04:55:18.9693979Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_25 / 1.0; getitem_25 = None 2025-03-14T04:55:18.9694209Z 2025-03-14T04:55:18.9694631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:18.9695203Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T04:55:18.9695468Z 2025-03-14T04:55:18.9695881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:18.9696405Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T04:55:18.9696665Z 2025-03-14T04:55:18.9697096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:18.9697631Z getitem_26: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T04:55:18.9697953Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_26; dx_1 = getitem_26 = None 2025-03-14T04:55:18.9698292Z getitem_27: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T04:55:18.9698652Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_27; mul_12 = getitem_27 = None 2025-03-14T04:55:18.9698911Z 2025-03-14T04:55:18.9699336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:18.9699873Z getitem_28: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T04:55:18.9700193Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_28; dy_1 = getitem_28 = None 2025-03-14T04:55:18.9700527Z getitem_29: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T04:55:18.9700877Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_29; mul_13 = getitem_29 = None 2025-03-14T04:55:18.9701130Z 2025-03-14T04:55:18.9701573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:18.9702085Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T04:55:18.9702421Z getitem_30: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T04:55:18.9702774Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_30; exp_2 = getitem_30 = None 2025-03-14T04:55:18.9703028Z 2025-03-14T04:55:18.9703439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:18.9703975Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T04:55:18.9704305Z getitem_31: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T04:55:18.9704662Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_31; exp_3 = getitem_31 = None 2025-03-14T04:55:18.9704909Z 2025-03-14T04:55:18.9705306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:18.9705763Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T04:55:18.9706026Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T04:55:18.9706258Z 2025-03-14T04:55:18.9706669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:18.9707128Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T04:55:18.9707414Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T04:55:18.9707650Z 2025-03-14T04:55:18.9708051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:18.9708529Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T04:55:18.9708834Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T04:55:18.9709085Z 2025-03-14T04:55:18.9709476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:18.9709956Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T04:55:18.9710258Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T04:55:18.9710506Z 2025-03-14T04:55:18.9710938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:18.9711535Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T04:55:18.9711842Z 2025-03-14T04:55:18.9712253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:18.9712808Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T04:55:18.9713091Z 2025-03-14T04:55:18.9713557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:18.9714188Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T04:55:18.9714499Z 2025-03-14T04:55:18.9714981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:18.9715648Z pred_anchor_deltas_i_2: "f32[67488, 4][4, 1]cpu" = l_pred_anchor_deltas_2_.reshape(-1, 4); l_pred_anchor_deltas_2_ = None 2025-03-14T04:55:18.9716072Z 2025-03-14T04:55:18.9716625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:18.9717301Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = l_anchors_2_tensor.unsqueeze(0); l_anchors_2_tensor = None 2025-03-14T04:55:18.9717692Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T04:55:18.9718039Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T04:55:18.9718300Z 2025-03-14T04:55:18.9718757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:18.9719349Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_2.float(); pred_anchor_deltas_i_2 = None 2025-03-14T04:55:18.9719635Z 2025-03-14T04:55:18.9720049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:18.9720564Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T04:55:18.9720849Z 2025-03-14T04:55:18.9721241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:18.9721775Z getitem_32: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T04:55:18.9722081Z getitem_33: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:55:18.9722422Z widths_2: "f32[67488][1]cpu" = getitem_32 - getitem_33; getitem_32 = getitem_33 = None 2025-03-14T04:55:18.9722696Z 2025-03-14T04:55:18.9723103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:18.9723609Z getitem_34: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T04:55:18.9723911Z getitem_35: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T04:55:18.9724242Z heights_2: "f32[67488][1]cpu" = getitem_34 - getitem_35; getitem_34 = getitem_35 = None 2025-03-14T04:55:18.9724508Z 2025-03-14T04:55:18.9724897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:18.9725380Z getitem_36: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:55:18.9725649Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T04:55:18.9725922Z ctr_x_2: "f32[67488][1]cpu" = getitem_36 + mul_20; getitem_36 = mul_20 = None 2025-03-14T04:55:18.9726176Z 2025-03-14T04:55:18.9726580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:18.9727101Z getitem_37: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T04:55:18.9727406Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T04:55:18.9727687Z ctr_y_2: "f32[67488][1]cpu" = getitem_37 + mul_21; getitem_37 = mul_21 = None 2025-03-14T04:55:18.9727960Z 2025-03-14T04:55:18.9728351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:18.9728864Z getitem_38: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:18.9729199Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_38 / 1.0; getitem_38 = None 2025-03-14T04:55:18.9729436Z 2025-03-14T04:55:18.9729828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:18.9730338Z getitem_39: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:18.9730677Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_39 / 1.0; getitem_39 = None 2025-03-14T04:55:18.9730918Z 2025-03-14T04:55:18.9731320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:18.9731944Z getitem_40: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:18.9732286Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_40 / 1.0; getitem_40 = None 2025-03-14T04:55:18.9732545Z 2025-03-14T04:55:18.9732993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:18.9733535Z getitem_41: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T04:55:18.9733886Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_41 / 1.0; getitem_41 = None 2025-03-14T04:55:18.9734135Z 2025-03-14T04:55:18.9734553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:18.9735102Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T04:55:18.9735360Z 2025-03-14T04:55:18.9735770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:18.9736289Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T04:55:18.9736545Z 2025-03-14T04:55:18.9736966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:18.9737497Z getitem_42: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T04:55:18.9737806Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_42; dx_2 = getitem_42 = None 2025-03-14T04:55:18.9738132Z getitem_43: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T04:55:18.9738470Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_43; mul_22 = getitem_43 = None 2025-03-14T04:55:18.9738723Z 2025-03-14T04:55:18.9739137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:18.9739657Z getitem_44: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T04:55:18.9739969Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_44; dy_2 = getitem_44 = None 2025-03-14T04:55:18.9740296Z getitem_45: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T04:55:18.9740640Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_45; mul_23 = getitem_45 = None 2025-03-14T04:55:18.9740916Z 2025-03-14T04:55:18.9741327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:18.9741828Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T04:55:18.9742150Z getitem_46: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T04:55:18.9742501Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_46; exp_4 = getitem_46 = None 2025-03-14T04:55:18.9742754Z 2025-03-14T04:55:18.9743162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:18.9743663Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T04:55:18.9743992Z getitem_47: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T04:55:18.9744346Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_47; exp_5 = getitem_47 = None 2025-03-14T04:55:18.9744600Z 2025-03-14T04:55:18.9745000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:18.9745460Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T04:55:18.9745743Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T04:55:18.9745986Z 2025-03-14T04:55:18.9746378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:18.9746849Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T04:55:18.9747105Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T04:55:18.9747338Z 2025-03-14T04:55:18.9747743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:18.9748223Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T04:55:18.9748526Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T04:55:18.9748780Z 2025-03-14T04:55:18.9749169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:18.9749647Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T04:55:18.9749942Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T04:55:18.9750193Z 2025-03-14T04:55:18.9750626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:18.9751214Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T04:55:18.9751515Z 2025-03-14T04:55:18.9751926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:18.9752473Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T04:55:18.9752752Z 2025-03-14T04:55:18.9753213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:18.9753841Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T04:55:18.9754129Z 2025-03-14T04:55:18.9754609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:18.9755270Z pred_anchor_deltas_i_3: "f32[16872, 4][4, 1]cpu" = l_pred_anchor_deltas_3_.reshape(-1, 4); l_pred_anchor_deltas_3_ = None 2025-03-14T04:55:18.9755594Z 2025-03-14T04:55:18.9756104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:18.9756770Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = l_anchors_3_tensor.unsqueeze(0); l_anchors_3_tensor = None 2025-03-14T04:55:18.9757152Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T04:55:18.9757493Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T04:55:18.9757750Z 2025-03-14T04:55:18.9758201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:18.9758788Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T04:55:18.9759095Z 2025-03-14T04:55:18.9759489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:18.9760017Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T04:55:18.9760282Z 2025-03-14T04:55:18.9761340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:18.9761979Z getitem_48: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T04:55:18.9762287Z getitem_49: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:55:18.9762615Z widths_3: "f32[16872][1]cpu" = getitem_48 - getitem_49; getitem_48 = getitem_49 = None 2025-03-14T04:55:18.9762891Z 2025-03-14T04:55:18.9763306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:18.9763815Z getitem_50: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T04:55:18.9764131Z getitem_51: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T04:55:18.9764449Z heights_3: "f32[16872][1]cpu" = getitem_50 - getitem_51; getitem_50 = getitem_51 = None 2025-03-14T04:55:18.9764724Z 2025-03-14T04:55:18.9765129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:18.9765630Z getitem_52: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:55:18.9765901Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T04:55:18.9766180Z ctr_x_3: "f32[16872][1]cpu" = getitem_52 + mul_30; getitem_52 = mul_30 = None 2025-03-14T04:55:18.9766438Z 2025-03-14T04:55:18.9766845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:18.9767372Z getitem_53: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T04:55:18.9767676Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T04:55:18.9767994Z ctr_y_3: "f32[16872][1]cpu" = getitem_53 + mul_31; getitem_53 = mul_31 = None 2025-03-14T04:55:18.9768253Z 2025-03-14T04:55:18.9768663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:18.9769179Z getitem_54: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:18.9769516Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_54 / 1.0; getitem_54 = None 2025-03-14T04:55:18.9769759Z 2025-03-14T04:55:18.9770240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:18.9771624Z getitem_55: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:18.9772020Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_55 / 1.0; getitem_55 = None 2025-03-14T04:55:18.9772276Z 2025-03-14T04:55:18.9772691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:18.9773284Z getitem_56: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:18.9773997Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_56 / 1.0; getitem_56 = None 2025-03-14T04:55:18.9774244Z 2025-03-14T04:55:18.9774706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:18.9775264Z getitem_57: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T04:55:18.9775678Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_57 / 1.0; getitem_57 = None 2025-03-14T04:55:18.9775919Z 2025-03-14T04:55:18.9776375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:18.9776920Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T04:55:18.9777189Z 2025-03-14T04:55:18.9777621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:18.9778163Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T04:55:18.9778426Z 2025-03-14T04:55:18.9778866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:18.9779426Z getitem_58: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T04:55:18.9779751Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_58; dx_3 = getitem_58 = None 2025-03-14T04:55:18.9780088Z getitem_59: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T04:55:18.9780439Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_59; mul_32 = getitem_59 = None 2025-03-14T04:55:18.9780694Z 2025-03-14T04:55:18.9781128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:18.9782214Z getitem_60: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T04:55:18.9782612Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_60; dy_3 = getitem_60 = None 2025-03-14T04:55:18.9783039Z getitem_61: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T04:55:18.9783422Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_61; mul_33 = getitem_61 = None 2025-03-14T04:55:18.9783936Z 2025-03-14T04:55:18.9784435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:18.9784953Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T04:55:18.9785293Z getitem_62: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T04:55:18.9785647Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_62; exp_6 = getitem_62 = None 2025-03-14T04:55:18.9785904Z 2025-03-14T04:55:18.9786314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:18.9786832Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T04:55:18.9787160Z getitem_63: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T04:55:18.9787515Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_63; exp_7 = getitem_63 = None 2025-03-14T04:55:18.9787768Z 2025-03-14T04:55:18.9788577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:18.9789082Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T04:55:18.9789354Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T04:55:18.9789598Z 2025-03-14T04:55:18.9790000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:18.9790484Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T04:55:18.9790766Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T04:55:18.9791001Z 2025-03-14T04:55:18.9791393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:18.9791867Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T04:55:18.9792168Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T04:55:18.9792427Z 2025-03-14T04:55:18.9792814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:18.9793363Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T04:55:18.9793739Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T04:55:18.9793990Z 2025-03-14T04:55:18.9794423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:18.9795011Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T04:55:18.9795312Z 2025-03-14T04:55:18.9795728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:18.9798680Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T04:55:18.9798983Z 2025-03-14T04:55:18.9799452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:18.9800113Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T04:55:18.9800402Z 2025-03-14T04:55:18.9800880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:18.9801537Z pred_anchor_deltas_i_4: "f32[4332, 4][4, 1]cpu" = l_pred_anchor_deltas_4_.reshape(-1, 4); l_pred_anchor_deltas_4_ = None 2025-03-14T04:55:18.9801858Z 2025-03-14T04:55:18.9802376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:18.9803053Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = l_anchors_4_tensor.unsqueeze(0); l_anchors_4_tensor = None 2025-03-14T04:55:18.9803448Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T04:55:18.9803794Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T04:55:18.9804066Z 2025-03-14T04:55:18.9804519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:18.9805137Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_4.float(); pred_anchor_deltas_i_4 = None 2025-03-14T04:55:18.9805414Z 2025-03-14T04:55:18.9805800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:18.9806322Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T04:55:18.9806579Z 2025-03-14T04:55:18.9806996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:18.9807491Z getitem_64: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T04:55:18.9807794Z getitem_65: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:55:18.9808116Z widths_4: "f32[4332][1]cpu" = getitem_64 - getitem_65; getitem_64 = getitem_65 = None 2025-03-14T04:55:18.9808381Z 2025-03-14T04:55:18.9808796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:18.9809490Z getitem_66: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T04:55:18.9809800Z getitem_67: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T04:55:18.9810119Z heights_4: "f32[4332][1]cpu" = getitem_66 - getitem_67; getitem_66 = getitem_67 = None 2025-03-14T04:55:18.9810382Z 2025-03-14T04:55:18.9810772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:18.9811260Z getitem_68: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:55:18.9811626Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T04:55:18.9811912Z ctr_x_4: "f32[4332][1]cpu" = getitem_68 + mul_40; getitem_68 = mul_40 = None 2025-03-14T04:55:18.9812505Z 2025-03-14T04:55:18.9813251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:18.9815440Z getitem_69: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T04:55:18.9816023Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T04:55:18.9816424Z ctr_y_4: "f32[4332][1]cpu" = getitem_69 + mul_41; getitem_69 = mul_41 = None 2025-03-14T04:55:18.9816686Z 2025-03-14T04:55:18.9817114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:18.9817633Z getitem_70: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:18.9817964Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_70 / 1.0; getitem_70 = None 2025-03-14T04:55:18.9818206Z 2025-03-14T04:55:18.9818605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:18.9819136Z getitem_71: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:18.9819467Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_71 / 1.0; getitem_71 = None 2025-03-14T04:55:18.9819702Z 2025-03-14T04:55:18.9820218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:18.9823685Z getitem_72: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:18.9824023Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_72 / 1.0; getitem_72 = None 2025-03-14T04:55:18.9824255Z 2025-03-14T04:55:18.9824746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:18.9825356Z getitem_73: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T04:55:18.9825740Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_73 / 1.0; getitem_73 = None 2025-03-14T04:55:18.9825982Z 2025-03-14T04:55:18.9826441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:18.9826983Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T04:55:18.9827945Z 2025-03-14T04:55:18.9828399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:18.9828921Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T04:55:18.9829178Z 2025-03-14T04:55:18.9829615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:18.9830150Z getitem_74: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T04:55:18.9830465Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_74; dx_4 = getitem_74 = None 2025-03-14T04:55:18.9830804Z getitem_75: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T04:55:18.9831159Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_75; mul_42 = getitem_75 = None 2025-03-14T04:55:18.9831411Z 2025-03-14T04:55:18.9831838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:18.9832368Z getitem_76: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T04:55:18.9832698Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_76; dy_4 = getitem_76 = None 2025-03-14T04:55:18.9833059Z getitem_77: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T04:55:18.9833397Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_77; mul_43 = getitem_77 = None 2025-03-14T04:55:18.9833645Z 2025-03-14T04:55:18.9834059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:18.9834558Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T04:55:18.9834885Z getitem_78: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T04:55:18.9835231Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_78; exp_8 = getitem_78 = None 2025-03-14T04:55:18.9835473Z 2025-03-14T04:55:18.9835891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:18.9836386Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T04:55:18.9836716Z getitem_79: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T04:55:18.9837061Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_79; exp_9 = getitem_79 = None 2025-03-14T04:55:18.9837308Z 2025-03-14T04:55:18.9837704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:18.9838214Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T04:55:18.9838480Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T04:55:18.9838734Z 2025-03-14T04:55:18.9839126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:18.9839581Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T04:55:18.9839856Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T04:55:18.9840091Z 2025-03-14T04:55:18.9840488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:18.9840969Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T04:55:18.9841275Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T04:55:18.9841524Z 2025-03-14T04:55:18.9841923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:18.9842397Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T04:55:18.9842694Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T04:55:18.9842946Z 2025-03-14T04:55:18.9843383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:18.9843971Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T04:55:18.9844277Z 2025-03-14T04:55:18.9844696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:18.9845246Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T04:55:18.9845530Z 2025-03-14T04:55:18.9846004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:18.9846629Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T04:55:18.9846914Z 2025-03-14T04:55:18.9847481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:55:18.9848190Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:55:18.9848438Z 2025-03-14T04:55:18.9848823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:18.9849314Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:55:18.9849564Z 2025-03-14T04:55:18.9850088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:18.9850757Z topk = l_pred_objectness_logits_0_.topk(1000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T04:55:18.9851094Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T04:55:18.9851369Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:55:18.9851844Z 2025-03-14T04:55:18.9852432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:18.9853148Z getitem_82: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:55:18.9853601Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_82, topk_idx)]; proposals_i_5 = getitem_82 = topk_idx = None 2025-03-14T04:55:18.9853949Z 2025-03-14T04:55:18.9854501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:18.9855190Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:18.9855475Z 2025-03-14T04:55:18.9855859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:18.9856338Z to_6: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T04:55:18.9856576Z 2025-03-14T04:55:18.9857098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:18.9857761Z topk_1 = l_pred_objectness_logits_1_.topk(1000, dim = 1); l_pred_objectness_logits_1_ = None 2025-03-14T04:55:18.9858098Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T04:55:18.9858383Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T04:55:18.9858621Z 2025-03-14T04:55:18.9859173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:18.9859827Z getitem_86: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:55:18.9860257Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_86, topk_idx_1)]; proposals_i_6 = getitem_86 = topk_idx_1 = None 2025-03-14T04:55:18.9860785Z 2025-03-14T04:55:18.9861360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:18.9862051Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:18.9862340Z 2025-03-14T04:55:18.9862731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:18.9863212Z to_7: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T04:55:18.9863457Z 2025-03-14T04:55:18.9863978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:18.9864634Z topk_2 = l_pred_objectness_logits_2_.topk(1000, dim = 1); l_pred_objectness_logits_2_ = None 2025-03-14T04:55:18.9864954Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T04:55:18.9865231Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T04:55:18.9865463Z 2025-03-14T04:55:18.9866632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:18.9867269Z getitem_90: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:55:18.9867724Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_90, topk_idx_2)]; proposals_i_7 = getitem_90 = topk_idx_2 = None 2025-03-14T04:55:18.9868071Z 2025-03-14T04:55:18.9868630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:18.9869293Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:18.9869570Z 2025-03-14T04:55:18.9869950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:18.9870419Z to_8: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T04:55:18.9870659Z 2025-03-14T04:55:18.9871174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:18.9871811Z topk_3 = l_pred_objectness_logits_3_.topk(1000, dim = 1); l_pred_objectness_logits_3_ = None 2025-03-14T04:55:18.9872128Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T04:55:18.9872395Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T04:55:18.9872621Z 2025-03-14T04:55:18.9873159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:18.9873794Z getitem_94: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:55:18.9874211Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_94, topk_idx_3)]; proposals_i_8 = getitem_94 = topk_idx_3 = None 2025-03-14T04:55:18.9874577Z 2025-03-14T04:55:18.9875111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:18.9875771Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:18.9876049Z 2025-03-14T04:55:18.9876428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:18.9876892Z to_9: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T04:55:18.9877129Z 2025-03-14T04:55:18.9877642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:18.9878291Z topk_4 = l_pred_objectness_logits_4_.topk(1000, dim = 1); l_pred_objectness_logits_4_ = None 2025-03-14T04:55:18.9878616Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T04:55:18.9878891Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T04:55:18.9879122Z 2025-03-14T04:55:18.9879677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:18.9880348Z getitem_98: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:55:18.9880811Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_98, topk_idx_4)]; proposals_i_9 = getitem_98 = topk_idx_4 = None 2025-03-14T04:55:18.9881153Z 2025-03-14T04:55:18.9881712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:18.9882413Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:18.9882697Z 2025-03-14T04:55:18.9883079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:18.9883560Z to_10: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T04:55:18.9883802Z 2025-03-14T04:55:18.9884167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:18.9884885Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T04:55:18.9885375Z 2025-03-14T04:55:18.9885748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:18.9886571Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T04:55:18.9887166Z 2025-03-14T04:55:18.9887538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:18.9888084Z level_ids: "i64[5000][1]cpu" = torch.cat([to_6, to_7, to_8, to_9, to_10], 0); to_6 = to_7 = to_8 = to_9 = to_10 = level_ids = None 2025-03-14T04:55:18.9888428Z 2025-03-14T04:55:18.9894878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:55:18.9895711Z getitem_100: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T04:55:18.9895983Z 2025-03-14T04:55:18.9896398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:55:18.9896898Z tensor: "f32[5000, 4][4, 1]cpu" = getitem_100.to(torch.float32); getitem_100 = None 2025-03-14T04:55:18.9897164Z 2025-03-14T04:55:18.9897629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:55:18.9898198Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T04:55:18.9898448Z 2025-03-14T04:55:18.9899015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:55:18.9899701Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T04:55:18.9900134Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:18.9900464Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:55:18.9900800Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:55:18.9901090Z 2025-03-14T04:55:18.9901571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:55:18.9902110Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:55:18.9902347Z 2025-03-14T04:55:44.5752357Z 2025-03-14T04:55:44.5753207Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:44.5759102Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:55:44.5761703Z l_stack0_ = L_stack0_ 2025-03-14T04:55:44.5763075Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:55:44.5763597Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:55:44.5764065Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:55:44.5764988Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:55:44.5765497Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:55:44.5766084Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:55:44.5766690Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:55:44.5768166Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:55:44.5768696Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:55:44.5769125Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:55:44.5769546Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:55:44.5769975Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:55:44.5770296Z 2025-03-14T04:55:44.5770753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:55:44.5771307Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:55:44.5772340Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:55:44.5773246Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:55:44.5774118Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:55:44.5774932Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:55:44.5775240Z 2025-03-14T04:55:44.5775689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:55:44.5776781Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:55:44.5777586Z 2025-03-14T04:55:44.5778043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:55:44.5779177Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:55:44.5779931Z 2025-03-14T04:55:44.5780301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:44.5780759Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.5781034Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:55:44.5781265Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:55:44.5781534Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.5781788Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:55:44.5782019Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:55:44.5782288Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.5782533Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:55:44.5782765Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:55:44.5783066Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.5783311Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:55:44.5783536Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:55:44.5783752Z 2025-03-14T04:55:44.5784123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:44.5784900Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:55:44.5785444Z 2025-03-14T04:55:44.5785907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:44.5786503Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:55:44.5786777Z 2025-03-14T04:55:44.5787171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:44.5787724Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:55:44.5788020Z 2025-03-14T04:55:44.5788417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:44.5788922Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:44.5789242Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:44.5789570Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:55:44.5789836Z 2025-03-14T04:55:44.5790243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:44.5790743Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:44.5791052Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:44.5791385Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:55:44.5791687Z 2025-03-14T04:55:44.5792184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:44.5792679Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:44.5792964Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:55:44.5793236Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:55:44.5793485Z 2025-03-14T04:55:44.5793882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:44.5794428Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:44.5794740Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:55:44.5795032Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:55:44.5795285Z 2025-03-14T04:55:44.5795713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:44.5796232Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:44.5796895Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:55:44.5797149Z 2025-03-14T04:55:44.5797540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:44.5798049Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:44.5798369Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:55:44.5798600Z 2025-03-14T04:55:44.5798986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:44.5799509Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:44.5799827Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:55:44.5800055Z 2025-03-14T04:55:44.5800442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:44.5800994Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:44.5801353Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:55:44.5801582Z 2025-03-14T04:55:44.5802004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:44.5802530Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:44.5802782Z 2025-03-14T04:55:44.5803193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:44.5803706Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:44.5803954Z 2025-03-14T04:55:44.5804384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:44.5804928Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:44.5805248Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:55:44.5805577Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:44.5805920Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:55:44.5806171Z 2025-03-14T04:55:44.5806772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:44.5807324Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:44.5807665Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:55:44.5807991Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:44.5808333Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:55:44.5808587Z 2025-03-14T04:55:44.5808997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:44.5809506Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:44.5809822Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:44.5810159Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:55:44.5810408Z 2025-03-14T04:55:44.5810832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:44.5811355Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:44.5811816Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:44.5812185Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:55:44.5812479Z 2025-03-14T04:55:44.5812905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:44.5813425Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:44.5813689Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:44.5813937Z 2025-03-14T04:55:44.5815312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:44.5815778Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:44.5816034Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:44.5816272Z 2025-03-14T04:55:44.5816847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:44.5817352Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:44.5817649Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:44.5817897Z 2025-03-14T04:55:44.5818285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:44.5818758Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:44.5819044Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:44.5819288Z 2025-03-14T04:55:44.5819719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:44.5820297Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:44.5820585Z 2025-03-14T04:55:44.5820998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:44.5821553Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:55:44.5821872Z 2025-03-14T04:55:44.5822326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:55:44.5823016Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:55:44.5823436Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:55:44.5823717Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:55:44.5824007Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:55:44.5824306Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:55:44.5824551Z 2025-03-14T04:55:44.5824925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:44.5825474Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.5825813Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:55:44.5826051Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:55:44.5826717Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.5827109Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:55:44.5827380Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:55:44.5827746Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.5828675Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:55:44.5828922Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:55:44.5829315Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.5829657Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:55:44.5829886Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:55:44.5830098Z 2025-03-14T04:55:44.5830524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:55:44.5831645Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:55:44.5832419Z 2025-03-14T04:55:44.5832883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:55:44.5833556Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:55:44.5833981Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:55:44.5834268Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:55:44.5834562Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:55:44.5834864Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:55:44.5835501Z 2025-03-14T04:55:44.5836068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:55:44.5836760Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:55:44.5837095Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:44.5837473Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:55:44.5837802Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:55:44.5838087Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:55:44.5838322Z 2025-03-14T04:55:44.5838759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:55:44.5839279Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:55:44.5839515Z 2025-03-14T04:55:44.5839652Z 2025-03-14T04:55:44.5839741Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:44.5841648Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:55:44.5843701Z l_stack0_ = L_stack0_ 2025-03-14T04:55:44.5844045Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:55:44.5844548Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:55:44.5845020Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:55:44.5845488Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:55:44.5846006Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:55:44.5846570Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:55:44.5847133Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:55:44.5847698Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:55:44.5848213Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:55:44.5848611Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:55:44.5849017Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:55:44.5849427Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:55:44.5849726Z 2025-03-14T04:55:44.5850110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:55:44.5850608Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:55:44.5851388Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:55:44.5852707Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:55:44.5853451Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:55:44.5854153Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:55:44.5854428Z 2025-03-14T04:55:44.5854828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:55:44.5855784Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:55:44.5856481Z 2025-03-14T04:55:44.5856908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:55:44.5857890Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:55:44.5858663Z 2025-03-14T04:55:44.5859033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:44.5859489Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.5859737Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:55:44.5859976Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:55:44.5860262Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.5860838Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:55:44.5861141Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:55:44.5861426Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.5861675Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:55:44.5861910Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:55:44.5862172Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.5862420Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:55:44.5862650Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:55:44.5862866Z 2025-03-14T04:55:44.5863237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:44.5864017Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:55:44.5864559Z 2025-03-14T04:55:44.5865042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:44.5865706Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:55:44.5865990Z 2025-03-14T04:55:44.5866399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:44.5866985Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:55:44.5867273Z 2025-03-14T04:55:44.5867695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:44.5868216Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:44.5868550Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:44.5868900Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:55:44.5869180Z 2025-03-14T04:55:44.5869601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:44.5870124Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:44.5870450Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:44.5870859Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:55:44.5871148Z 2025-03-14T04:55:44.5871559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:44.5872102Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:44.5872427Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:55:44.5872718Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:55:44.5872975Z 2025-03-14T04:55:44.5873394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:44.5873939Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:44.5874255Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:55:44.5874548Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:55:44.5874806Z 2025-03-14T04:55:44.5875225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:44.5875758Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:44.5876099Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:55:44.5876330Z 2025-03-14T04:55:44.5876719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:44.5877220Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:44.5877542Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:55:44.5877773Z 2025-03-14T04:55:44.5878151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:44.5878666Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:44.5879024Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:55:44.5879267Z 2025-03-14T04:55:44.5879681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:44.5880210Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:44.5880550Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:55:44.5880778Z 2025-03-14T04:55:44.5881193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:44.5881712Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:44.5881963Z 2025-03-14T04:55:44.5882371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:44.5882880Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:44.5883122Z 2025-03-14T04:55:44.5883542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:44.5884091Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:44.5884414Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:55:44.5884770Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:44.5885114Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:55:44.5885386Z 2025-03-14T04:55:44.5885817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:44.5886375Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:44.5886712Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:55:44.5887058Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:44.5887417Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:55:44.5887679Z 2025-03-14T04:55:44.5888124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:44.5888661Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:44.5889007Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:44.5889372Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:55:44.5889633Z 2025-03-14T04:55:44.5890082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:44.5890611Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:44.5890962Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:44.5891349Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:55:44.5892016Z 2025-03-14T04:55:44.5892480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:44.5892970Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:44.5893247Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:44.5893496Z 2025-03-14T04:55:44.5893919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:44.5894392Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:44.5894652Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:44.5894891Z 2025-03-14T04:55:44.5895286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:44.5895778Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:44.5896073Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:44.5896324Z 2025-03-14T04:55:44.5896720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:44.5897666Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:44.5898309Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:44.5898568Z 2025-03-14T04:55:44.5899006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:44.5899627Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:44.5899949Z 2025-03-14T04:55:44.5900380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:44.5900945Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:55:44.5901630Z 2025-03-14T04:55:44.5902140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:55:44.5902839Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:55:44.5903280Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:55:44.5903575Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:55:44.5903880Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:55:44.5904187Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:55:44.5904451Z 2025-03-14T04:55:44.5905156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:44.5905803Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.5906157Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:55:44.5906398Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:55:44.5906772Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.5907118Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:55:44.5907388Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:55:44.5907755Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.5908102Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:55:44.5908338Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:55:44.5909112Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.5909751Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:55:44.5909992Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:55:44.5910214Z 2025-03-14T04:55:44.5910645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:55:44.5911227Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:55:44.5911538Z 2025-03-14T04:55:44.5912370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:55:44.5913069Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:55:44.5913482Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:55:44.5913798Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:55:44.5914098Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:55:44.5914431Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:55:44.5914688Z 2025-03-14T04:55:44.5915272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:55:44.5915981Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:55:44.5916333Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:44.5916660Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:55:44.5916993Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:55:44.5917280Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:55:44.5917516Z 2025-03-14T04:55:44.5917953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:55:44.5918653Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:55:44.5918883Z 2025-03-14T04:55:44.5919020Z 2025-03-14T04:55:44.5919107Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:44.5920993Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:55:44.5923046Z l_stack0_ = L_stack0_ 2025-03-14T04:55:44.5923388Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:55:44.5923867Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:55:44.5924334Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:55:44.5924803Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:55:44.5925323Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:55:44.5925886Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:55:44.5926450Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:55:44.5927034Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:55:44.5927512Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:55:44.5927925Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:55:44.5928359Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:55:44.5928789Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:55:44.5929090Z 2025-03-14T04:55:44.5929671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:55:44.5930167Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:55:44.5930907Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:55:44.5932577Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:55:44.5933378Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:55:44.5934113Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:55:44.5934397Z 2025-03-14T04:55:44.5934813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:55:44.5935826Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:55:44.5936693Z 2025-03-14T04:55:44.5937152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:55:44.5938146Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:55:44.5938874Z 2025-03-14T04:55:44.5939250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:44.5939708Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.5939964Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:55:44.5940196Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:55:44.5940470Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.5940719Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:55:44.5940954Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:55:44.5941224Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.5941469Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:55:44.5941695Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:55:44.5941977Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.5942238Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:55:44.5942465Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:55:44.5942675Z 2025-03-14T04:55:44.5943034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:44.5943847Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:55:44.5944393Z 2025-03-14T04:55:44.5944846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:44.5945413Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:55:44.5945675Z 2025-03-14T04:55:44.5946066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:44.5946826Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:55:44.5947110Z 2025-03-14T04:55:44.5947512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:44.5948011Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:44.5948327Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:44.5948657Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:55:44.5948922Z 2025-03-14T04:55:44.5949325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:44.5949828Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:44.5950140Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:44.5950499Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:55:44.5950769Z 2025-03-14T04:55:44.5951160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:44.5951644Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:44.5951918Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:55:44.5952188Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:55:44.5952430Z 2025-03-14T04:55:44.5952822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:44.5953333Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:44.5953637Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:55:44.5953912Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:55:44.5954154Z 2025-03-14T04:55:44.5954553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:44.5955054Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:44.5955389Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:55:44.5955623Z 2025-03-14T04:55:44.5956005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:44.5956667Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:44.5957018Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:55:44.5957254Z 2025-03-14T04:55:44.5957647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:44.5958153Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:44.5958477Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:55:44.5958713Z 2025-03-14T04:55:44.5959099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:44.5959636Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:44.5959981Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:55:44.5960207Z 2025-03-14T04:55:44.5960971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:44.5961542Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:44.5961801Z 2025-03-14T04:55:44.5962222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:44.5962748Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:44.5963000Z 2025-03-14T04:55:44.5963434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:44.5964031Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:44.5964336Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:55:44.5964677Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:44.5965015Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:55:44.5965270Z 2025-03-14T04:55:44.5965705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:44.5966238Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:44.5966555Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:55:44.5966880Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:44.5967226Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:55:44.5967482Z 2025-03-14T04:55:44.5967907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:44.5968416Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:44.5968786Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:44.5969396Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:55:44.5969696Z 2025-03-14T04:55:44.5970127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:44.5970681Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:44.5971026Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:44.5971387Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:55:44.5971846Z 2025-03-14T04:55:44.5972404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:44.5972913Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:44.5973202Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:44.5973437Z 2025-03-14T04:55:44.5973828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:44.5974281Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:44.5974534Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:44.5974764Z 2025-03-14T04:55:44.5975147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:44.5975611Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:44.5975896Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:44.5976139Z 2025-03-14T04:55:44.5976527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:44.5977691Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:44.5978030Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:44.5978283Z 2025-03-14T04:55:44.5978729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:44.5979319Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:44.5979615Z 2025-03-14T04:55:44.5980040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:44.5981167Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:55:44.5981469Z 2025-03-14T04:55:44.5981945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:55:44.5982622Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:55:44.5983046Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:55:44.5983328Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:55:44.5983649Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:55:44.5983951Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:55:44.5984198Z 2025-03-14T04:55:44.5984574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:44.5985169Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.5985645Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:55:44.5985890Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:55:44.5986744Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.5987119Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:55:44.5987363Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:55:44.5987736Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.5988086Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:55:44.5988324Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:55:44.5988689Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.5989030Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:55:44.5989262Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:55:44.5989876Z 2025-03-14T04:55:44.5991027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:55:44.5991626Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:55:44.5991922Z 2025-03-14T04:55:44.5992385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:55:44.5993505Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:55:44.5993951Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:55:44.5994291Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:55:44.5994589Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:55:44.5994893Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:55:44.5995152Z 2025-03-14T04:55:44.5995721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:55:44.5996427Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:55:44.5996769Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:44.5997107Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:55:44.5997447Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:55:44.5997742Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:55:44.5997981Z 2025-03-14T04:55:44.5998430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:55:44.5998960Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:55:44.5999197Z 2025-03-14T04:55:44.5999358Z 2025-03-14T04:55:44.5999449Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:44.6001404Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:55:44.6003475Z l_stack0_ = L_stack0_ 2025-03-14T04:55:44.6003818Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:55:44.6004297Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:55:44.6004767Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:55:44.6005231Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:55:44.6005741Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:55:44.6006303Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:55:44.6006864Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:55:44.6007439Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:55:44.6007952Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:55:44.6008365Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:55:44.6008770Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:55:44.6009176Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:55:44.6009477Z 2025-03-14T04:55:44.6009859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:55:44.6010343Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:55:44.6011083Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:55:44.6012385Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:55:44.6013214Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:55:44.6013982Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:55:44.6014269Z 2025-03-14T04:55:44.6014698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:55:44.6015729Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:55:44.6016475Z 2025-03-14T04:55:44.6016916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:55:44.6017970Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:55:44.6018732Z 2025-03-14T04:55:44.6019105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:44.6019567Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.6019815Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:55:44.6020044Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:55:44.6020314Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.6020565Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:55:44.6020801Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:55:44.6021071Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.6021316Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:55:44.6021549Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:55:44.6021813Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:44.6022080Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:55:44.6022307Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:55:44.6022509Z 2025-03-14T04:55:44.6022879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:44.6023645Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:55:44.6024197Z 2025-03-14T04:55:44.6024642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:44.6025210Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:55:44.6025480Z 2025-03-14T04:55:44.6025869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:44.6026383Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:55:44.6026654Z 2025-03-14T04:55:44.6027047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:44.6027609Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:44.6027945Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:44.6028327Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:55:44.6028610Z 2025-03-14T04:55:44.6029034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:44.6029539Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:44.6029847Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:44.6030185Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:55:44.6030459Z 2025-03-14T04:55:44.6030856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:44.6031346Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:44.6031624Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:55:44.6031896Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:55:44.6032140Z 2025-03-14T04:55:44.6032549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:44.6033087Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:44.6033405Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:55:44.6033698Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:55:44.6033957Z 2025-03-14T04:55:44.6034381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:44.6034916Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:44.6035277Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:55:44.6035519Z 2025-03-14T04:55:44.6035922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:44.6036524Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:44.6036873Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:55:44.6037123Z 2025-03-14T04:55:44.6037528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:44.6038054Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:44.6038393Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:55:44.6038639Z 2025-03-14T04:55:44.6039043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:44.6039600Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:44.6039957Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:55:44.6040198Z 2025-03-14T04:55:44.6040656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:44.6041211Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:44.6041493Z 2025-03-14T04:55:44.6041927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:44.6042490Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:44.6042756Z 2025-03-14T04:55:44.6043212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:44.6043787Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:44.6044127Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:55:44.6044481Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:44.6044849Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:55:44.6045122Z 2025-03-14T04:55:44.6045576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:44.6046148Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:44.6046481Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:55:44.6046829Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:44.6047190Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:55:44.6047459Z 2025-03-14T04:55:44.6047902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:44.6048439Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:44.6048802Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:44.6049159Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:55:44.6049418Z 2025-03-14T04:55:44.6049853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:44.6050376Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:44.6050724Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:44.6051090Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:55:44.6051372Z 2025-03-14T04:55:44.6052205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:44.6052758Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:44.6053027Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:44.6053269Z 2025-03-14T04:55:44.6053670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:44.6054142Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:44.6054452Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:44.6054708Z 2025-03-14T04:55:44.6055138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:44.6055686Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:44.6056026Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:44.6056296Z 2025-03-14T04:55:44.6056725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:44.6057248Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:44.6057566Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:44.6057835Z 2025-03-14T04:55:44.6058313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:44.6058963Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:44.6059281Z 2025-03-14T04:55:44.6059746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:44.6060305Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:55:44.6060990Z 2025-03-14T04:55:44.6061471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:55:44.6062163Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:55:44.6062589Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:55:44.6062877Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:55:44.6063171Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:55:44.6063532Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:55:44.6063772Z 2025-03-14T04:55:44.6064146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:44.6064699Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.6065046Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:55:44.6065288Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:55:44.6065653Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.6065995Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:55:44.6066231Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:55:44.6066597Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.6066934Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:55:44.6067163Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:55:44.6067517Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:55:44.6067851Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:55:44.6068076Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:55:44.6068319Z 2025-03-14T04:55:44.6068740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:55:44.6069322Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:55:44.6069608Z 2025-03-14T04:55:44.6070069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:55:44.6070749Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:55:44.6071159Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:55:44.6071444Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:55:44.6071741Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:55:44.6072041Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:55:44.6072291Z 2025-03-14T04:55:44.6072858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:55:44.6073569Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:55:44.6073905Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:44.6074236Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:55:44.6074572Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:55:44.6074867Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:55:44.6075098Z 2025-03-14T04:55:44.6075533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:55:44.6076055Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:55:44.6076301Z 2025-03-14T04:55:46.3274083Z 2025-03-14T04:55:46.3282460Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:46.3284143Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:55:46.3285077Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:55:46.3285315Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:55:46.3285640Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:55:46.3286062Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:55:46.3286477Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:55:46.3286884Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:55:46.3287186Z 2025-03-14T04:55:46.3287631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:46.3288131Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:46.3288413Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:55:46.3288937Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:55:46.3289233Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:46.3289501Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:55:46.3289857Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:55:46.3290136Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:46.3290397Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:55:46.3290692Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:55:46.3290973Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:46.3291231Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:55:46.3291597Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:55:46.3291836Z 2025-03-14T04:55:46.3292237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:46.3293067Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:55:46.3293662Z 2025-03-14T04:55:46.3294154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:46.3294764Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:55:46.3295050Z 2025-03-14T04:55:46.3295474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:46.3296035Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:55:46.3296328Z 2025-03-14T04:55:46.3296748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:46.3297276Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:46.3297659Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:46.3298008Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:55:46.3298288Z 2025-03-14T04:55:46.3298714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:46.3299240Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:46.3299567Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:46.3299926Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:55:46.3300216Z 2025-03-14T04:55:46.3300629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:46.3301145Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:46.3301443Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:55:46.3301732Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:55:46.3301992Z 2025-03-14T04:55:46.3302411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:46.3302973Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:46.3303296Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:55:46.3303616Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:55:46.3303877Z 2025-03-14T04:55:46.3304372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:46.3304922Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:46.3305272Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:55:46.3305518Z 2025-03-14T04:55:46.3305929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:46.3306460Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:46.3306793Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:55:46.3307036Z 2025-03-14T04:55:46.3307444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:46.3307970Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:46.3308298Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:55:46.3308524Z 2025-03-14T04:55:46.3308925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:46.3309475Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:46.3309831Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:55:46.3310065Z 2025-03-14T04:55:46.3310498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:46.3311055Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:46.3311316Z 2025-03-14T04:55:46.3311738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:46.3312263Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:46.3312518Z 2025-03-14T04:55:46.3312952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:46.3313500Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:46.3313826Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:55:46.3314163Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:46.3314514Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:55:46.3314773Z 2025-03-14T04:55:46.3315211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:46.3315760Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:46.3317363Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:55:46.3317710Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:46.3318201Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:55:46.3318463Z 2025-03-14T04:55:46.3318912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:46.3319431Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:46.3319770Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:46.3320127Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:55:46.3320384Z 2025-03-14T04:55:46.3320815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:46.3321326Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:46.3321670Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:46.3322034Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:55:46.3322293Z 2025-03-14T04:55:46.3322704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:46.3323175Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:46.3323442Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:46.3323680Z 2025-03-14T04:55:46.3324084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:46.3324546Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:46.3324806Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:46.3325043Z 2025-03-14T04:55:46.3325460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:46.3325947Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:46.3326240Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:46.3326493Z 2025-03-14T04:55:46.3326879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:46.3327357Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:46.3327643Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:46.3327893Z 2025-03-14T04:55:46.3328334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:46.3328935Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:46.3329230Z 2025-03-14T04:55:46.3329656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:46.3330218Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:55:46.3330511Z 2025-03-14T04:55:46.3330990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:55:46.3331838Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:55:46.3332344Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:55:46.3332680Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:55:46.3333000Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:55:46.3333312Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:55:46.3333575Z 2025-03-14T04:55:46.3333978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:46.3334541Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:55:46.3334894Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:55:46.3335138Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:55:46.3335504Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:55:46.3335850Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:55:46.3336085Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:55:46.3336445Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:55:46.3336783Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:55:46.3337018Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:55:46.3337376Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:55:46.3337712Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:55:46.3337940Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:55:46.3338158Z 2025-03-14T04:55:46.3338574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:55:46.3339201Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:55:46.3339524Z 2025-03-14T04:55:46.3339962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:55:46.3340629Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:55:46.3341048Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:55:46.3341331Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:55:46.3341623Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:55:46.3341919Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:55:46.3342167Z 2025-03-14T04:55:46.3342712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:55:46.3343398Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:55:46.3343732Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:46.3344075Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:55:46.3344406Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:55:46.3344701Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:55:46.3344937Z 2025-03-14T04:55:46.3345388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:55:46.3345910Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:55:46.3346141Z 2025-03-14T04:55:46.3349830Z 2025-03-14T04:55:46.3350392Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:46.3351365Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:55:46.3352282Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:55:46.3352509Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:55:46.3352866Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:55:46.3353286Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:55:46.3353691Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:55:46.3354091Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:55:46.3354447Z 2025-03-14T04:55:46.3354881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:46.3355455Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:46.3355718Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:55:46.3356009Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:55:46.3356304Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:46.3356687Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:55:46.3356985Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:55:46.3357264Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:46.3357568Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:55:46.3357830Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:55:46.3358108Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:46.3358353Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:55:46.3358576Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:55:46.3358788Z 2025-03-14T04:55:46.3359177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:46.3360055Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:55:46.3361371Z 2025-03-14T04:55:46.3361935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:46.3362539Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:55:46.3362814Z 2025-03-14T04:55:46.3363326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:46.3363868Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:55:46.3364195Z 2025-03-14T04:55:46.3364598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:46.3365152Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:46.3365474Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:46.3365808Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:55:46.3366077Z 2025-03-14T04:55:46.3367140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:46.3367657Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:46.3367972Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:46.3368313Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:55:46.3368588Z 2025-03-14T04:55:46.3368985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:46.3369474Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:46.3369754Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:55:46.3370027Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:55:46.3370278Z 2025-03-14T04:55:46.3370927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:46.3371597Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:46.3371972Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:55:46.3372274Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:55:46.3372543Z 2025-03-14T04:55:46.3372976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:46.3373512Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:46.3373849Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:55:46.3374089Z 2025-03-14T04:55:46.3374491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:46.3375017Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:46.3375355Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:55:46.3375597Z 2025-03-14T04:55:46.3375998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:46.3376687Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:46.3377033Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:55:46.3377280Z 2025-03-14T04:55:46.3377725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:46.3378532Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:46.3378936Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:55:46.3379188Z 2025-03-14T04:55:46.3379665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:46.3380230Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:46.3380499Z 2025-03-14T04:55:46.3380947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:46.3381504Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:46.3381768Z 2025-03-14T04:55:46.3382229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:46.3382809Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:46.3383148Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:55:46.3383501Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:46.3383863Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:55:46.3384136Z 2025-03-14T04:55:46.3384602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:46.3385182Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:46.3385505Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:55:46.3385839Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:46.3386211Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:55:46.3386624Z 2025-03-14T04:55:46.3387055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:46.3387573Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:46.3388149Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:46.3388522Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:55:46.3388776Z 2025-03-14T04:55:46.3389198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:46.3389702Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:46.3390037Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:46.3390386Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:55:46.3390639Z 2025-03-14T04:55:46.3391038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:46.3391521Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:46.3391782Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:46.3392018Z 2025-03-14T04:55:46.3392430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:46.3392893Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:46.3393168Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:46.3393402Z 2025-03-14T04:55:46.3393798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:46.3394283Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:46.3394583Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:46.3394833Z 2025-03-14T04:55:46.3395224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:46.3395707Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:46.3395997Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:46.3396249Z 2025-03-14T04:55:46.3396838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:46.3397422Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:46.3397713Z 2025-03-14T04:55:46.3398131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:46.3398683Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:55:46.3398972Z 2025-03-14T04:55:46.3399414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:55:46.3400399Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:55:46.3400843Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:55:46.3401144Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:55:46.3401447Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:55:46.3401757Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:55:46.3402016Z 2025-03-14T04:55:46.3402406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:46.3402975Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:55:46.3403322Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:55:46.3403568Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:55:46.3403943Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:55:46.3404288Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:55:46.3404528Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:55:46.3404895Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:55:46.3405262Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:55:46.3405502Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:55:46.3405869Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:55:46.3406233Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:55:46.3406615Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:55:46.3406835Z 2025-03-14T04:55:46.3407278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:55:46.3407873Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:55:46.3408193Z 2025-03-14T04:55:46.3408633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:55:46.3409779Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:55:46.3410243Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:55:46.3410544Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:55:46.3410848Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:55:46.3411155Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:55:46.3411476Z 2025-03-14T04:55:46.3412068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:55:46.3412799Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:55:46.3413142Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:46.3413486Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:55:46.3413827Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:55:46.3414164Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:55:46.3414404Z 2025-03-14T04:55:46.3414854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:55:46.3415380Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:55:46.3415615Z 2025-03-14T04:55:46.3425569Z 2025-03-14T04:55:46.3426120Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:46.3427056Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:55:46.3427969Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:55:46.3428218Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:55:46.3428538Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:55:46.3428945Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:55:46.3429358Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:55:46.3429895Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:55:46.3430200Z 2025-03-14T04:55:46.3430604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:46.3431134Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:46.3431392Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:55:46.3431669Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:55:46.3431967Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:46.3432222Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:55:46.3432461Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:55:46.3432786Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:46.3433039Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:55:46.3433276Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:55:46.3433543Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:55:46.3433797Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:55:46.3434029Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:55:46.3434254Z 2025-03-14T04:55:46.3434645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:55:46.3435460Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:55:46.3436027Z 2025-03-14T04:55:46.3436506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:46.3437107Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:55:46.3437383Z 2025-03-14T04:55:46.3437792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:46.3438372Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:55:46.3438652Z 2025-03-14T04:55:46.3439060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:46.3439568Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:46.3439893Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:46.3440229Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:55:46.3440499Z 2025-03-14T04:55:46.3440907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:46.3441429Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:46.3441756Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:46.3442095Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:55:46.3442371Z 2025-03-14T04:55:46.3442776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:46.3443293Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:46.3443573Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:55:46.3443846Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:55:46.3444108Z 2025-03-14T04:55:46.3444503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:46.3445038Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:46.3445339Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:55:46.3445615Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:55:46.3445862Z 2025-03-14T04:55:46.3446266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:46.3446825Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:46.3447144Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:55:46.3447375Z 2025-03-14T04:55:46.3447759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:46.3448256Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:46.3448573Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:55:46.3448805Z 2025-03-14T04:55:46.3449187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:46.3449682Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:46.3449997Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:55:46.3450221Z 2025-03-14T04:55:46.3450603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:46.3451160Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:46.3451564Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:55:46.3451803Z 2025-03-14T04:55:46.3462033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:46.3462762Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:46.3463039Z 2025-03-14T04:55:46.3463492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:46.3464034Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:46.3464297Z 2025-03-14T04:55:46.3464751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:46.3465315Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:46.3465652Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:55:46.3465997Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:46.3466499Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:55:46.3466772Z 2025-03-14T04:55:46.3467231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:46.3467832Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:46.3468208Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:55:46.3468556Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:46.3468910Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:55:46.3469167Z 2025-03-14T04:55:46.3469601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:46.3470110Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:46.3470453Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:46.3470802Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:55:46.3471055Z 2025-03-14T04:55:46.3471474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:46.3471972Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:46.3472301Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:46.3472653Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:55:46.3472911Z 2025-03-14T04:55:46.3473319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:46.3473791Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:46.3474059Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:46.3474343Z 2025-03-14T04:55:46.3474762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:46.3475222Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:46.3475483Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:46.3475715Z 2025-03-14T04:55:46.3476107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:46.3476588Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:46.3476883Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:46.3477146Z 2025-03-14T04:55:46.3477534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:46.3478011Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:46.3478294Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:46.3478536Z 2025-03-14T04:55:46.3478976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:46.3479606Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:46.3479901Z 2025-03-14T04:55:46.3480310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:46.3480887Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:55:46.3481198Z 2025-03-14T04:55:46.3481648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:55:46.3482337Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:55:46.3482765Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:55:46.3483053Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:55:46.3483349Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:55:46.3483653Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:55:46.3483901Z 2025-03-14T04:55:46.3484282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:55:46.3484844Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:55:46.3485189Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:55:46.3485433Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:55:46.3485796Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:55:46.3486139Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:55:46.3486377Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:55:46.3486734Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:55:46.3487072Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:55:46.3487310Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:55:46.3487693Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:55:46.3488030Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:55:46.3488257Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:55:46.3488469Z 2025-03-14T04:55:46.3488883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:55:46.3489475Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:55:46.3489792Z 2025-03-14T04:55:46.3490237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:55:46.3490912Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:55:46.3491341Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:55:46.3491758Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:55:46.3492080Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:55:46.3492419Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:55:46.3492680Z 2025-03-14T04:55:46.3493271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:55:46.3494006Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:55:46.3494340Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:46.3494682Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:55:46.3495018Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:55:46.3495304Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:55:46.3495538Z 2025-03-14T04:55:46.3495977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:55:46.3496492Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:55:46.3496725Z 2025-03-14T04:55:48.8845201Z 2025-03-14T04:55:48.8848465Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:48.8848941Z def forward(self, s0: "Sym(s0)", L_scores_0_: "f32[s0, 81][81, 1]cpu", s1: "Sym(s0)", L_boxes_0_: "f32[s0, 320][320, 1]cpu"): 2025-03-14T04:55:48.8849296Z l_scores_0_ = L_scores_0_ 2025-03-14T04:55:48.8849541Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:55:48.8849745Z 2025-03-14T04:55:48.8850371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:55:48.8851110Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:55:48.8851579Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:48.8851970Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:55:48.8852334Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:55:48.8852655Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:55:48.8853243Z 2025-03-14T04:55:48.8853714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:55:48.8854263Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:55:48.8854513Z 2025-03-14T04:55:48.8854600Z 2025-03-14T04:55:48.8854700Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:48.8855043Z def forward(self, s0: "Sym(s0)", L_scores_0_: "f32[s0, 81][81, 1]cpu", s1: "Sym(s0)", L_boxes_0_: "f32[s0, 320][320, 1]cpu"): 2025-03-14T04:55:48.8855373Z l_scores_0_ = L_scores_0_ 2025-03-14T04:55:48.8855582Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:55:48.8855775Z 2025-03-14T04:55:48.8856356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:55:48.8857040Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:55:48.8857368Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:48.8857690Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:55:48.8858007Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:55:48.8858302Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:55:48.8858603Z 2025-03-14T04:55:48.8859150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:55:48.8859740Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:55:48.8859977Z 2025-03-14T04:56:07.0497577Z Compilation time (from dynamo_timed): 81.658758581 2025-03-14T04:56:07.0497985Z pass 2025-03-14T04:56:07.0503165Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:56:07.0504029Z TIMING: entire_frame_compile:81.65876 gc:0.04713 _recursive_pre_grad_passes:0.03905 async_compile.wait:31.99995 backend_compile:61.88275 _recursive_joint_graph_passes:0.31343 _recursive_post_grad_passes:0.24504 code_gen:41.0179 inductor_compile:46.49378 total_wall_time:81.65876 2025-03-14T04:56:07.0505122Z STATS: call_* op count: 1160 | FakeTensorMode.__torch_dispatch__:42549 | FakeTensor.__torch_dispatch__:4401 | ProxyTorchDispatchMode.__torch_dispatch__:13994 | attempt fast:202 | slow no contiguity match:72 | fast is_contiguous:130 2025-03-14T04:56:07.0505828Z Dynamo produced 61 graphs covering 1160 ops with 46 graph breaks (6 unique) 2025-03-14T04:56:13.1688030Z 2025-03-14T04:56:24.8569346Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:56:24.8569670Z loading model: 0it [00:11, ?it/s] 2025-03-14T04:56:24.8581700Z cpu eval detectron2_fasterrcnn_r_50_c4 2025-03-14T04:56:32.3578206Z WARNING:common:fp64 golden ref were not generated for detectron2_fasterrcnn_r_50_c4. Setting accuracy check to cosine 2025-03-14T04:56:32.3703390Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:56:53.2780626Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:57:12.7834217Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:57:21.7998486Z 2025-03-14T04:57:21.7999391Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:21.8052956Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:57:21.8096343Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:57:21.8096893Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8097713Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8098652Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8099528Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8100267Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8100989Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8101781Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8102644Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8103472Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8104296Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8105016Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8105840Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8106708Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8107588Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8108372Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8109079Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8109822Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8110605Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8111350Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8112075Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8112776Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:21.8113518Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8114294Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8115028Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8115762Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8116455Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8117176Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8117934Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8118646Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8119360Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8120036Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8120733Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8121466Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8122187Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8122878Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8123531Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8124215Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8124951Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8125667Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8126352Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8127002Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8127706Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8128487Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8129244Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8129969Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8130666Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8131454Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8132287Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8133095Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8133822Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8134532Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8135273Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8136045Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8136796Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8137519Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8138208Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8138930Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8139707Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8140467Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8141192Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8141909Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8142632Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8143412Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8144178Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8144869Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8145524Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8146206Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8146937Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8147672Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8148374Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8149054Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:21.8149771Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8150535Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8151270Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8151985Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8152651Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8153335Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8154069Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8154785Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8155473Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8156158Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8156833Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8157566Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8158288Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8158992Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8159659Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8160351Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8161250Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8161997Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8162750Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8163412Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8164095Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8164842Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8165560Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8166280Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8166966Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8167699Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8168477Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8169246Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8170062Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8170794Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8171599Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8172431Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8173263Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8174023Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8174737Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8175517Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8176309Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8177107Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8177895Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8178604Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8179333Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8180126Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8180890Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8181619Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8182305Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8183041Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8183773Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8184487Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8185197Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8185854Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8186536Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8187271Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8187987Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8188681Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8189332Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8190060Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8190809Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8191573Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8192283Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8192956Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8193659Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8194422Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8195166Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8195874Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8196570Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:21.8197277Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8198042Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8198802Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8199519Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8200183Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8200863Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8201598Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8202322Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8203015Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8203693Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8204388Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8205152Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8205873Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8206599Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8207295Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8208007Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8208783Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8209534Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8210254Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8210943Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8211791Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8212686Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8213472Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8214270Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8215039Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8215842Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8216718Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8217550Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8218392Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8219162Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8219986Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8220813Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8221539Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8222225Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8222878Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8223561Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8224305Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8225017Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8225699Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8226347Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8227029Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8227784Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8228498Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8229186Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8229845Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8230535Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8231316Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8232033Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8232736Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8233389Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8234101Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8234837Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8235541Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8236228Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8236898Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8237589Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8238320Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8239030Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8239714Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8240402Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8241168Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8241921Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8242637Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8243330Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8243984Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8244673Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8245452Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8246230Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8246952Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8247659Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8248404Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8249235Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8250053Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8250832Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8251651Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8252436Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8253269Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8254047Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8254789Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8255583Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:57:21.8256382Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:57:21.8257128Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:57:21.8257926Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:57:21.8258750Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:57:21.8259585Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:57:21.8260331Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:57:21.8260952Z 2025-03-14T04:57:21.8261351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8262190Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8262819Z 2025-03-14T04:57:21.8263186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8265051Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8266684Z 2025-03-14T04:57:21.8267060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:57:21.8267535Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:57:21.8267791Z 2025-03-14T04:57:21.8268228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:57:21.8268908Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:57:21.8269274Z 2025-03-14T04:57:21.8269610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8270342Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8270914Z 2025-03-14T04:57:21.8271261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8273169Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8274902Z 2025-03-14T04:57:21.8275295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8275806Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:57:21.8276098Z 2025-03-14T04:57:21.8276456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8277241Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8277861Z 2025-03-14T04:57:21.8278237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8280224Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8281964Z 2025-03-14T04:57:21.8282355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8282866Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:57:21.8283145Z 2025-03-14T04:57:21.8283501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8284296Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8284893Z 2025-03-14T04:57:21.8285260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8287253Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8289031Z 2025-03-14T04:57:21.8289387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8290179Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:21.8290780Z 2025-03-14T04:57:21.8291148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8293425Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8295352Z 2025-03-14T04:57:21.8295768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8296324Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:57:21.8296624Z 2025-03-14T04:57:21.8297036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8297600Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:57:21.8297902Z 2025-03-14T04:57:21.8298284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8299124Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8299742Z 2025-03-14T04:57:21.8300106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8302121Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8303877Z 2025-03-14T04:57:21.8304271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8304782Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:57:21.8305060Z 2025-03-14T04:57:21.8305411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8306207Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8306809Z 2025-03-14T04:57:21.8307175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8309182Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8310924Z 2025-03-14T04:57:21.8311323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8311841Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:57:21.8312119Z 2025-03-14T04:57:21.8312477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8313266Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8313819Z 2025-03-14T04:57:21.8314176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8316069Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8317819Z 2025-03-14T04:57:21.8318181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8318671Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:57:21.8318941Z 2025-03-14T04:57:21.8319303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8319790Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:57:21.8320057Z 2025-03-14T04:57:21.8320409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8321159Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8321711Z 2025-03-14T04:57:21.8322077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8323933Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8325713Z 2025-03-14T04:57:21.8326126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8326635Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:57:21.8326904Z 2025-03-14T04:57:21.8327260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8328099Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8328712Z 2025-03-14T04:57:21.8329099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8331188Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8333080Z 2025-03-14T04:57:21.8333499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8334017Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:57:21.8334296Z 2025-03-14T04:57:21.8334660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8335491Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8336109Z 2025-03-14T04:57:21.8336482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8338508Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8340304Z 2025-03-14T04:57:21.8340696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8341223Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:57:21.8341515Z 2025-03-14T04:57:21.8341869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8342357Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:57:21.8342623Z 2025-03-14T04:57:21.8342954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8343688Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8344294Z 2025-03-14T04:57:21.8344651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8346518Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8348141Z 2025-03-14T04:57:21.8348507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8348984Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:57:21.8349250Z 2025-03-14T04:57:21.8349590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8350337Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8350886Z 2025-03-14T04:57:21.8351239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8353046Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8354680Z 2025-03-14T04:57:21.8355046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8355539Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:57:21.8355794Z 2025-03-14T04:57:21.8356116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8356837Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8357371Z 2025-03-14T04:57:21.8357729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8359577Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8361387Z 2025-03-14T04:57:21.8361793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8362584Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:21.8363154Z 2025-03-14T04:57:21.8363562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8365564Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8367343Z 2025-03-14T04:57:21.8367719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8368220Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:57:21.8368493Z 2025-03-14T04:57:21.8368882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8369403Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:57:21.8369696Z 2025-03-14T04:57:21.8370063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8370882Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8371536Z 2025-03-14T04:57:21.8371928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8373931Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8375605Z 2025-03-14T04:57:21.8375991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8376496Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:57:21.8376770Z 2025-03-14T04:57:21.8377124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8377886Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8378448Z 2025-03-14T04:57:21.8378831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8380813Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8382547Z 2025-03-14T04:57:21.8382933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8383442Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:57:21.8383713Z 2025-03-14T04:57:21.8384061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8384840Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8385420Z 2025-03-14T04:57:21.8385782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8387669Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8389327Z 2025-03-14T04:57:21.8389687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8390172Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:57:21.8390444Z 2025-03-14T04:57:21.8390807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8391292Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:57:21.8391562Z 2025-03-14T04:57:21.8391910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8392641Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8393202Z 2025-03-14T04:57:21.8393564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8395438Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8397161Z 2025-03-14T04:57:21.8397549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8398051Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:57:21.8398318Z 2025-03-14T04:57:21.8398663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8399428Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8400001Z 2025-03-14T04:57:21.8400372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8402289Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8403943Z 2025-03-14T04:57:21.8404312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8404793Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:57:21.8405056Z 2025-03-14T04:57:21.8405388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8406144Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8406735Z 2025-03-14T04:57:21.8407111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8409102Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8410850Z 2025-03-14T04:57:21.8411234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8411812Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:57:21.8412114Z 2025-03-14T04:57:21.8412530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8413021Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:57:21.8413293Z 2025-03-14T04:57:21.8413624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8414356Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8414912Z 2025-03-14T04:57:21.8415263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8417191Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8418850Z 2025-03-14T04:57:21.8419214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8419690Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:57:21.8419952Z 2025-03-14T04:57:21.8420297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8421030Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8421598Z 2025-03-14T04:57:21.8421958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8423831Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8425496Z 2025-03-14T04:57:21.8425871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8426360Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:57:21.8426618Z 2025-03-14T04:57:21.8426957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8427714Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8428274Z 2025-03-14T04:57:21.8428634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8430504Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8432138Z 2025-03-14T04:57:21.8432500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8432981Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:57:21.8433256Z 2025-03-14T04:57:21.8433623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8434131Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:57:21.8434403Z 2025-03-14T04:57:21.8434737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8435541Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8436100Z 2025-03-14T04:57:21.8436470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8438385Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8440118Z 2025-03-14T04:57:21.8440501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8441001Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:57:21.8441304Z 2025-03-14T04:57:21.8441808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8442889Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8443814Z 2025-03-14T04:57:21.8444393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8447068Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8449379Z 2025-03-14T04:57:21.8449872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8450377Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:57:21.8450649Z 2025-03-14T04:57:21.8451107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8451968Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8452578Z 2025-03-14T04:57:21.8452975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8454859Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8456515Z 2025-03-14T04:57:21.8456855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8457616Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:21.8458183Z 2025-03-14T04:57:21.8458539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8460501Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8462382Z 2025-03-14T04:57:21.8462751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8463242Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:57:21.8463509Z 2025-03-14T04:57:21.8463885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8464381Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:57:21.8464648Z 2025-03-14T04:57:21.8464989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8465771Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8466350Z 2025-03-14T04:57:21.8466712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8468578Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8470219Z 2025-03-14T04:57:21.8470592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8471071Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:57:21.8471328Z 2025-03-14T04:57:21.8471657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8472389Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8472941Z 2025-03-14T04:57:21.8473298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8475214Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8476919Z 2025-03-14T04:57:21.8477299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8477793Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:57:21.8478061Z 2025-03-14T04:57:21.8478408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8479190Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8479768Z 2025-03-14T04:57:21.8480138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8482089Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8483746Z 2025-03-14T04:57:21.8484100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8484576Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:57:21.8484834Z 2025-03-14T04:57:21.8485192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8485693Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:57:21.8485964Z 2025-03-14T04:57:21.8486308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8487061Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8487677Z 2025-03-14T04:57:21.8488067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8490134Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8492027Z 2025-03-14T04:57:21.8492461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8492987Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:57:21.8493250Z 2025-03-14T04:57:21.8493583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8494333Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8494909Z 2025-03-14T04:57:21.8495246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8497207Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8498908Z 2025-03-14T04:57:21.8499276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8499739Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:57:21.8499988Z 2025-03-14T04:57:21.8500315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8501034Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8501567Z 2025-03-14T04:57:21.8501908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8503767Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8505392Z 2025-03-14T04:57:21.8505754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8506232Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:57:21.8506492Z 2025-03-14T04:57:21.8506855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8507329Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:57:21.8507587Z 2025-03-14T04:57:21.8507933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8508657Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8509208Z 2025-03-14T04:57:21.8509567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8511444Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8513078Z 2025-03-14T04:57:21.8513440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8513911Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:57:21.8514165Z 2025-03-14T04:57:21.8514493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8515224Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8515774Z 2025-03-14T04:57:21.8516122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8517947Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8519564Z 2025-03-14T04:57:21.8519931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8520398Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:57:21.8520650Z 2025-03-14T04:57:21.8520978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8521723Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8522278Z 2025-03-14T04:57:21.8522623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8524471Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8526082Z 2025-03-14T04:57:21.8526443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8526919Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:57:21.8527192Z 2025-03-14T04:57:21.8527552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8528026Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:57:21.8528280Z 2025-03-14T04:57:21.8528606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8529323Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8529872Z 2025-03-14T04:57:21.8530220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8532199Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8533875Z 2025-03-14T04:57:21.8534240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8534711Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:57:21.8534962Z 2025-03-14T04:57:21.8535315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8536038Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8536592Z 2025-03-14T04:57:21.8536959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8538746Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8540337Z 2025-03-14T04:57:21.8540683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8541143Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:57:21.8541376Z 2025-03-14T04:57:21.8541699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8542408Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8542967Z 2025-03-14T04:57:21.8543298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8545127Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8546758Z 2025-03-14T04:57:21.8547124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8547603Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:57:21.8547861Z 2025-03-14T04:57:21.8548224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8548726Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:57:21.8548987Z 2025-03-14T04:57:21.8549322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8550065Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8550596Z 2025-03-14T04:57:21.8550938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8552767Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8554383Z 2025-03-14T04:57:21.8554748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8555216Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:57:21.8555465Z 2025-03-14T04:57:21.8555792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8556513Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8557060Z 2025-03-14T04:57:21.8557403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8559230Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8561031Z 2025-03-14T04:57:21.8561422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8561917Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:57:21.8562170Z 2025-03-14T04:57:21.8562543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8563285Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8563852Z 2025-03-14T04:57:21.8564258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8566101Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8567729Z 2025-03-14T04:57:21.8568089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8568559Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:57:21.8568819Z 2025-03-14T04:57:21.8569187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8569677Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:57:21.8569950Z 2025-03-14T04:57:21.8570504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:21.8571207Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:57:21.8571604Z 2025-03-14T04:57:21.8572030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:21.8572570Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:57:21.8572850Z 2025-03-14T04:57:21.8573398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:21.8574069Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:57:21.8574350Z 2025-03-14T04:57:21.8574751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:21.8575262Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:57:21.8575530Z 2025-03-14T04:57:21.8576014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:21.8576669Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:57:21.8577016Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:57:21.8577299Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:57:21.8577563Z 2025-03-14T04:57:21.8578007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:21.8578567Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:57:21.8578818Z 2025-03-14T04:57:21.8579250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:21.8579779Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:57:21.8580030Z 2025-03-14T04:57:21.8580524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:21.8581209Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:57:21.8581566Z 2025-03-14T04:57:21.8582083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:21.8582681Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:57:21.8583294Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:57:21.8583901Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:57:21.8584195Z x_88: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:57:21.8584434Z 2025-03-14T04:57:21.8584818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:21.8585317Z tensor: "f32[82125, 4][4, 1]cpu" = x_88.to(torch.float32); x_88 = None 2025-03-14T04:57:21.8585560Z 2025-03-14T04:57:21.8585899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8586989Z x_89: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_51 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:57:21.8587873Z 2025-03-14T04:57:21.8588228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:21.8588741Z x_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_89, inplace = False); x_89 = None 2025-03-14T04:57:21.8589041Z 2025-03-14T04:57:21.8589502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:21.8590808Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:57:21.8591791Z 2025-03-14T04:57:21.8592246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:21.8593481Z x_91: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_90 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:57:21.8594410Z 2025-03-14T04:57:21.8594831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:57:21.8595385Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:57:21.8595720Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:57:21.8595971Z 2025-03-14T04:57:21.8596465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:57:21.8597071Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_91.view(4, -1, 4, 73, 75); x_91 = None 2025-03-14T04:57:21.8597446Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:57:21.8597836Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:57:21.8598124Z 2025-03-14T04:57:21.8598597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:21.8599268Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:57:21.8599576Z 2025-03-14T04:57:21.8600078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:21.8600723Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:57:21.8601061Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:57:21.8601391Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:57:21.8601642Z 2025-03-14T04:57:21.8602112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:21.8602707Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:57:21.8602986Z 2025-03-14T04:57:21.8603371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:21.8603889Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:57:21.8604146Z 2025-03-14T04:57:21.8604544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:21.8605052Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:21.8605359Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:21.8605692Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:57:21.8605957Z 2025-03-14T04:57:21.8606354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:21.8606846Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:21.8607149Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:21.8607471Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:57:21.8607737Z 2025-03-14T04:57:21.8608131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:21.8608615Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:21.8608877Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:57:21.8609130Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:57:21.8609365Z 2025-03-14T04:57:21.8609755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:21.8610277Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:21.8610581Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:57:21.8610862Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:57:21.8611122Z 2025-03-14T04:57:21.8611640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:21.8612215Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:21.8612560Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:57:21.8612806Z 2025-03-14T04:57:21.8613218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:21.8613747Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:21.8614085Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:57:21.8614331Z 2025-03-14T04:57:21.8614736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:21.8615267Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:21.8615609Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:57:21.8615854Z 2025-03-14T04:57:21.8616258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:21.8616818Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:21.8617196Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:57:21.8617444Z 2025-03-14T04:57:21.8617884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:21.8618452Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:21.8618726Z 2025-03-14T04:57:21.8619182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:21.8619729Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:21.8619994Z 2025-03-14T04:57:21.8620444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:21.8621006Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:21.8621343Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:57:21.8621696Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:21.8622064Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:57:21.8622338Z 2025-03-14T04:57:21.8622794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:21.8623358Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:21.8623691Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:57:21.8624032Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:21.8624392Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:57:21.8624658Z 2025-03-14T04:57:21.8625093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:21.8625623Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:21.8625953Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:21.8626301Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:57:21.8626551Z 2025-03-14T04:57:21.8626962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:21.8627458Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:21.8627793Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:21.8628144Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:57:21.8628394Z 2025-03-14T04:57:21.8628784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:21.8629238Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:21.8629497Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:21.8629728Z 2025-03-14T04:57:21.8630122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:21.8630592Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:21.8630853Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:21.8631085Z 2025-03-14T04:57:21.8631489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:21.8631960Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:21.8632270Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:21.8632515Z 2025-03-14T04:57:21.8632903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:21.8633376Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:21.8633667Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:21.8633910Z 2025-03-14T04:57:21.8634339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:21.8634932Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:21.8635243Z 2025-03-14T04:57:21.8635682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:21.8636262Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:57:21.8636556Z 2025-03-14T04:57:21.8637055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:21.8637706Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:57:21.8638012Z 2025-03-14T04:57:21.8638583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:57:21.8639270Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:57:21.8639521Z 2025-03-14T04:57:21.8639899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:21.8640388Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:57:21.8640656Z 2025-03-14T04:57:21.8641199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:21.8641833Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:57:21.8642116Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:57:21.8642401Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:57:21.8642625Z 2025-03-14T04:57:21.8643167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:21.8643842Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:57:21.8644307Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:57:21.8644656Z 2025-03-14T04:57:21.8645225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:21.8645948Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:21.8646263Z 2025-03-14T04:57:21.8646664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:21.8647191Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:57:21.8647467Z 2025-03-14T04:57:21.8647962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:57:21.8648577Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:57:21.8648862Z 2025-03-14T04:57:21.8649284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:21.8649833Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:57:21.8650116Z 2025-03-14T04:57:21.8650627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:57:21.8651258Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:57:21.8651622Z 2025-03-14T04:57:21.8652274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:57:21.8653011Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:57:21.8653337Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:21.8653709Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:57:21.8654069Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:57:21.8654334Z 2025-03-14T04:57:21.8654812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:57:21.8655374Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:57:21.8655622Z 2025-03-14T04:57:21.8656018Z 2025-03-14T04:57:21.8656110Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:21.8700048Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:57:21.8744244Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:57:21.8744772Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8745572Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8746387Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8747157Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8747949Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8748719Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8749542Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8750419Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8751249Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8752008Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8752713Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8753555Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8754305Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8755017Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8755704Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8756353Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8757046Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8757808Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8758532Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8759222Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8759893Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:21.8760775Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8761550Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8762305Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8763077Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8763781Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8764483Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8765229Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8765951Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8766651Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8767317Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8768006Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8768744Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8769463Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8770196Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8770865Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8771612Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8772439Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8773157Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8773847Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8774496Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8775180Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8775912Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8776642Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8777333Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8778002Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8778703Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8779444Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8780165Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8780855Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8781507Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8782185Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8782916Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8783628Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8784309Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8784997Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8785687Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8786423Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8787142Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8787830Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8788498Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8789190Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8789962Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8790684Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8791429Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8792107Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8792791Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8793526Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8794240Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8794929Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8795598Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:21.8796305Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8797068Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8797800Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8798520Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8799199Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8799881Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8800622Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8801319Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8801987Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8802633Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8803289Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8804024Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8804740Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8805456Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8806102Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8806783Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8807510Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8808220Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8808910Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8809558Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8810270Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8811045Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8811877Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8812721Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8813455Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8814228Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8814996Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8815733Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8816481Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8817174Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8817895Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8818640Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8819371Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8820072Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8820723Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8821399Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8822132Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8822847Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8823539Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8824189Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8824872Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8825601Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8826312Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8827024Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8827671Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8828348Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8829077Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8829795Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8830485Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8831140Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8831842Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8832583Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8833331Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8834027Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8834712Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8835452Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8836195Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8836907Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8837608Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8838303Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8839030Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8839803Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8840595Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8841318Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8842034Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:21.8842786Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8843593Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8844377Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8845138Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8845866Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8846575Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8847393Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8848161Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8848924Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8849655Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8850415Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8851214Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8852193Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8852946Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8853624Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8854307Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8855073Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8855787Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8856488Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8857150Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8857849Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8858589Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8859308Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8860021Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8860822Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8861550Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8862322Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8863050Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8863733Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8864386Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8865069Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8865802Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8866527Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8867197Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8867832Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8868499Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8869264Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8869981Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8870658Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8871309Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8872319Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8873159Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8873534Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8873919Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8874249Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8874677Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8875075Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8875445Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8875807Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8876129Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8876511Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8876863Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8877189Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8877508Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8877796Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8878164Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8878497Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8878821Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8879127Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8879418Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8879764Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8880107Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8880446Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8880759Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8881068Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.8881425Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8881768Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8882089Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8882406Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8882689Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.8883039Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8883380Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8883695Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8884009Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8884297Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.8884682Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.8885036Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.8885382Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.8885716Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.8886086Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:57:21.8886427Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:57:21.8886752Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:57:21.8887165Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:57:21.8887539Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:57:21.8887951Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:57:21.8888313Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:57:21.8888389Z 2025-03-14T04:57:21.8888688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8889208Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8889283Z 2025-03-14T04:57:21.8889579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8891153Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8891245Z 2025-03-14T04:57:21.8891633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:57:21.8891798Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:57:21.8891879Z 2025-03-14T04:57:21.8892289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:57:21.8892559Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:57:21.8892629Z 2025-03-14T04:57:21.8892893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8893341Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8893403Z 2025-03-14T04:57:21.8893676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8895259Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8895352Z 2025-03-14T04:57:21.8895646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8895785Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:57:21.8895854Z 2025-03-14T04:57:21.8896103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8896541Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8896603Z 2025-03-14T04:57:21.8896873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8898423Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8898510Z 2025-03-14T04:57:21.8898810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8898951Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:57:21.8899021Z 2025-03-14T04:57:21.8899275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8899726Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8899793Z 2025-03-14T04:57:21.8900069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8901659Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8901744Z 2025-03-14T04:57:21.8901997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8902441Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:21.8902508Z 2025-03-14T04:57:21.8902771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8904386Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8904457Z 2025-03-14T04:57:21.8904742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8904897Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:57:21.8904974Z 2025-03-14T04:57:21.8905267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8905416Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:57:21.8905482Z 2025-03-14T04:57:21.8905731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8906163Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8906226Z 2025-03-14T04:57:21.8906496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8908046Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8908130Z 2025-03-14T04:57:21.8908437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8908577Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:57:21.8908648Z 2025-03-14T04:57:21.8908904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8909345Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8909407Z 2025-03-14T04:57:21.8909686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8911261Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8911332Z 2025-03-14T04:57:21.8911638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8911786Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:57:21.8911853Z 2025-03-14T04:57:21.8912104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8912543Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8912603Z 2025-03-14T04:57:21.8912874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8914445Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8914524Z 2025-03-14T04:57:21.8914812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8914984Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:57:21.8915053Z 2025-03-14T04:57:21.8915335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8915485Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:57:21.8915545Z 2025-03-14T04:57:21.8915807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8916234Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8916307Z 2025-03-14T04:57:21.8916576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8918140Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8918229Z 2025-03-14T04:57:21.8918514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8918656Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:57:21.8918716Z 2025-03-14T04:57:21.8918980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8919405Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8919476Z 2025-03-14T04:57:21.8919742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8921276Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8921362Z 2025-03-14T04:57:21.8921654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8921796Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:57:21.8921853Z 2025-03-14T04:57:21.8922101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8922530Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8922601Z 2025-03-14T04:57:21.8922861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8924440Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8924508Z 2025-03-14T04:57:21.8924793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8924953Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:57:21.8925011Z 2025-03-14T04:57:21.8925288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8925438Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:57:21.8925503Z 2025-03-14T04:57:21.8925751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8926185Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8926246Z 2025-03-14T04:57:21.8926513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8928089Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8928170Z 2025-03-14T04:57:21.8928460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8928603Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:57:21.8928672Z 2025-03-14T04:57:21.8928921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8929361Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8929429Z 2025-03-14T04:57:21.8929694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8931273Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8931363Z 2025-03-14T04:57:21.8931767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8931934Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:57:21.8932010Z 2025-03-14T04:57:21.8932300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8932752Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8932823Z 2025-03-14T04:57:21.8933094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8934626Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8934707Z 2025-03-14T04:57:21.8934978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8935424Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:21.8935485Z 2025-03-14T04:57:21.8935752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8937327Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8937396Z 2025-03-14T04:57:21.8937669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8937821Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:57:21.8937892Z 2025-03-14T04:57:21.8938173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8938325Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:57:21.8938383Z 2025-03-14T04:57:21.8938628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8939038Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8939104Z 2025-03-14T04:57:21.8939358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8940908Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8940989Z 2025-03-14T04:57:21.8941277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8941421Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:57:21.8941480Z 2025-03-14T04:57:21.8941726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8942141Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8942207Z 2025-03-14T04:57:21.8942461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8943960Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8944027Z 2025-03-14T04:57:21.8944300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8944465Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:57:21.8944523Z 2025-03-14T04:57:21.8944770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8945186Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8945251Z 2025-03-14T04:57:21.8945506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8947018Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8947102Z 2025-03-14T04:57:21.8947376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8947549Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:57:21.8947611Z 2025-03-14T04:57:21.8947900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8948048Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:57:21.8948117Z 2025-03-14T04:57:21.8948365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8948792Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8948855Z 2025-03-14T04:57:21.8949122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8950676Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8950763Z 2025-03-14T04:57:21.8951053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8951192Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:57:21.8951257Z 2025-03-14T04:57:21.8951501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8951950Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8952012Z 2025-03-14T04:57:21.8952287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8953861Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8953941Z 2025-03-14T04:57:21.8954244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8954383Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:57:21.8954450Z 2025-03-14T04:57:21.8954696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8955136Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8955197Z 2025-03-14T04:57:21.8955465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8957008Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8957071Z 2025-03-14T04:57:21.8957379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8957528Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:57:21.8957596Z 2025-03-14T04:57:21.8957878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8958032Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:57:21.8958092Z 2025-03-14T04:57:21.8958348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8958773Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8958844Z 2025-03-14T04:57:21.8959108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8960854Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8960952Z 2025-03-14T04:57:21.8961238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8961384Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:57:21.8961445Z 2025-03-14T04:57:21.8961701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8962130Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8962203Z 2025-03-14T04:57:21.8962464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8964032Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8964127Z 2025-03-14T04:57:21.8964409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8964557Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:57:21.8964619Z 2025-03-14T04:57:21.8964877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8965312Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8965384Z 2025-03-14T04:57:21.8965652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8967222Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8967308Z 2025-03-14T04:57:21.8967611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8967773Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:57:21.8967834Z 2025-03-14T04:57:21.8968128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8968277Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:57:21.8968345Z 2025-03-14T04:57:21.8968596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8969028Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8969097Z 2025-03-14T04:57:21.8969362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8970912Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8970991Z 2025-03-14T04:57:21.8971283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8971461Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:57:21.8971539Z 2025-03-14T04:57:21.8971790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8972219Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8972288Z 2025-03-14T04:57:21.8972549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8974098Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8974177Z 2025-03-14T04:57:21.8974466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8974600Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:57:21.8974669Z 2025-03-14T04:57:21.8974918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8975351Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8975420Z 2025-03-14T04:57:21.8975684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8977243Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8977322Z 2025-03-14T04:57:21.8977616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8978059Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:21.8978119Z 2025-03-14T04:57:21.8978388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8979995Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8980065Z 2025-03-14T04:57:21.8980359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8980503Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:57:21.8980583Z 2025-03-14T04:57:21.8980861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8981006Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:57:21.8981064Z 2025-03-14T04:57:21.8981327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8981737Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8981805Z 2025-03-14T04:57:21.8982064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8983622Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8983708Z 2025-03-14T04:57:21.8983989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8984125Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:57:21.8984184Z 2025-03-14T04:57:21.8984440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8984859Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8984929Z 2025-03-14T04:57:21.8985191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8986752Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8986841Z 2025-03-14T04:57:21.8987134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8987272Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:57:21.8987333Z 2025-03-14T04:57:21.8987586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8988005Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8988073Z 2025-03-14T04:57:21.8988332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8989876Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8989944Z 2025-03-14T04:57:21.8990211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.8990381Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:57:21.8990441Z 2025-03-14T04:57:21.8990725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8990861Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:57:21.8990929Z 2025-03-14T04:57:21.8991170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8991574Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.8991635Z 2025-03-14T04:57:21.8991898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8993424Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8993534Z 2025-03-14T04:57:21.8993826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8993955Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:57:21.8994024Z 2025-03-14T04:57:21.8994273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8994701Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.8994760Z 2025-03-14T04:57:21.8995024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8996544Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8996627Z 2025-03-14T04:57:21.8996928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.8997054Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:57:21.8997118Z 2025-03-14T04:57:21.8997362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.8997782Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.8997843Z 2025-03-14T04:57:21.8998111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.8999678Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.8999765Z 2025-03-14T04:57:21.9000070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9000212Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:57:21.9000278Z 2025-03-14T04:57:21.9000551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9000696Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:57:21.9000756Z 2025-03-14T04:57:21.9001006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9001414Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9001482Z 2025-03-14T04:57:21.9001740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9003236Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9003321Z 2025-03-14T04:57:21.9003600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9003735Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:57:21.9003795Z 2025-03-14T04:57:21.9004050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9004477Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9004547Z 2025-03-14T04:57:21.9004808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9006378Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9006484Z 2025-03-14T04:57:21.9006764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9006898Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:57:21.9006958Z 2025-03-14T04:57:21.9007213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9007631Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9007701Z 2025-03-14T04:57:21.9007959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9009492Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9009576Z 2025-03-14T04:57:21.9009855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9010006Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:57:21.9010066Z 2025-03-14T04:57:21.9010358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9010505Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:57:21.9010575Z 2025-03-14T04:57:21.9010836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9011279Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9011343Z 2025-03-14T04:57:21.9011705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9013412Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9013494Z 2025-03-14T04:57:21.9013798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9013945Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:57:21.9014015Z 2025-03-14T04:57:21.9014260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9014687Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9014751Z 2025-03-14T04:57:21.9015018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9016566Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9016652Z 2025-03-14T04:57:21.9016959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9017103Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:57:21.9017171Z 2025-03-14T04:57:21.9017413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9017841Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9017911Z 2025-03-14T04:57:21.9018173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9019735Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9019825Z 2025-03-14T04:57:21.9020113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9020255Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:57:21.9020323Z 2025-03-14T04:57:21.9020600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9020748Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:57:21.9020810Z 2025-03-14T04:57:21.9021064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9021479Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9021548Z 2025-03-14T04:57:21.9021815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9023348Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9023437Z 2025-03-14T04:57:21.9023721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9023861Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:57:21.9023920Z 2025-03-14T04:57:21.9024176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9024626Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9024692Z 2025-03-14T04:57:21.9024980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9026532Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9026620Z 2025-03-14T04:57:21.9026906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9027043Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:57:21.9027111Z 2025-03-14T04:57:21.9027360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9027785Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9027848Z 2025-03-14T04:57:21.9028115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9029647Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9029734Z 2025-03-14T04:57:21.9030017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9030158Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:57:21.9030229Z 2025-03-14T04:57:21.9030507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9030652Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:57:21.9030713Z 2025-03-14T04:57:21.9031169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:21.9031317Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:57:21.9031384Z 2025-03-14T04:57:21.9031676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:21.9031816Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:57:21.9031895Z 2025-03-14T04:57:21.9032340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:21.9032504Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:57:21.9032573Z 2025-03-14T04:57:21.9032877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:21.9033022Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:57:21.9033081Z 2025-03-14T04:57:21.9033465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:21.9033646Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:57:21.9033748Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:57:21.9033865Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:57:21.9033934Z 2025-03-14T04:57:21.9034265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:21.9034394Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:57:21.9034454Z 2025-03-14T04:57:21.9034788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:21.9034904Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:57:21.9034972Z 2025-03-14T04:57:21.9035352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:21.9035573Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:57:21.9035651Z 2025-03-14T04:57:21.9036077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:21.9036196Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:57:21.9036628Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:57:21.9036751Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:57:21.9036858Z x_88: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:57:21.9036924Z 2025-03-14T04:57:21.9037213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:21.9037344Z tensor: "f32[82125, 4][4, 1]cpu" = x_88.to(torch.float32); x_88 = None 2025-03-14T04:57:21.9037403Z 2025-03-14T04:57:21.9037656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9038425Z x_89: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_51 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:57:21.9038505Z 2025-03-14T04:57:21.9038773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:21.9038973Z x_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_89, inplace = False); x_89 = None 2025-03-14T04:57:21.9039033Z 2025-03-14T04:57:21.9039411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:21.9040246Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:57:21.9040315Z 2025-03-14T04:57:21.9040672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:21.9041462Z x_91: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_90 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:57:21.9041528Z 2025-03-14T04:57:21.9041855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:57:21.9042061Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:57:21.9042197Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:57:21.9042264Z 2025-03-14T04:57:21.9042667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:57:21.9042825Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_91.view(4, -1, 4, 73, 75); x_91 = None 2025-03-14T04:57:21.9042988Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:57:21.9043162Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:57:21.9043223Z 2025-03-14T04:57:21.9043624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:21.9043821Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:57:21.9043886Z 2025-03-14T04:57:21.9044328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:21.9044469Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:57:21.9044618Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:57:21.9044767Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:57:21.9044836Z 2025-03-14T04:57:21.9045207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:21.9045383Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:57:21.9045443Z 2025-03-14T04:57:21.9045760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:21.9045900Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:57:21.9045967Z 2025-03-14T04:57:21.9046276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:21.9046409Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:21.9046533Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:21.9046682Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:57:21.9046743Z 2025-03-14T04:57:21.9047065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:21.9047183Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:21.9047306Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:21.9047447Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:57:21.9047514Z 2025-03-14T04:57:21.9047819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:21.9047961Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:21.9048044Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:57:21.9048170Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:57:21.9048231Z 2025-03-14T04:57:21.9048543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:21.9048685Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:21.9048777Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:57:21.9048896Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:57:21.9048964Z 2025-03-14T04:57:21.9049301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:21.9049464Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:21.9049579Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:57:21.9049651Z 2025-03-14T04:57:21.9049964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:21.9050144Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:21.9050257Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:57:21.9050328Z 2025-03-14T04:57:21.9050639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:21.9050830Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:21.9050951Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:57:21.9051018Z 2025-03-14T04:57:21.9051327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:21.9051608Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:21.9051740Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:57:21.9051808Z 2025-03-14T04:57:21.9052184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:21.9052339Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:21.9052417Z 2025-03-14T04:57:21.9052766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:21.9052906Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:21.9052966Z 2025-03-14T04:57:21.9053316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:21.9053462Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:21.9053585Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:57:21.9053735Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:21.9053897Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:57:21.9053958Z 2025-03-14T04:57:21.9054305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:21.9054439Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:21.9054563Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:57:21.9054711Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:21.9054849Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:57:21.9054912Z 2025-03-14T04:57:21.9055253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:21.9055370Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:21.9055539Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:21.9055665Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:57:21.9055732Z 2025-03-14T04:57:21.9056309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:21.9056433Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:21.9056597Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:21.9056753Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:57:21.9056816Z 2025-03-14T04:57:21.9057147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:21.9057242Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:21.9057369Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:21.9057430Z 2025-03-14T04:57:21.9057744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:21.9057834Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:21.9057953Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:21.9058015Z 2025-03-14T04:57:21.9058334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:21.9058444Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:21.9058571Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:21.9058630Z 2025-03-14T04:57:21.9058928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:21.9059033Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:21.9059161Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:21.9059222Z 2025-03-14T04:57:21.9059573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:21.9059773Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:21.9059849Z 2025-03-14T04:57:21.9060185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:21.9060340Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:57:21.9060407Z 2025-03-14T04:57:21.9060925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:21.9061102Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:57:21.9061163Z 2025-03-14T04:57:21.9061643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:57:21.9061772Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:57:21.9061840Z 2025-03-14T04:57:21.9062128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:21.9062268Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:57:21.9062327Z 2025-03-14T04:57:21.9062792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:21.9062932Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:57:21.9063037Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:57:21.9063177Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:57:21.9063245Z 2025-03-14T04:57:21.9063696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:21.9063858Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:57:21.9064087Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:57:21.9064158Z 2025-03-14T04:57:21.9064603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:21.9064773Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:21.9064831Z 2025-03-14T04:57:21.9065126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:21.9065268Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:57:21.9065335Z 2025-03-14T04:57:21.9065707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:57:21.9065849Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:57:21.9065907Z 2025-03-14T04:57:21.9066202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:21.9066362Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:57:21.9066429Z 2025-03-14T04:57:21.9066798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:57:21.9066937Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:57:21.9067004Z 2025-03-14T04:57:21.9067486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:57:21.9067627Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:57:21.9067745Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:21.9067903Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:57:21.9068040Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:57:21.9068106Z 2025-03-14T04:57:21.9068462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:57:21.9068596Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:57:21.9068656Z 2025-03-14T04:57:21.9068663Z 2025-03-14T04:57:21.9068758Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:21.9110806Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:57:21.9111200Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:57:21.9111549Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9111974Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9112368Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9112747Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9113113Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9113493Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9113905Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9114308Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9114723Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9115106Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9115436Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9115855Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9116281Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9116668Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9117044Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9117356Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9117778Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9118177Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9118564Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9118953Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9119345Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:21.9119795Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9120200Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9120619Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9121007Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9121369Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9121768Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9122167Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9122555Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9122921Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9123246Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9123674Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9124075Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9124462Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9124836Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9125158Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9125545Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9125924Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9126290Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9126646Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9126990Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9127371Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9127733Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9128097Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9128452Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9128777Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9129171Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9129546Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9129920Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9130279Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9130624Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9131015Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9131450Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9131881Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9132281Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9132651Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9133064Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9133464Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9133823Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9134186Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9134511Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9134897Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9135282Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9135630Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9135973Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9136280Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9136653Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9137026Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9137376Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9137710Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9138063Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:21.9138452Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9138840Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9139208Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9139559Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9139841Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9140168Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9140520Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9140831Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9141176Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9141460Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9141790Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9142120Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9142429Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9142738Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9143013Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9143353Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9143676Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9143996Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9144329Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9144604Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9144943Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9145265Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9145582Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9145883Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9146163Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9146507Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9146855Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9147181Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9147537Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9147823Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9148152Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9148486Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9148798Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9149109Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9149413Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9149793Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9150162Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9150531Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9150876Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9151189Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9151568Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9151931Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9152280Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9152582Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9152869Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9153215Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9153604Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9153978Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9154315Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9154628Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9155000Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9155353Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9155666Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9155974Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9156268Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9156641Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9157009Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9157373Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9157716Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9158021Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9158397Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9158762Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9159116Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9159451Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9159796Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:21.9160187Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9160747Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9161129Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9161480Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9161800Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9162169Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9162546Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9162881Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9163197Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9163499Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9163844Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9164229Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9164555Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9164881Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9165170Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9165527Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9165884Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9166218Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9166572Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9166875Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9167282Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9167675Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9168023Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9168361Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9168668Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9169046Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9169410Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9169755Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9170095Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9170420Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9170807Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9171219Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9171641Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9172021Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9172368Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9172757Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9173161Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9173530Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9173906Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9174237Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9174670Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9175057Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9175429Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9175790Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9176107Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9176506Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9176878Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9177243Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9177589Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9177914Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9178315Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9178698Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9179062Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9179408Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9179723Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9180090Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9180459Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9180825Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9181178Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9181501Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9181899Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9182286Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9182600Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9182914Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9183192Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:57:21.9183542Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9183873Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9184196Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9184501Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9184792Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:57:21.9185153Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9185490Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9185816Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9186128Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9186426Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:57:21.9186766Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:21.9187113Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:21.9187445Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:21.9187764Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:21.9188147Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:57:21.9188464Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:57:21.9188777Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:57:21.9189145Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:57:21.9189507Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:57:21.9189862Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:57:21.9190203Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:57:21.9190268Z 2025-03-14T04:57:21.9190558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9191028Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9191116Z 2025-03-14T04:57:21.9191396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9192847Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9192920Z 2025-03-14T04:57:21.9193199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:57:21.9193350Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:57:21.9193412Z 2025-03-14T04:57:21.9193788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:57:21.9194055Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:57:21.9194127Z 2025-03-14T04:57:21.9194424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9194899Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9194972Z 2025-03-14T04:57:21.9195243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9196828Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9196893Z 2025-03-14T04:57:21.9197196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9197335Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:57:21.9197402Z 2025-03-14T04:57:21.9197661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9198096Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9198180Z 2025-03-14T04:57:21.9198444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9199985Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9200049Z 2025-03-14T04:57:21.9200336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9200480Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:57:21.9200573Z 2025-03-14T04:57:21.9200827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9201260Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9201357Z 2025-03-14T04:57:21.9201619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9203165Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9203238Z 2025-03-14T04:57:21.9203489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9203931Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:21.9203996Z 2025-03-14T04:57:21.9204266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9205867Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9205953Z 2025-03-14T04:57:21.9206242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9206398Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:57:21.9206468Z 2025-03-14T04:57:21.9206767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9206928Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:57:21.9206991Z 2025-03-14T04:57:21.9207278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9207733Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9207824Z 2025-03-14T04:57:21.9208129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9209772Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9209845Z 2025-03-14T04:57:21.9210140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9210293Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:57:21.9210358Z 2025-03-14T04:57:21.9210626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9211102Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9211181Z 2025-03-14T04:57:21.9211581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9213308Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9213383Z 2025-03-14T04:57:21.9213687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9213835Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:57:21.9213897Z 2025-03-14T04:57:21.9214159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9214643Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9214734Z 2025-03-14T04:57:21.9215014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9216668Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9216741Z 2025-03-14T04:57:21.9217032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9217203Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:57:21.9217266Z 2025-03-14T04:57:21.9217569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9217718Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:57:21.9217786Z 2025-03-14T04:57:21.9218048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9218494Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9218581Z 2025-03-14T04:57:21.9218871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9220524Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9220597Z 2025-03-14T04:57:21.9220908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9221053Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:57:21.9221126Z 2025-03-14T04:57:21.9221425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9221882Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9221965Z 2025-03-14T04:57:21.9222272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9223909Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9223976Z 2025-03-14T04:57:21.9224288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9224442Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:57:21.9224510Z 2025-03-14T04:57:21.9224762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9225199Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9225262Z 2025-03-14T04:57:21.9225538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9227112Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9227175Z 2025-03-14T04:57:21.9227460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9227611Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:57:21.9227679Z 2025-03-14T04:57:21.9227959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9228136Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:57:21.9228196Z 2025-03-14T04:57:21.9228452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9228904Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9228973Z 2025-03-14T04:57:21.9229234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9230817Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9230886Z 2025-03-14T04:57:21.9231172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9231321Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:57:21.9231382Z 2025-03-14T04:57:21.9231639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9232070Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9232155Z 2025-03-14T04:57:21.9232419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9233967Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9234038Z 2025-03-14T04:57:21.9234318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9234465Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:57:21.9234525Z 2025-03-14T04:57:21.9234798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9235233Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9235317Z 2025-03-14T04:57:21.9235618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9237160Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9237232Z 2025-03-14T04:57:21.9237477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9237928Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:21.9237995Z 2025-03-14T04:57:21.9238254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9239862Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9239941Z 2025-03-14T04:57:21.9240226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9240374Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:57:21.9240447Z 2025-03-14T04:57:21.9240727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9240886Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:57:21.9240946Z 2025-03-14T04:57:21.9241215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9241643Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9241720Z 2025-03-14T04:57:21.9242008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9243559Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9243629Z 2025-03-14T04:57:21.9243915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9244061Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:57:21.9244128Z 2025-03-14T04:57:21.9244368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9244793Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9244854Z 2025-03-14T04:57:21.9245114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9246653Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9246719Z 2025-03-14T04:57:21.9247012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9247149Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:57:21.9247213Z 2025-03-14T04:57:21.9247459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9247917Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9247976Z 2025-03-14T04:57:21.9248276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9249917Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9249989Z 2025-03-14T04:57:21.9250286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9250444Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:57:21.9250515Z 2025-03-14T04:57:21.9250820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9250991Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:57:21.9251058Z 2025-03-14T04:57:21.9251346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9251878Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9251980Z 2025-03-14T04:57:21.9252284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9253906Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9253977Z 2025-03-14T04:57:21.9254258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9254408Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:57:21.9254470Z 2025-03-14T04:57:21.9254742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9255175Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9255297Z 2025-03-14T04:57:21.9255574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9257118Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9257189Z 2025-03-14T04:57:21.9257471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9257614Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:57:21.9257675Z 2025-03-14T04:57:21.9257925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9258349Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9258418Z 2025-03-14T04:57:21.9258678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9260231Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9260303Z 2025-03-14T04:57:21.9260742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9260922Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:57:21.9260985Z 2025-03-14T04:57:21.9261280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9261468Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:57:21.9261535Z 2025-03-14T04:57:21.9261783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9262253Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9262314Z 2025-03-14T04:57:21.9262584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9264123Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9264187Z 2025-03-14T04:57:21.9264478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9264616Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:57:21.9264685Z 2025-03-14T04:57:21.9264930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9265367Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9265453Z 2025-03-14T04:57:21.9265722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9267267Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9267329Z 2025-03-14T04:57:21.9267619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9267755Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:57:21.9267823Z 2025-03-14T04:57:21.9268084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9268520Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9268598Z 2025-03-14T04:57:21.9268890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9270436Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9270500Z 2025-03-14T04:57:21.9270781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9270929Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:57:21.9271000Z 2025-03-14T04:57:21.9271280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9271430Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:57:21.9271490Z 2025-03-14T04:57:21.9271747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9272180Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9272250Z 2025-03-14T04:57:21.9272509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9274034Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9274104Z 2025-03-14T04:57:21.9274382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9274539Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:57:21.9274601Z 2025-03-14T04:57:21.9274852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9275316Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9275389Z 2025-03-14T04:57:21.9275663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9277261Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9277336Z 2025-03-14T04:57:21.9277628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9277774Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:57:21.9277837Z 2025-03-14T04:57:21.9278102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9278556Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9278643Z 2025-03-14T04:57:21.9278928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9280545Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9280623Z 2025-03-14T04:57:21.9280881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9281360Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:21.9281435Z 2025-03-14T04:57:21.9281713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9283440Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9283508Z 2025-03-14T04:57:21.9283813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9283960Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:57:21.9284035Z 2025-03-14T04:57:21.9284334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9284490Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:57:21.9284554Z 2025-03-14T04:57:21.9284820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9285263Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9285352Z 2025-03-14T04:57:21.9285636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9287266Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9287346Z 2025-03-14T04:57:21.9287659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9287812Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:57:21.9287885Z 2025-03-14T04:57:21.9288164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9288661Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9288743Z 2025-03-14T04:57:21.9289051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9290815Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9290894Z 2025-03-14T04:57:21.9291215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9291357Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:57:21.9291477Z 2025-03-14T04:57:21.9291761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9292242Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9292308Z 2025-03-14T04:57:21.9292606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9294441Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9294526Z 2025-03-14T04:57:21.9294840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9295000Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:57:21.9295071Z 2025-03-14T04:57:21.9295374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9295533Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:57:21.9295597Z 2025-03-14T04:57:21.9295893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9296351Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9296453Z 2025-03-14T04:57:21.9296753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9298416Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9298496Z 2025-03-14T04:57:21.9298806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9298955Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:57:21.9299021Z 2025-03-14T04:57:21.9299302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9299750Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9299842Z 2025-03-14T04:57:21.9300129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9301814Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9301889Z 2025-03-14T04:57:21.9302194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9302339Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:57:21.9302404Z 2025-03-14T04:57:21.9302676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9303157Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9303242Z 2025-03-14T04:57:21.9303504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9305161Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9305236Z 2025-03-14T04:57:21.9305531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9305690Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:57:21.9305754Z 2025-03-14T04:57:21.9306057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9306205Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:57:21.9306274Z 2025-03-14T04:57:21.9306534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9306980Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9307058Z 2025-03-14T04:57:21.9307344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9308919Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9308982Z 2025-03-14T04:57:21.9309287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9309423Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:57:21.9309494Z 2025-03-14T04:57:21.9309769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9310220Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9310303Z 2025-03-14T04:57:21.9310602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9312242Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9312311Z 2025-03-14T04:57:21.9312613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9312750Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:57:21.9312820Z 2025-03-14T04:57:21.9313084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9313534Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9313614Z 2025-03-14T04:57:21.9313900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9315511Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9315581Z 2025-03-14T04:57:21.9315900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9316054Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:57:21.9316137Z 2025-03-14T04:57:21.9316430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9316598Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:57:21.9316661Z 2025-03-14T04:57:21.9316928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9317400Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9317473Z 2025-03-14T04:57:21.9317749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9319328Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9319400Z 2025-03-14T04:57:21.9319682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9319817Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:57:21.9319878Z 2025-03-14T04:57:21.9320131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9320556Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9320829Z 2025-03-14T04:57:21.9321108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9322760Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9322836Z 2025-03-14T04:57:21.9323134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9323281Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:57:21.9323344Z 2025-03-14T04:57:21.9323643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9324089Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9324182Z 2025-03-14T04:57:21.9324471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9326102Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9326179Z 2025-03-14T04:57:21.9326468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9326626Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:57:21.9326689Z 2025-03-14T04:57:21.9326994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9327139Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:57:21.9327211Z 2025-03-14T04:57:21.9327469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9327928Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:21.9328000Z 2025-03-14T04:57:21.9328275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9329925Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9329991Z 2025-03-14T04:57:21.9330298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9330454Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:57:21.9330527Z 2025-03-14T04:57:21.9330789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9331292Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:21.9331367Z 2025-03-14T04:57:21.9331720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9333385Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9333450Z 2025-03-14T04:57:21.9333755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9333890Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:57:21.9333962Z 2025-03-14T04:57:21.9334220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9334673Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:21.9334763Z 2025-03-14T04:57:21.9335043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:21.9336656Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:21.9336725Z 2025-03-14T04:57:21.9337026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:21.9337179Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:57:21.9337251Z 2025-03-14T04:57:21.9337564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:21.9337720Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:57:21.9337810Z 2025-03-14T04:57:21.9338289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:21.9338456Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:57:21.9338521Z 2025-03-14T04:57:21.9338839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:21.9338981Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:57:21.9339051Z 2025-03-14T04:57:21.9339511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:21.9339674Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:57:21.9339738Z 2025-03-14T04:57:21.9340050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:21.9340184Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:57:21.9340253Z 2025-03-14T04:57:21.9340628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:21.9340814Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:57:21.9340909Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:57:21.9341037Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:57:21.9341097Z 2025-03-14T04:57:21.9341451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:21.9341574Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:57:21.9341643Z 2025-03-14T04:57:21.9341984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:21.9342109Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:57:21.9342171Z 2025-03-14T04:57:21.9342555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:21.9342767Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:57:21.9342837Z 2025-03-14T04:57:21.9343249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:21.9343377Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:57:21.9343817Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:57:21.9343946Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:57:21.9344072Z x_88: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:57:21.9344141Z 2025-03-14T04:57:21.9344453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:21.9344584Z tensor: "f32[82125, 4][4, 1]cpu" = x_88.to(torch.float32); x_88 = None 2025-03-14T04:57:21.9344654Z 2025-03-14T04:57:21.9344902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:21.9345672Z x_89: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_51 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:57:21.9345734Z 2025-03-14T04:57:21.9346014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:21.9346197Z x_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_89, inplace = False); x_89 = None 2025-03-14T04:57:21.9346267Z 2025-03-14T04:57:21.9346644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:21.9347503Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:57:21.9347590Z 2025-03-14T04:57:21.9347958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:21.9348782Z x_91: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_90 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:57:21.9348846Z 2025-03-14T04:57:21.9349203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:57:21.9349360Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:57:21.9349509Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:57:21.9349573Z 2025-03-14T04:57:21.9350006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:57:21.9350180Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_91.view(4, -1, 4, 73, 75); x_91 = None 2025-03-14T04:57:21.9350365Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:57:21.9350560Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:57:21.9350635Z 2025-03-14T04:57:21.9351058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:21.9351273Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:57:21.9351338Z 2025-03-14T04:57:21.9351796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:21.9351944Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:57:21.9352097Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:57:21.9352245Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:57:21.9352309Z 2025-03-14T04:57:21.9352709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:21.9352880Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:57:21.9352948Z 2025-03-14T04:57:21.9353277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:21.9353427Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:57:21.9353490Z 2025-03-14T04:57:21.9353821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:21.9353972Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:21.9354107Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:21.9354251Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:57:21.9354319Z 2025-03-14T04:57:21.9354638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:21.9354770Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:21.9354889Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:21.9355041Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:57:21.9355104Z 2025-03-14T04:57:21.9355424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:21.9355547Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:21.9355655Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:57:21.9355774Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:57:21.9355842Z 2025-03-14T04:57:21.9356153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:21.9356317Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:21.9356405Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:57:21.9356554Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:57:21.9356616Z 2025-03-14T04:57:21.9356967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:21.9357121Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:21.9357242Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:57:21.9357301Z 2025-03-14T04:57:21.9357606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:21.9357760Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:21.9357877Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:57:21.9357939Z 2025-03-14T04:57:21.9358244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:21.9358395Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:21.9358514Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:57:21.9358574Z 2025-03-14T04:57:21.9358884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:21.9359072Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:21.9359179Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:57:21.9359247Z 2025-03-14T04:57:21.9359579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:21.9359722Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:21.9359799Z 2025-03-14T04:57:21.9360135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:21.9360267Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:21.9360334Z 2025-03-14T04:57:21.9360839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:21.9360989Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:21.9361110Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:57:21.9361269Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:21.9361405Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:57:21.9361477Z 2025-03-14T04:57:21.9361819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:21.9361962Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:21.9362147Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:57:21.9362305Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:21.9362437Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:57:21.9362527Z 2025-03-14T04:57:21.9362851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:21.9362996Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:21.9363164Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:21.9363294Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:57:21.9363354Z 2025-03-14T04:57:21.9363693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:21.9363805Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:21.9363976Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:21.9364112Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:57:21.9364184Z 2025-03-14T04:57:21.9364500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:21.9364603Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:21.9364718Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:21.9364786Z 2025-03-14T04:57:21.9365097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:21.9365195Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:21.9365306Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:21.9365376Z 2025-03-14T04:57:21.9365682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:21.9365825Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:21.9365948Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:21.9366018Z 2025-03-14T04:57:21.9366316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:21.9366433Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:21.9366553Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:21.9366624Z 2025-03-14T04:57:21.9366967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:21.9367153Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:21.9367214Z 2025-03-14T04:57:21.9367553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:21.9367721Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:57:21.9367782Z 2025-03-14T04:57:21.9368193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:21.9368367Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:57:21.9368453Z 2025-03-14T04:57:21.9368971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:57:21.9369118Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:57:21.9369183Z 2025-03-14T04:57:21.9369503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:21.9369651Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:57:21.9369727Z 2025-03-14T04:57:21.9370187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:21.9370318Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:57:21.9370433Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:57:21.9370564Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:57:21.9370631Z 2025-03-14T04:57:21.9371128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:21.9371305Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:57:21.9371615Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:57:21.9371685Z 2025-03-14T04:57:21.9372176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:21.9372370Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:21.9372442Z 2025-03-14T04:57:21.9372749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:21.9372912Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:57:21.9372977Z 2025-03-14T04:57:21.9373387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:57:21.9373537Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:57:21.9373611Z 2025-03-14T04:57:21.9373920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:21.9374080Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:57:21.9374143Z 2025-03-14T04:57:21.9374543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:57:21.9374683Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:57:21.9374771Z 2025-03-14T04:57:21.9375288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:57:21.9375448Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:57:21.9375597Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:21.9375757Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:57:21.9375900Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:57:21.9375965Z 2025-03-14T04:57:21.9376367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:57:21.9376489Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:57:21.9376563Z 2025-03-14T04:57:29.4015503Z 2025-03-14T04:57:29.4016379Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:29.4018123Z def forward(self, L_features_res4_: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:57:29.4019778Z l_features_res4_ = L_features_res4_ 2025-03-14T04:57:29.4020354Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:57:29.4021017Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:57:29.4021928Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:57:29.4022591Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:57:29.4023327Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:57:29.4024083Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:57:29.4024764Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:57:29.4025229Z 2025-03-14T04:57:29.4025887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:29.4026622Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:57:29.4026913Z 2025-03-14T04:57:29.4027339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:29.4027887Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:57:29.4028146Z 2025-03-14T04:57:29.4028810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:29.4029491Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:57:29.4029758Z 2025-03-14T04:57:29.4030187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:29.4030658Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:57:29.4030912Z 2025-03-14T04:57:29.4031370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:29.4031969Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:57:29.4032299Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:57:29.4032561Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:57:29.4032797Z 2025-03-14T04:57:29.4033210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:29.4033718Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:57:29.4033958Z 2025-03-14T04:57:29.4034362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:29.4034856Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:57:29.4035090Z 2025-03-14T04:57:29.4035628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:29.4036265Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:57:29.4036593Z 2025-03-14T04:57:29.4037092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:29.4037717Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:57:29.4038198Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:57:29.4038680Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:57:29.4038963Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:57:29.4039192Z 2025-03-14T04:57:29.4039573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:29.4040043Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:57:29.4040281Z 2025-03-14T04:57:29.4040621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:29.4041558Z x_1: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(l_features_res4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res4_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:57:29.4042282Z 2025-03-14T04:57:29.4042638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:29.4043206Z x_2: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:57:29.4043497Z 2025-03-14T04:57:29.4043965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:29.4045039Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:57:29.4045788Z 2025-03-14T04:57:29.4046231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:29.4047243Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:57:29.4047949Z 2025-03-14T04:57:29.4048369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:57:29.4048911Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:57:29.4049256Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:57:29.4049516Z 2025-03-14T04:57:29.4050011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:57:29.4050644Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T04:57:29.4051028Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:57:29.4051561Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:57:29.4051866Z 2025-03-14T04:57:29.4052385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:29.4053071Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:57:29.4053394Z 2025-03-14T04:57:29.4053913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:29.4054588Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:57:29.4054932Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:57:29.4055268Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:57:29.4055524Z 2025-03-14T04:57:29.4055999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:29.4056599Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:57:29.4056906Z 2025-03-14T04:57:29.4057315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:29.4057823Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:57:29.4058090Z 2025-03-14T04:57:29.4058494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:29.4058993Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:29.4059307Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:29.4059638Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:57:29.4059909Z 2025-03-14T04:57:29.4060313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:29.4061040Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:29.4061344Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:29.4061678Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:57:29.4061939Z 2025-03-14T04:57:29.4062324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:29.4062802Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:29.4063059Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:57:29.4063305Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:57:29.4063543Z 2025-03-14T04:57:29.4063934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:29.4064473Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:29.4064758Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:57:29.4065021Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:57:29.4065260Z 2025-03-14T04:57:29.4065676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:29.4066177Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:29.4066499Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:57:29.4066740Z 2025-03-14T04:57:29.4067111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:29.4067604Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:29.4067922Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:57:29.4068150Z 2025-03-14T04:57:29.4077899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:29.4078547Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:29.4078889Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:57:29.4079138Z 2025-03-14T04:57:29.4079547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:29.4080182Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:29.4080550Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:57:29.4080787Z 2025-03-14T04:57:29.4081216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:29.4081750Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:29.4082011Z 2025-03-14T04:57:29.4082433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:29.4082957Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:29.4083208Z 2025-03-14T04:57:29.4083640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:29.4084178Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:29.4084502Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:57:29.4084839Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:29.4085194Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:57:29.4085452Z 2025-03-14T04:57:29.4085886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:29.4086428Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:29.4086775Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:57:29.4087108Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:29.4087460Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:57:29.4087719Z 2025-03-14T04:57:29.4088138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:29.4088640Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:29.4088973Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:29.4089324Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:57:29.4089581Z 2025-03-14T04:57:29.4090014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:29.4090532Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:29.4090888Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:29.4091246Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:57:29.4091601Z 2025-03-14T04:57:29.4092060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:29.4092545Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:29.4092844Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:29.4093084Z 2025-03-14T04:57:29.4093491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:29.4093948Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:29.4094210Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:29.4094446Z 2025-03-14T04:57:29.4094829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:29.4095310Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:29.4095599Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:29.4095847Z 2025-03-14T04:57:29.4096237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:29.4096707Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:29.4097005Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:29.4097248Z 2025-03-14T04:57:29.4097666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:29.4098233Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:29.4098519Z 2025-03-14T04:57:29.4098922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:29.4099460Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:57:29.4099752Z 2025-03-14T04:57:29.4100212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:29.4100824Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:57:29.4101109Z 2025-03-14T04:57:29.4101679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:57:29.4102363Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:57:29.4102612Z 2025-03-14T04:57:29.4103003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:29.4103497Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:57:29.4103755Z 2025-03-14T04:57:29.4104275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:29.4104869Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:57:29.4105137Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:57:29.4105417Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:57:29.4105644Z 2025-03-14T04:57:29.4106185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:29.4106878Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:57:29.4107339Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:57:29.4107781Z 2025-03-14T04:57:29.4108331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:29.4109012Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:29.4109294Z 2025-03-14T04:57:29.4109670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:29.4110170Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:57:29.4110440Z 2025-03-14T04:57:29.4110903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:57:29.4111486Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:57:29.4111741Z 2025-03-14T04:57:29.4112120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:29.4112607Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:57:29.4112869Z 2025-03-14T04:57:29.4113333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:57:29.4113916Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:57:29.4114171Z 2025-03-14T04:57:29.4114736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:57:29.4115401Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:57:29.4115713Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:29.4116036Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:57:29.4116379Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:57:29.4116638Z 2025-03-14T04:57:29.4117096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:57:29.4117647Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:57:29.4117876Z 2025-03-14T04:57:29.4117967Z 2025-03-14T04:57:29.4118053Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:29.4119394Z def forward(self, L_features_res4_: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:57:29.4121764Z l_features_res4_ = L_features_res4_ 2025-03-14T04:57:29.4122167Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:57:29.4122682Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:57:29.4123150Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:57:29.4123673Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:57:29.4124243Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:57:29.4124802Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:57:29.4125333Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:57:29.4125685Z 2025-03-14T04:57:29.4126221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:29.4126862Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:57:29.4127126Z 2025-03-14T04:57:29.4127499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:29.4127982Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:57:29.4128247Z 2025-03-14T04:57:29.4128771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:29.4129409Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:57:29.4129669Z 2025-03-14T04:57:29.4130035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:29.4130503Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:57:29.4130755Z 2025-03-14T04:57:29.4131202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:29.4131902Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:57:29.4132246Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:57:29.4132525Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:57:29.4132775Z 2025-03-14T04:57:29.4133192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:29.4133726Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:57:29.4133970Z 2025-03-14T04:57:29.4134387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:29.4134907Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:57:29.4135147Z 2025-03-14T04:57:29.4135633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:29.4136275Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:57:29.4136600Z 2025-03-14T04:57:29.4137188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:29.4137774Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:57:29.4138253Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:57:29.4138721Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:57:29.4139004Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:57:29.4139229Z 2025-03-14T04:57:29.4139600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:29.4140055Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:57:29.4140286Z 2025-03-14T04:57:29.4140617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:29.4141505Z x_1: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(l_features_res4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res4_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:57:29.4142254Z 2025-03-14T04:57:29.4142606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:29.4143105Z x_2: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:57:29.4143399Z 2025-03-14T04:57:29.4143855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:29.4144923Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:57:29.4145663Z 2025-03-14T04:57:29.4146097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:29.4147229Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:57:29.4147947Z 2025-03-14T04:57:29.4148354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:57:29.4148904Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:57:29.4149233Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:57:29.4149486Z 2025-03-14T04:57:29.4149984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:57:29.4150595Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T04:57:29.4150971Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:57:29.4151366Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:57:29.4151657Z 2025-03-14T04:57:29.4152138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:29.4152780Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:57:29.4153091Z 2025-03-14T04:57:29.4153596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:29.4154221Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:57:29.4154565Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:57:29.4154901Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:57:29.4155179Z 2025-03-14T04:57:29.4155642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:29.4156243Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:57:29.4156538Z 2025-03-14T04:57:29.4156940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:29.4157454Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:57:29.4157721Z 2025-03-14T04:57:29.4158128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:29.4158631Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:29.4158947Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:29.4159277Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:57:29.4159548Z 2025-03-14T04:57:29.4159950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:29.4160464Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:29.4160972Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:29.4161299Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:57:29.4161621Z 2025-03-14T04:57:29.4162018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:29.4162531Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:29.4162801Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:57:29.4163064Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:57:29.4163306Z 2025-03-14T04:57:29.4163707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:29.4164213Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:29.4164502Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:57:29.4164772Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:57:29.4165015Z 2025-03-14T04:57:29.4165419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:29.4165911Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:29.4166232Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:57:29.4166459Z 2025-03-14T04:57:29.4166830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:29.4167319Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:29.4167633Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:57:29.4167858Z 2025-03-14T04:57:29.4168227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:29.4168749Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:29.4169075Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:57:29.4169299Z 2025-03-14T04:57:29.4169681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:29.4170219Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:29.4170566Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:57:29.4170796Z 2025-03-14T04:57:29.4171216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:29.4171804Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:29.4172067Z 2025-03-14T04:57:29.4172477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:29.4172989Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:29.4173240Z 2025-03-14T04:57:29.4173700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:29.4174240Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:29.4174577Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:57:29.4174909Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:29.4175279Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:57:29.4175537Z 2025-03-14T04:57:29.4175979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:29.4176537Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:29.4176864Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:57:29.4177203Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:29.4177559Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:57:29.4177817Z 2025-03-14T04:57:29.4178243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:29.4178753Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:29.4179082Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:29.4179432Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:57:29.4179684Z 2025-03-14T04:57:29.4180105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:29.4180611Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:29.4180948Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:29.4181315Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:57:29.4181579Z 2025-03-14T04:57:29.4181969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:29.4182425Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:29.4182681Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:29.4182912Z 2025-03-14T04:57:29.4183304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:29.4183751Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:29.4184005Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:29.4184236Z 2025-03-14T04:57:29.4184622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:29.4185093Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:29.4185382Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:29.4185617Z 2025-03-14T04:57:29.4185999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:29.4186478Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:29.4186762Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:29.4187004Z 2025-03-14T04:57:29.4187425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:29.4188052Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:29.4188338Z 2025-03-14T04:57:29.4188755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:29.4189297Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:57:29.4189569Z 2025-03-14T04:57:29.4190032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:29.4190636Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:57:29.4190925Z 2025-03-14T04:57:29.4191492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:57:29.4192165Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:57:29.4192418Z 2025-03-14T04:57:29.4192796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:29.4193285Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:57:29.4193542Z 2025-03-14T04:57:29.4194064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:29.4194668Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:57:29.4194958Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:57:29.4195229Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:57:29.4195460Z 2025-03-14T04:57:29.4196005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:29.4196681Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:57:29.4197129Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:57:29.4197470Z 2025-03-14T04:57:29.4198004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:29.4198675Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:29.4198952Z 2025-03-14T04:57:29.4199329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:29.4199821Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:57:29.4200085Z 2025-03-14T04:57:29.4200560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:57:29.4201159Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:57:29.4201422Z 2025-03-14T04:57:29.4201815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:29.4202315Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:57:29.4202576Z 2025-03-14T04:57:29.4203063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:57:29.4203628Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:57:29.4203887Z 2025-03-14T04:57:29.4204452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:57:29.4205123Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:57:29.4205431Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:29.4205753Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:57:29.4206086Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:57:29.4206332Z 2025-03-14T04:57:29.4206779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:57:29.4207315Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:57:29.4207544Z 2025-03-14T04:57:29.9618464Z 2025-03-14T04:57:29.9619103Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:29.9619780Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 82125, 4][328500, 4, 1]cpu", L_anchors_0_tensor: "f32[82125, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 82125][82125, 1]cpu"): 2025-03-14T04:57:29.9620877Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T04:57:29.9621185Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T04:57:29.9621532Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T04:57:29.9621851Z 2025-03-14T04:57:29.9622502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:29.9623257Z pred_anchor_deltas_i: "f32[328500, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T04:57:29.9623600Z 2025-03-14T04:57:29.9624156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:29.9625317Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T04:57:29.9625778Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:57:29.9626151Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:57:29.9626431Z 2025-03-14T04:57:29.9627053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:29.9627738Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T04:57:29.9628044Z 2025-03-14T04:57:29.9628531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:29.9629116Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:57:29.9629394Z 2025-03-14T04:57:29.9629826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:29.9630383Z getitem: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:29.9630711Z getitem_1: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:29.9631057Z widths: "f32[328500][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T04:57:29.9631331Z 2025-03-14T04:57:29.9631774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:29.9632346Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:29.9632664Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:29.9633029Z heights: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:57:29.9633309Z 2025-03-14T04:57:29.9633713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:29.9634212Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:29.9634489Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:57:29.9635354Z ctr_x: "f32[328500][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T04:57:29.9635622Z 2025-03-14T04:57:29.9636044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:29.9636577Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:29.9636914Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:57:29.9637191Z ctr_y: "f32[328500][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T04:57:29.9637431Z 2025-03-14T04:57:29.9637867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:29.9638384Z getitem_6: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:29.9638721Z dx: "f32[328500, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T04:57:29.9638957Z 2025-03-14T04:57:29.9639347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:29.9639896Z getitem_7: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:29.9640226Z dy: "f32[328500, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T04:57:29.9640462Z 2025-03-14T04:57:29.9640851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:29.9641887Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:29.9642223Z dw: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:57:29.9642496Z 2025-03-14T04:57:29.9642899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:29.9643473Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:29.9643837Z dh: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:57:29.9644078Z 2025-03-14T04:57:29.9644539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:29.9645079Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:29.9645335Z 2025-03-14T04:57:29.9645755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:29.9646281Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:29.9646535Z 2025-03-14T04:57:29.9646971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:29.9647525Z getitem_10: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:29.9647851Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T04:57:29.9648189Z getitem_11: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:29.9648545Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T04:57:29.9648807Z 2025-03-14T04:57:29.9649249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:29.9649795Z getitem_12: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:29.9650121Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T04:57:29.9650479Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:29.9650836Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T04:57:29.9651100Z 2025-03-14T04:57:29.9651732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:29.9652312Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:29.9652682Z getitem_14: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:29.9653066Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T04:57:29.9653347Z 2025-03-14T04:57:29.9653818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:29.9654335Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:29.9654674Z getitem_15: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:29.9655051Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T04:57:29.9655330Z 2025-03-14T04:57:29.9655767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:29.9656303Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:29.9656599Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:29.9656916Z 2025-03-14T04:57:29.9657349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:29.9657856Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:29.9658166Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:29.9658430Z 2025-03-14T04:57:29.9658863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:29.9659390Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:29.9659714Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:29.9659987Z 2025-03-14T04:57:29.9660454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:29.9661249Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:29.9661541Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:29.9661785Z 2025-03-14T04:57:29.9662202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:29.9662774Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:29.9663066Z 2025-03-14T04:57:29.9663477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:29.9664015Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:57:29.9664292Z 2025-03-14T04:57:29.9664751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:29.9665421Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:57:29.9665706Z 2025-03-14T04:57:29.9666274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:57:29.9666970Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:57:29.9667220Z 2025-03-14T04:57:29.9667609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:29.9668106Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:57:29.9668352Z 2025-03-14T04:57:29.9668870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:29.9669523Z topk = l_pred_objectness_logits_0_.topk(6000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T04:57:29.9669852Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:57:29.9670115Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:57:29.9670343Z 2025-03-14T04:57:29.9670926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:29.9671627Z getitem_18: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:57:29.9672101Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_18, topk_idx)]; proposals_i_1 = getitem_18 = topk_idx = None 2025-03-14T04:57:29.9672445Z 2025-03-14T04:57:29.9672981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:29.9673653Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:29.9673936Z 2025-03-14T04:57:29.9674316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:29.9674809Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:57:29.9675075Z 2025-03-14T04:57:29.9675538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:57:29.9676113Z getitem_20: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:57:29.9676375Z 2025-03-14T04:57:29.9676754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:29.9677246Z tensor: "f32[6000, 4][4, 1]cpu" = getitem_20.to(torch.float32); getitem_20 = None 2025-03-14T04:57:29.9677506Z 2025-03-14T04:57:29.9677961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:57:29.9678526Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:57:29.9678803Z 2025-03-14T04:57:29.9679369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:57:29.9680030Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T04:57:29.9680334Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:29.9680663Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:57:29.9681000Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:57:29.9681248Z 2025-03-14T04:57:29.9681690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:57:29.9682224Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:57:29.9682456Z 2025-03-14T04:57:43.3861588Z 2025-03-14T04:57:43.3862269Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:43.3864332Z def forward(self, L_stack0_: "f32[3231, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T04:57:43.3865864Z l_stack0_ = L_stack0_ 2025-03-14T04:57:43.3866318Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:57:43.3866888Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:57:43.3867445Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:57:43.3868006Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:57:43.3868489Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:57:43.3868895Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:57:43.3869294Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:57:43.3869692Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:57:43.3870006Z 2025-03-14T04:57:43.3870563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T04:57:43.3871199Z mean: "f32[3231, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T04:57:43.3871461Z 2025-03-14T04:57:43.3871855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:57:43.3872843Z scores: "f32[3231, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:57:43.3873605Z 2025-03-14T04:57:43.3874016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:57:43.3875030Z proposal_deltas: "f32[3231, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:57:43.3875782Z 2025-03-14T04:57:43.3876158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:43.3876630Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:43.3876882Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:57:43.3877116Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:57:43.3877389Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:43.3877650Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T04:57:43.3877893Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:57:43.3878100Z 2025-03-14T04:57:43.3878487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:43.3879449Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:57:43.3880187Z 2025-03-14T04:57:43.3880667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:43.3881237Z deltas: "f32[3231, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:57:43.3881513Z 2025-03-14T04:57:43.3881897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:43.3882413Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:57:43.3882678Z 2025-03-14T04:57:43.3883074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:43.3883570Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:43.3883873Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:43.3884188Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:57:43.3884450Z 2025-03-14T04:57:43.3884851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:43.3885343Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:43.3885633Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:43.3885947Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:57:43.3886211Z 2025-03-14T04:57:43.3886603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:43.3887107Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:43.3887358Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T04:57:43.3887612Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:57:43.3887846Z 2025-03-14T04:57:43.3888235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:43.3888732Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:43.3889010Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T04:57:43.3889269Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:57:43.3889507Z 2025-03-14T04:57:43.3890037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:43.3890551Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:43.3890875Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:57:43.3891108Z 2025-03-14T04:57:43.3891602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:43.3892173Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:43.3892516Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:57:43.3892784Z 2025-03-14T04:57:43.3893167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:43.3893687Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:43.3894014Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:57:43.3894248Z 2025-03-14T04:57:43.3894649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:43.3895195Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:43.3895547Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:57:43.3895789Z 2025-03-14T04:57:43.3896205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:43.3896734Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:43.3896983Z 2025-03-14T04:57:43.3897395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:43.3897912Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:43.3898157Z 2025-03-14T04:57:43.3898589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:43.3899126Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:43.3899439Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:57:43.3899762Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:43.3900123Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:57:43.3900373Z 2025-03-14T04:57:43.3900802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:43.3901337Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:43.3901650Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:57:43.3901974Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:43.3902311Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:57:43.3902563Z 2025-03-14T04:57:43.3902986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:43.3903486Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:43.3903808Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:43.3904147Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:57:43.3904390Z 2025-03-14T04:57:43.3904825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:43.3905321Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:43.3905662Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:43.3906002Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:57:43.3906254Z 2025-03-14T04:57:43.3906700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:43.3907175Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:43.3907440Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:43.3907679Z 2025-03-14T04:57:43.3908082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:43.3908548Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:43.3908812Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:43.3909051Z 2025-03-14T04:57:43.3909453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:43.3909937Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:43.3910231Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:43.3910481Z 2025-03-14T04:57:43.3910882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:43.3911365Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:43.3911661Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:43.3911901Z 2025-03-14T04:57:43.3912328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:43.3912931Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:43.3913223Z 2025-03-14T04:57:43.3913649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:43.3914219Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T04:57:43.3914508Z 2025-03-14T04:57:43.3914959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:57:43.3915598Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:57:43.3915971Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:57:43.3916261Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:57:43.3916571Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:57:43.3916889Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:57:43.3917159Z 2025-03-14T04:57:43.3917532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:43.3918104Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:57:43.3918452Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:57:43.3918689Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:57:43.3919067Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:57:43.3919412Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T04:57:43.3919668Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:57:43.3919884Z 2025-03-14T04:57:43.3920298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:57:43.3920847Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:57:43.3921127Z 2025-03-14T04:57:43.3921563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:57:43.3922153Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:57:43.3922511Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:57:43.3922796Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:57:43.3923091Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:57:43.3923398Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:57:43.3923654Z 2025-03-14T04:57:43.3924197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:57:43.3924885Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:57:43.3925220Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:43.3925553Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:57:43.3925885Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:57:43.3926194Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:57:43.3926429Z 2025-03-14T04:57:43.3926861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:57:43.3927368Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:57:43.3927599Z 2025-03-14T04:57:43.3927736Z 2025-03-14T04:57:43.3927823Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:43.3929203Z def forward(self, L_stack0_: "f32[3231, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T04:57:43.3930552Z l_stack0_ = L_stack0_ 2025-03-14T04:57:43.3930948Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:57:43.3931596Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:57:43.3932167Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:57:43.3932771Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:57:43.3933261Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:57:43.3933668Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:57:43.3934071Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:57:43.3934460Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:57:43.3934750Z 2025-03-14T04:57:43.3935293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T04:57:43.3935949Z mean: "f32[3231, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T04:57:43.3936219Z 2025-03-14T04:57:43.3936618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:57:43.3937624Z scores: "f32[3231, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:57:43.3938361Z 2025-03-14T04:57:43.3938778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:57:43.3939824Z proposal_deltas: "f32[3231, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:57:43.3940604Z 2025-03-14T04:57:43.3940990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:43.3941458Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:43.3941714Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:57:43.3941950Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:57:43.3942229Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:43.3942496Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T04:57:43.3942742Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:57:43.3942965Z 2025-03-14T04:57:43.3943341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:43.3944291Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:57:43.3945030Z 2025-03-14T04:57:43.3945478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:43.3946041Z deltas: "f32[3231, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:57:43.3946324Z 2025-03-14T04:57:43.3946717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:43.3947247Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:57:43.3947511Z 2025-03-14T04:57:43.3947894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:43.3948369Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:43.3948661Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:43.3948966Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:57:43.3949215Z 2025-03-14T04:57:43.3949603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:43.3950080Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:43.3950363Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:43.3950668Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:57:43.3950917Z 2025-03-14T04:57:43.3951299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:43.3951768Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:43.3952019Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T04:57:43.3952270Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:57:43.3952499Z 2025-03-14T04:57:43.3952880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:43.3953390Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:43.3953662Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T04:57:43.3953914Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:57:43.3954146Z 2025-03-14T04:57:43.3954529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:43.3955024Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:43.3955339Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:57:43.3955563Z 2025-03-14T04:57:43.3955939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:43.3956423Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:43.3956736Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:57:43.3956964Z 2025-03-14T04:57:43.3957343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:43.3957839Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:43.3958170Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:57:43.3958397Z 2025-03-14T04:57:43.3958781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:43.3959344Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:43.3959705Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:57:43.3959933Z 2025-03-14T04:57:43.3960356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:43.3961247Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:43.3961598Z 2025-03-14T04:57:43.3962023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:43.3962545Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:43.3962795Z 2025-03-14T04:57:43.3963212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:43.3963740Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:43.3964046Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:57:43.3964369Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:43.3964706Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:57:43.3964955Z 2025-03-14T04:57:43.3965381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:43.3965921Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:43.3966235Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:57:43.3966625Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:43.3966980Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:57:43.3967239Z 2025-03-14T04:57:43.3967678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:43.3968176Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:43.3968497Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:43.3968831Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:57:43.3969079Z 2025-03-14T04:57:43.3969494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:43.3969992Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:43.3970316Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:43.3970657Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:57:43.3970906Z 2025-03-14T04:57:43.3971327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:43.3971842Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:43.3972104Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:43.3972388Z 2025-03-14T04:57:43.3972794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:43.3973302Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:43.3973556Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:43.3973783Z 2025-03-14T04:57:43.3974169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:43.3974639Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:43.3974927Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:43.3975169Z 2025-03-14T04:57:43.3975555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:43.3976023Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:43.3976305Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:43.3976545Z 2025-03-14T04:57:43.3976972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:43.3977548Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:43.3977833Z 2025-03-14T04:57:43.3978257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:43.3978808Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T04:57:43.3979083Z 2025-03-14T04:57:43.3979530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:57:43.3980148Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:57:43.3980504Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:57:43.3980789Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:57:43.3981089Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:57:43.3981403Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:57:43.3981660Z 2025-03-14T04:57:43.3982038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:43.3982590Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:57:43.3982935Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:57:43.3983173Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:57:43.3983528Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:57:43.3983877Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T04:57:43.3984112Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:57:43.3984324Z 2025-03-14T04:57:43.3984751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:57:43.3985300Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:57:43.3985593Z 2025-03-14T04:57:43.3986029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:57:43.3986612Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:57:43.3986967Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:57:43.3987254Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:57:43.3987546Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:57:43.3987857Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:57:43.3988110Z 2025-03-14T04:57:43.3988656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:57:43.3989324Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:57:43.3989652Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:43.3989982Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:57:43.3990308Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:57:43.3990585Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:57:43.3990814Z 2025-03-14T04:57:43.3991232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:57:43.3991729Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:57:43.3991955Z 2025-03-14T04:57:43.3992102Z 2025-03-14T04:57:43.3992187Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:43.3993540Z def forward(self, L_stack0_: "f32[3231, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T04:57:43.3994876Z l_stack0_ = L_stack0_ 2025-03-14T04:57:43.3995256Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:57:43.3995816Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:57:43.3996367Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:57:43.3996913Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:57:43.3997398Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:57:43.3997791Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:57:43.3998175Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:57:43.3998577Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:57:43.3998863Z 2025-03-14T04:57:43.3999394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T04:57:43.4000024Z mean: "f32[3231, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T04:57:43.4000279Z 2025-03-14T04:57:43.4000669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:57:43.4001633Z scores: "f32[3231, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:57:43.4002350Z 2025-03-14T04:57:43.4002754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:57:43.4003751Z proposal_deltas: "f32[3231, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:57:43.4004486Z 2025-03-14T04:57:43.4004856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:43.4005316Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:43.4005567Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:57:43.4005812Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:57:43.4006081Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:43.4006333Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T04:57:43.4006581Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:57:43.4006812Z 2025-03-14T04:57:43.4007195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:43.4008172Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:57:43.4008970Z 2025-03-14T04:57:43.4009477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:43.4010111Z deltas: "f32[3231, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:57:43.4010407Z 2025-03-14T04:57:43.4010835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:43.4011529Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:57:43.4011839Z 2025-03-14T04:57:43.4012280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:43.4012850Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:43.4013168Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:43.4013514Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:57:43.4013790Z 2025-03-14T04:57:43.4014219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:43.4014740Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:43.4015046Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:43.4015378Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:57:43.4015652Z 2025-03-14T04:57:43.4016065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:43.4016576Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:43.4016844Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T04:57:43.4017110Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:57:43.4017360Z 2025-03-14T04:57:43.4017782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:43.4018313Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:43.4018610Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T04:57:43.4018882Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:57:43.4019137Z 2025-03-14T04:57:43.4019562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:43.4020121Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:43.4020459Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:57:43.4020706Z 2025-03-14T04:57:43.4021109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:43.4021634Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:43.4021964Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:57:43.4022185Z 2025-03-14T04:57:43.4022563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:43.4023059Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:43.4023376Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:57:43.4023606Z 2025-03-14T04:57:43.4023986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:43.4024513Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:43.4024854Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:57:43.4025080Z 2025-03-14T04:57:43.4025513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:43.4026055Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:43.4026303Z 2025-03-14T04:57:43.4026735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:43.4027248Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:43.4027492Z 2025-03-14T04:57:43.4027913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:43.4028445Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:43.4028753Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:57:43.4029071Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:43.4029413Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:57:43.4029663Z 2025-03-14T04:57:43.4030095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:43.4030627Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:43.4030932Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:57:43.4031249Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:43.4031585Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:57:43.4031833Z 2025-03-14T04:57:43.4032244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:43.4032756Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:43.4033075Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:43.4033417Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:57:43.4033654Z 2025-03-14T04:57:43.4034051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:43.4034536Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:43.4034859Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:43.4035202Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:57:43.4035456Z 2025-03-14T04:57:43.4035847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:43.4036306Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:43.4036563Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:43.4036792Z 2025-03-14T04:57:43.4037183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:43.4037635Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:43.4037906Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:43.4038139Z 2025-03-14T04:57:43.4038530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:43.4039019Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:43.4039327Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:43.4039569Z 2025-03-14T04:57:43.4039952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:43.4040420Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:43.4040703Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:43.4040944Z 2025-03-14T04:57:43.4041374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:43.4041973Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:43.4042276Z 2025-03-14T04:57:43.4042716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:43.4043298Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T04:57:43.4043593Z 2025-03-14T04:57:43.4044060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:57:43.4044675Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:57:43.4045034Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:57:43.4045313Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:57:43.4045613Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:57:43.4045949Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:57:43.4046203Z 2025-03-14T04:57:43.4046576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:43.4047116Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:57:43.4047459Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:57:43.4047696Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:57:43.4048051Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:57:43.4048395Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T04:57:43.4048639Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:57:43.4048855Z 2025-03-14T04:57:43.4049267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:57:43.4049816Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:57:43.4050096Z 2025-03-14T04:57:43.4050529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:57:43.4051145Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:57:43.4051621Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:57:43.4051972Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:57:43.4052310Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:57:43.4052690Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:57:43.4052986Z 2025-03-14T04:57:43.4053550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:57:43.4054239Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:57:43.4054576Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:43.4054912Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:57:43.4055248Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:57:43.4055539Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:57:43.4055772Z 2025-03-14T04:57:43.4056209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:57:43.4056721Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:57:43.4056946Z 2025-03-14T04:57:43.4057079Z 2025-03-14T04:57:43.4057165Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:43.4058529Z def forward(self, L_stack0_: "f32[3231, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T04:57:43.4059901Z l_stack0_ = L_stack0_ 2025-03-14T04:57:43.4060291Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:57:43.4061256Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:57:43.4061840Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:57:43.4062404Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:57:43.4062893Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:57:43.4063298Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:57:43.4063698Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:57:43.4064092Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:57:43.4064382Z 2025-03-14T04:57:43.4064977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T04:57:43.4065623Z mean: "f32[3231, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T04:57:43.4065915Z 2025-03-14T04:57:43.4066309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:57:43.4067339Z scores: "f32[3231, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:57:43.4068071Z 2025-03-14T04:57:43.4068488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:57:43.4069491Z proposal_deltas: "f32[3231, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:57:43.4070224Z 2025-03-14T04:57:43.4070596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:43.4071049Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:43.4071296Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:57:43.4071523Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:57:43.4071791Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:43.4072050Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T04:57:43.4072291Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:57:43.4072501Z 2025-03-14T04:57:43.4072855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:43.4073893Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:57:43.4074593Z 2025-03-14T04:57:43.4075028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:43.4075590Z deltas: "f32[3231, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:57:43.4075844Z 2025-03-14T04:57:43.4076233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:43.4076734Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:57:43.4077002Z 2025-03-14T04:57:43.4077386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:43.4077862Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:43.4078149Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:43.4078458Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:57:43.4078725Z 2025-03-14T04:57:43.4079119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:43.4079610Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:43.4079890Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:43.4080209Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:57:43.4080461Z 2025-03-14T04:57:43.4080848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:43.4081316Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:43.4081565Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T04:57:43.4081815Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:57:43.4082040Z 2025-03-14T04:57:43.4082422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:43.4082912Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:43.4083186Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T04:57:43.4083437Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:57:43.4083666Z 2025-03-14T04:57:43.4084051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:43.4084545Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:43.4084858Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:57:43.4085083Z 2025-03-14T04:57:43.4085454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:43.4085936Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:43.4086264Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:57:43.4086495Z 2025-03-14T04:57:43.4086866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:43.4087352Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:43.4087662Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:57:43.4087893Z 2025-03-14T04:57:43.4088269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:43.4088787Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:43.4089128Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:57:43.4089359Z 2025-03-14T04:57:43.4089776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:43.4090297Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:43.4090552Z 2025-03-14T04:57:43.4090964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:43.4091586Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:43.4091853Z 2025-03-14T04:57:43.4092304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:43.4092886Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:43.4093235Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:57:43.4093579Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:43.4093946Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:57:43.4094199Z 2025-03-14T04:57:43.4094627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:43.4095156Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:43.4095463Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:57:43.4095786Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:43.4096127Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:57:43.4096375Z 2025-03-14T04:57:43.4096789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:43.4097284Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:43.4097602Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:43.4097940Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:57:43.4098188Z 2025-03-14T04:57:43.4098603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:43.4099121Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:43.4099447Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:43.4099793Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:57:43.4100046Z 2025-03-14T04:57:43.4100438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:43.4100897Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:43.4101152Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:43.4101382Z 2025-03-14T04:57:43.4101776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:43.4102239Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:43.4102494Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:43.4102719Z 2025-03-14T04:57:43.4103116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:43.4103572Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:43.4103848Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:43.4104089Z 2025-03-14T04:57:43.4104487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:43.4104958Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:43.4105256Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:43.4105502Z 2025-03-14T04:57:43.4105957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:43.4106530Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:43.4106813Z 2025-03-14T04:57:43.4107223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:43.4107775Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T04:57:43.4108048Z 2025-03-14T04:57:43.4108488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:57:43.4109100Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:57:43.4109457Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:57:43.4109741Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:57:43.4110037Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:57:43.4110349Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:57:43.4110606Z 2025-03-14T04:57:43.4110979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:43.4111518Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:57:43.4111864Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:57:43.4112118Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:57:43.4112477Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:57:43.4112822Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T04:57:43.4113062Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:57:43.4113278Z 2025-03-14T04:57:43.4113689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:57:43.4114242Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:57:43.4114515Z 2025-03-14T04:57:43.4114936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:57:43.4115521Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:57:43.4115870Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:57:43.4116155Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:57:43.4116451Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:57:43.4116760Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:57:43.4117009Z 2025-03-14T04:57:43.4117573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:57:43.4118272Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:57:43.4118603Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:43.4118952Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:57:43.4119291Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:57:43.4119580Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:57:43.4119814Z 2025-03-14T04:57:43.4120250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:57:43.4120761Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:57:43.4120990Z 2025-03-14T04:57:44.9334320Z 2025-03-14T04:57:44.9337180Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:44.9338322Z def forward(self, L_predictions_0_: "f32[3231, 81][81, 1]cpu", L_predictions_1_: "f32[3231, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T04:57:44.9339357Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:57:44.9339610Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:57:44.9340011Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:57:44.9340511Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:57:44.9340976Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:57:44.9341393Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:57:44.9341994Z 2025-03-14T04:57:44.9342431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:44.9342931Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:44.9343292Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:57:44.9343642Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:57:44.9343998Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:44.9344267Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T04:57:44.9344517Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:57:44.9344737Z 2025-03-14T04:57:44.9345122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:44.9346107Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:57:44.9346864Z 2025-03-14T04:57:44.9347342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:44.9348026Z deltas: "f32[3231, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:57:44.9348309Z 2025-03-14T04:57:44.9348738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:44.9349335Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:57:44.9349616Z 2025-03-14T04:57:44.9350062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:44.9350579Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:44.9350888Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:44.9351245Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:57:44.9351511Z 2025-03-14T04:57:44.9351931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:44.9352444Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:44.9352746Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:44.9353068Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:57:44.9353342Z 2025-03-14T04:57:44.9353747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:44.9354248Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:44.9354512Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T04:57:44.9354777Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:57:44.9355027Z 2025-03-14T04:57:44.9355439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:44.9355933Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:44.9356213Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T04:57:44.9356495Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:57:44.9356732Z 2025-03-14T04:57:44.9357151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:44.9357656Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:44.9357975Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:57:44.9358202Z 2025-03-14T04:57:44.9358587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:44.9359083Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:44.9359399Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:57:44.9359633Z 2025-03-14T04:57:44.9360013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:44.9360504Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:44.9361032Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:57:44.9361261Z 2025-03-14T04:57:44.9361685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:44.9362217Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:44.9362595Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:57:44.9362834Z 2025-03-14T04:57:44.9363286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:44.9363812Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:44.9364060Z 2025-03-14T04:57:44.9364458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:44.9364958Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:44.9365201Z 2025-03-14T04:57:44.9365626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:44.9366157Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:44.9366466Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:57:44.9366791Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:44.9367131Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:57:44.9367374Z 2025-03-14T04:57:44.9367796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:44.9368325Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:44.9368633Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:57:44.9368954Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:44.9369292Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:57:44.9369568Z 2025-03-14T04:57:44.9369992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:44.9370491Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:44.9370813Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:44.9371149Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:57:44.9371553Z 2025-03-14T04:57:44.9372014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:44.9372546Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:44.9372898Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:44.9373264Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:57:44.9373516Z 2025-03-14T04:57:44.9373921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:44.9374379Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:44.9374656Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:44.9374887Z 2025-03-14T04:57:44.9375276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:44.9375741Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:44.9375992Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:44.9376223Z 2025-03-14T04:57:44.9376624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:44.9377095Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:44.9377382Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:44.9377623Z 2025-03-14T04:57:44.9378007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:44.9378471Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:44.9378752Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:44.9378995Z 2025-03-14T04:57:44.9379511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:44.9380332Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:44.9380621Z 2025-03-14T04:57:44.9381039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:44.9381595Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T04:57:44.9381880Z 2025-03-14T04:57:44.9382339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:57:44.9382970Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:57:44.9383432Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:57:44.9383885Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:57:44.9384189Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:57:44.9384497Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:57:44.9384756Z 2025-03-14T04:57:44.9385135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:44.9385698Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:57:44.9386046Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:57:44.9386290Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:57:44.9386666Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:57:44.9387027Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T04:57:44.9387277Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:57:44.9387496Z 2025-03-14T04:57:44.9387923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:57:44.9388560Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:57:44.9388876Z 2025-03-14T04:57:44.9389320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:57:44.9389953Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:57:44.9390381Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:57:44.9390678Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:57:44.9390980Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:57:44.9391296Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:57:44.9391555Z 2025-03-14T04:57:44.9392170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:57:44.9392878Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:57:44.9393222Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:44.9393572Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:57:44.9393910Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:57:44.9394214Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:57:44.9394456Z 2025-03-14T04:57:44.9394905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:57:44.9395431Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:57:44.9395673Z 2025-03-14T04:57:44.9395767Z 2025-03-14T04:57:44.9395856Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:44.9396702Z def forward(self, L_predictions_0_: "f32[3231, 81][81, 1]cpu", L_predictions_1_: "f32[3231, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T04:57:44.9397529Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:57:44.9397760Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:57:44.9398077Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:57:44.9398486Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:57:44.9398885Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:57:44.9399282Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:57:44.9399573Z 2025-03-14T04:57:44.9399961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:44.9400432Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:44.9400684Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:57:44.9400919Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:57:44.9401197Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:44.9401461Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T04:57:44.9401726Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:57:44.9401950Z 2025-03-14T04:57:44.9402327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:44.9403327Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:57:44.9404071Z 2025-03-14T04:57:44.9404533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:44.9405113Z deltas: "f32[3231, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:57:44.9405387Z 2025-03-14T04:57:44.9405794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:44.9406335Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:57:44.9406613Z 2025-03-14T04:57:44.9407027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:44.9407574Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:44.9407877Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:44.9408193Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:57:44.9408455Z 2025-03-14T04:57:44.9408864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:44.9409363Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:44.9409658Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:44.9409976Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:57:44.9410260Z 2025-03-14T04:57:44.9410665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:44.9411161Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:44.9411499Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T04:57:44.9411777Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:57:44.9412023Z 2025-03-14T04:57:44.9412435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:44.9412973Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:44.9414382Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T04:57:44.9414688Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:57:44.9414940Z 2025-03-14T04:57:44.9415364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:44.9415886Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:44.9416222Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:57:44.9416459Z 2025-03-14T04:57:44.9416888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:44.9417534Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:44.9418444Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:57:44.9418687Z 2025-03-14T04:57:44.9419124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:44.9419629Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:44.9419943Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:57:44.9420169Z 2025-03-14T04:57:44.9420560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:44.9421357Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:44.9421725Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:57:44.9421961Z 2025-03-14T04:57:44.9422384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:44.9422924Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:44.9423184Z 2025-03-14T04:57:44.9423601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:44.9424117Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:44.9424365Z 2025-03-14T04:57:44.9424788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:44.9425323Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:44.9425632Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:57:44.9425987Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:44.9426325Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:57:44.9426579Z 2025-03-14T04:57:44.9427004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:44.9427537Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:44.9427846Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:57:44.9428167Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:44.9428513Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:57:44.9428762Z 2025-03-14T04:57:44.9429165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:44.9429655Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:44.9429965Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:44.9430290Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:57:44.9430553Z 2025-03-14T04:57:44.9430962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:44.9431463Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:44.9431785Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:44.9432152Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:57:44.9432395Z 2025-03-14T04:57:44.9432783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:44.9433226Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:44.9433468Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:44.9433691Z 2025-03-14T04:57:44.9434070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:44.9434505Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:44.9434750Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:44.9434978Z 2025-03-14T04:57:44.9435352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:44.9435803Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:44.9436077Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:44.9436312Z 2025-03-14T04:57:44.9436694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:44.9437161Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:44.9437435Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:44.9437671Z 2025-03-14T04:57:44.9438082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:44.9438654Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:44.9438933Z 2025-03-14T04:57:44.9439338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:44.9440135Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T04:57:44.9440479Z 2025-03-14T04:57:44.9440920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:57:44.9441519Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:57:44.9441874Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:57:44.9442153Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:57:44.9442444Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:57:44.9442751Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:57:44.9443002Z 2025-03-14T04:57:44.9444354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:44.9444916Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:57:44.9446839Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:57:44.9447199Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:57:44.9448371Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:57:44.9449005Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T04:57:44.9449268Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:57:44.9449653Z 2025-03-14T04:57:44.9450130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:57:44.9450959Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:57:44.9451505Z 2025-03-14T04:57:44.9452021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:57:44.9452856Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:57:44.9453439Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:57:44.9453778Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:57:44.9454194Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:57:44.9454558Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:57:44.9454819Z 2025-03-14T04:57:44.9455528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:57:44.9456419Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:57:44.9456889Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:44.9457422Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:57:44.9457927Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:57:44.9458249Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:57:44.9458489Z 2025-03-14T04:57:44.9459086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:57:44.9459788Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:57:44.9460049Z 2025-03-14T04:57:44.9460189Z 2025-03-14T04:57:44.9460286Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:44.9461556Z def forward(self, L_predictions_0_: "f32[3231, 81][81, 1]cpu", L_predictions_1_: "f32[3231, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T04:57:44.9468705Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:57:44.9468993Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:57:44.9470719Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:57:44.9471326Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:57:44.9471718Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:57:44.9472094Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:57:44.9472431Z 2025-03-14T04:57:44.9472886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:44.9473387Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:44.9473630Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:57:44.9473856Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:57:44.9474130Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:57:44.9474382Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T04:57:44.9474623Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:57:44.9474848Z 2025-03-14T04:57:44.9475215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:44.9476132Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:57:44.9476851Z 2025-03-14T04:57:44.9477302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:44.9477861Z deltas: "f32[3231, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:57:44.9478129Z 2025-03-14T04:57:44.9478524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:44.9479048Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:57:44.9479333Z 2025-03-14T04:57:44.9479734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:44.9480283Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:44.9480586Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:44.9480897Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:57:44.9481150Z 2025-03-14T04:57:44.9481545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:44.9482035Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:44.9482409Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:44.9482728Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:57:44.9482988Z 2025-03-14T04:57:44.9483381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:44.9483862Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:44.9484120Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T04:57:44.9484372Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:57:44.9484602Z 2025-03-14T04:57:44.9485021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:44.9485532Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:44.9485834Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T04:57:44.9486096Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:57:44.9486334Z 2025-03-14T04:57:44.9486760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:44.9487271Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:44.9487596Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:57:44.9487826Z 2025-03-14T04:57:44.9488212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:44.9488717Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:44.9489037Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:57:44.9489264Z 2025-03-14T04:57:44.9489642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:44.9490141Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:44.9490454Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:57:44.9490685Z 2025-03-14T04:57:44.9491070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:44.9491696Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:44.9492083Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:57:44.9492342Z 2025-03-14T04:57:44.9492815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:44.9493415Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:44.9493676Z 2025-03-14T04:57:44.9494121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:44.9494658Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:44.9494907Z 2025-03-14T04:57:44.9495331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:44.9495862Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:44.9496179Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:57:44.9496511Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:44.9496855Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:57:44.9497107Z 2025-03-14T04:57:44.9497556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:44.9498107Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:44.9498420Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:57:44.9498742Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:44.9499117Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:57:44.9499378Z 2025-03-14T04:57:44.9499822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:44.9500324Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:44.9500642Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:44.9500979Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:57:44.9501228Z 2025-03-14T04:57:44.9501648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:44.9502145Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:44.9502474Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:44.9502821Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:57:44.9503072Z 2025-03-14T04:57:44.9503470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:44.9503925Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:44.9504185Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:44.9504414Z 2025-03-14T04:57:44.9504804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:44.9505256Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:44.9505518Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:44.9505744Z 2025-03-14T04:57:44.9506160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:44.9506640Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:44.9506931Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:44.9507175Z 2025-03-14T04:57:44.9507563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:44.9508053Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:44.9508345Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:44.9508587Z 2025-03-14T04:57:44.9509041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:44.9509643Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:44.9509944Z 2025-03-14T04:57:44.9510382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:44.9510955Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T04:57:44.9511265Z 2025-03-14T04:57:44.9511775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:57:44.9512423Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:57:44.9512798Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:57:44.9513109Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:57:44.9513418Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:57:44.9513745Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:57:44.9514006Z 2025-03-14T04:57:44.9514392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:57:44.9514960Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:57:44.9515309Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:57:44.9515558Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:57:44.9515929Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:57:44.9516291Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T04:57:44.9516541Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:57:44.9516761Z 2025-03-14T04:57:44.9517188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:57:44.9517799Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:57:44.9518129Z 2025-03-14T04:57:44.9518575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:57:44.9519182Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:57:44.9519565Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:57:44.9519867Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:57:44.9520177Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:57:44.9520500Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:57:44.9520767Z 2025-03-14T04:57:44.9521333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:57:44.9522045Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:57:44.9522405Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:44.9522756Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:57:44.9523107Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:57:44.9523412Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:57:44.9523656Z 2025-03-14T04:57:44.9524108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:57:44.9524669Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:57:44.9524904Z 2025-03-14T04:57:47.1373030Z 2025-03-14T04:57:47.1373831Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:47.1374320Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T04:57:47.1375021Z l_scores_0_ = L_scores_0_ 2025-03-14T04:57:47.1375244Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:57:47.1375480Z 2025-03-14T04:57:47.1376264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:57:47.1377046Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:57:47.1377426Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:47.1377796Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:57:47.1378154Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:57:47.1378480Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:57:47.1378742Z 2025-03-14T04:57:47.1379242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:57:47.1379826Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:57:47.1380073Z 2025-03-14T04:57:47.1380167Z 2025-03-14T04:57:47.1380267Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:47.1380585Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T04:57:47.1380892Z l_scores_0_ = L_scores_0_ 2025-03-14T04:57:47.1381092Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:57:47.1381278Z 2025-03-14T04:57:47.1381857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:57:47.1382553Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:57:47.1382978Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:47.1383282Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:57:47.1383585Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:57:47.1383869Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:57:47.1384100Z 2025-03-14T04:57:47.1384526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:57:47.1385030Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:57:47.1385248Z 2025-03-14T04:58:01.7729302Z Compilation time (from dynamo_timed): 33.036637935 2025-03-14T04:58:01.7740095Z pass 2025-03-14T04:58:01.7747772Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:58:01.7753459Z TIMING: entire_frame_compile:33.03664 gc:0.03164 _recursive_pre_grad_passes:0.02779 async_compile.wait:8.59046 backend_compile:22.47145 _recursive_joint_graph_passes:0.16712 _recursive_post_grad_passes:0.08565 code_gen:11.51381 inductor_compile:13.23381 total_wall_time:33.03664 2025-03-14T04:58:01.7754635Z STATS: call_* op count: 607 | FakeTensorMode.__torch_dispatch__:17714 | FakeTensor.__torch_dispatch__:1777 | ProxyTorchDispatchMode.__torch_dispatch__:5620 | attempt fast:51 | slow no contiguity match:20 | fast is_contiguous:31 2025-03-14T04:58:01.7755499Z Dynamo produced 53 graphs covering 607 ops with 42 graph breaks (6 unique) 2025-03-14T04:58:06.7835365Z 2025-03-14T04:58:16.9164093Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:58:16.9164675Z loading model: 0it [00:10, ?it/s] 2025-03-14T04:58:16.9174383Z cpu eval detectron2_fasterrcnn_r_50_dc5 2025-03-14T04:58:30.1764994Z WARNING:common:fp64 golden ref were not generated for detectron2_fasterrcnn_r_50_dc5. Setting accuracy check to cosine 2025-03-14T04:58:30.2126490Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:58:41.9599533Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:58:54.4093897Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:59:04.0985956Z 2025-03-14T04:59:04.0991825Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:04.1066909Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:59:04.1120559Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:59:04.1121073Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1121916Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1122729Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1123503Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1124233Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1124933Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1125703Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1126593Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1127503Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1128333Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1129138Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1130005Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1130904Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1131827Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1132619Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1133324Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1134064Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1134818Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1135534Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1136227Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1136941Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:59:04.1137702Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1138464Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1139210Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1139923Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1140593Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1141281Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1142025Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1142767Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1143473Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1144143Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1144831Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1145577Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1146292Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1146985Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1147647Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1148332Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1149072Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1149790Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1150484Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1151158Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1151833Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1152558Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1153268Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1153949Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1154594Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1155271Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1156023Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1156747Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1157469Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1158123Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1158803Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1159536Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1160260Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1161229Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1161893Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1162585Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1163341Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1164085Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1164819Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1165508Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1166219Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1166997Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1167752Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1168481Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1169189Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1169955Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1170782Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1171616Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1172424Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1173161Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:59:04.1173923Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1174722Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1175500Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1176254Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1176960Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1177681Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1178453Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1179209Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1179959Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1180769Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1181452Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1182180Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1182887Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1183575Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1184225Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1184917Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1185662Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1186408Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1187099Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1187748Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1188448Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1189235Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1189993Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1190702Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1191354Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1192034Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1192770Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1193498Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1194182Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1194837Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1195517Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1196256Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1196965Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1197651Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1198316Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1198998Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1199740Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1200494Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1201241Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1201952Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1202706Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1203500Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1204276Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1204993Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1205646Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1206361Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1207136Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1207900Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1208626Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1209322Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1210032Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1210809Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1211654Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1212431Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1213196Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1213914Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1214722Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1215482Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1216215Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1216910Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1217629Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1218407Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1219157Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1219882Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1220582Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:59:04.1221341Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1222163Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1222929Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1223648Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1224310Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1224991Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1225724Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1226431Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1227133Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1227786Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1228537Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1229266Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1229970Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1230655Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1231300Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1231975Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1232705Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1233411Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1234097Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1234768Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1235558Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1236300Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1237016Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1237711Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1238366Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1239054Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1239802Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1240541Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1241227Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1241894Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1242590Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1243322Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1244036Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1244716Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1245389Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1246095Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1246859Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1247582Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1248265Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1248918Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1249624Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1250351Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1251067Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1251849Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1252616Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1253378Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1254111Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1255247Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1256425Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1257381Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1258303Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1259130Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1259926Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1260905Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1261763Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1262700Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1263556Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1264285Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1264986Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1265693Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1266373Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1267103Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1267813Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1268514Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1269211Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1269973Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1270734Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1271454Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1272171Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1272858Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1273634Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1274375Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1275113Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1275802Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1276472Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1277330Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1278084Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1278794Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1279485Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1280181Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1280860Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1281613Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1282363Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1283138Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1283809Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1284503Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1285272Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1286170Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1287287Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1288216Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1289206Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1290075Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1290955Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1291878Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1292683Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:59:04.1293882Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1294844Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1295627Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1296401Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1297102Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1297823Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1298591Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1299344Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1300076Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1300767Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1301507Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1302280Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1303075Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1303800Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1304486Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1305197Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1305972Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1306730Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1307447Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1308129Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1308843Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1309613Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1310384Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1311102Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1311784Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1312504Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1313274Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1314023Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1314750Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1315439Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1316291Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1317082Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1317843Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1318546Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1319273Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:59:04.1320013Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:59:04.1320703Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:59:04.1321433Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:59:04.1322207Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:59:04.1322972Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:59:04.1323721Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:59:04.1324186Z 2025-03-14T04:59:04.1324595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1325407Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1326024Z 2025-03-14T04:59:04.1326402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1328265Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1329990Z 2025-03-14T04:59:04.1330394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:59:04.1330883Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:59:04.1331153Z 2025-03-14T04:59:04.1331724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:59:04.1332487Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:59:04.1332863Z 2025-03-14T04:59:04.1333211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1333973Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1334525Z 2025-03-14T04:59:04.1334881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1336810Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1338526Z 2025-03-14T04:59:04.1338918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1339447Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:59:04.1339719Z 2025-03-14T04:59:04.1340094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1340880Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1341455Z 2025-03-14T04:59:04.1341828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1343818Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1345478Z 2025-03-14T04:59:04.1345844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1346338Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:59:04.1346594Z 2025-03-14T04:59:04.1346941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1347684Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1348230Z 2025-03-14T04:59:04.1348579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1350432Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1352066Z 2025-03-14T04:59:04.1352399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1353143Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:59:04.1353714Z 2025-03-14T04:59:04.1354057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1355956Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1357660Z 2025-03-14T04:59:04.1358020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1358497Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:59:04.1358756Z 2025-03-14T04:59:04.1359141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1359653Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:59:04.1359947Z 2025-03-14T04:59:04.1360301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1361266Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1361833Z 2025-03-14T04:59:04.1362204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1364166Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1365917Z 2025-03-14T04:59:04.1366311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1366823Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:59:04.1367099Z 2025-03-14T04:59:04.1367447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1368260Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1368836Z 2025-03-14T04:59:04.1369204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1371209Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1373169Z 2025-03-14T04:59:04.1373585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1374084Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:59:04.1374343Z 2025-03-14T04:59:04.1374669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1375460Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1376010Z 2025-03-14T04:59:04.1376364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1378233Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1379877Z 2025-03-14T04:59:04.1380249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1380747Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:59:04.1381021Z 2025-03-14T04:59:04.1381396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1381893Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:59:04.1382174Z 2025-03-14T04:59:04.1382509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1383237Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1383773Z 2025-03-14T04:59:04.1384121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1385993Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1387645Z 2025-03-14T04:59:04.1388008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1388500Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:59:04.1388759Z 2025-03-14T04:59:04.1389107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1389837Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1390380Z 2025-03-14T04:59:04.1390727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1392589Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1394219Z 2025-03-14T04:59:04.1394586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1395060Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:59:04.1395319Z 2025-03-14T04:59:04.1395650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1396405Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1396946Z 2025-03-14T04:59:04.1397289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1399132Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1400763Z 2025-03-14T04:59:04.1401136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1401623Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:59:04.1401892Z 2025-03-14T04:59:04.1402274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1402778Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:59:04.1403050Z 2025-03-14T04:59:04.1403382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1404118Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1404660Z 2025-03-14T04:59:04.1405010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1406891Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1408561Z 2025-03-14T04:59:04.1408931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1409419Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:59:04.1409699Z 2025-03-14T04:59:04.1410038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1410789Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1411412Z 2025-03-14T04:59:04.1411792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1413781Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1415556Z 2025-03-14T04:59:04.1415951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1416500Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:59:04.1416784Z 2025-03-14T04:59:04.1417156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1417951Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1418539Z 2025-03-14T04:59:04.1418915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1420918Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1422564Z 2025-03-14T04:59:04.1422896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1423637Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:59:04.1424210Z 2025-03-14T04:59:04.1424557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1426476Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1428175Z 2025-03-14T04:59:04.1428534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1429012Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:59:04.1429276Z 2025-03-14T04:59:04.1429651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1430141Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:59:04.1430430Z 2025-03-14T04:59:04.1430764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1431520Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1432061Z 2025-03-14T04:59:04.1432406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1434279Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1435932Z 2025-03-14T04:59:04.1436301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1436778Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:59:04.1437037Z 2025-03-14T04:59:04.1437361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1438139Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1438689Z 2025-03-14T04:59:04.1439036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1440897Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1442539Z 2025-03-14T04:59:04.1442906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1443401Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:59:04.1443660Z 2025-03-14T04:59:04.1443985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1444757Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1445306Z 2025-03-14T04:59:04.1445650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1447574Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1449321Z 2025-03-14T04:59:04.1449693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1450217Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:59:04.1450494Z 2025-03-14T04:59:04.1450880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1451475Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:59:04.1451807Z 2025-03-14T04:59:04.1452188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1453006Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1453545Z 2025-03-14T04:59:04.1453916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1455884Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1457604Z 2025-03-14T04:59:04.1458003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1458514Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:59:04.1458824Z 2025-03-14T04:59:04.1459203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1460042Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1460708Z 2025-03-14T04:59:04.1461080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1463038Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1464797Z 2025-03-14T04:59:04.1465183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1465687Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:59:04.1465961Z 2025-03-14T04:59:04.1466311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1467131Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1467709Z 2025-03-14T04:59:04.1468076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1470039Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1471708Z 2025-03-14T04:59:04.1472095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1472584Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:59:04.1472856Z 2025-03-14T04:59:04.1473243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1473734Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:59:04.1474020Z 2025-03-14T04:59:04.1474350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1475084Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1475619Z 2025-03-14T04:59:04.1475960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1477829Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1479496Z 2025-03-14T04:59:04.1479867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1480341Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:59:04.1480624Z 2025-03-14T04:59:04.1480957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1481691Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1482237Z 2025-03-14T04:59:04.1482581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1484515Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1486197Z 2025-03-14T04:59:04.1486584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1487086Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:59:04.1487358Z 2025-03-14T04:59:04.1487727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1488512Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1489093Z 2025-03-14T04:59:04.1489466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1504466Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1506260Z 2025-03-14T04:59:04.1506683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1507210Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:59:04.1507498Z 2025-03-14T04:59:04.1507893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1508517Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:59:04.1508806Z 2025-03-14T04:59:04.1509167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1509948Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1510510Z 2025-03-14T04:59:04.1510880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1512881Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1514647Z 2025-03-14T04:59:04.1515043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1516474Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:59:04.1516752Z 2025-03-14T04:59:04.1517109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1517889Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1518464Z 2025-03-14T04:59:04.1518836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1520780Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1522426Z 2025-03-14T04:59:04.1522798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1523281Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:59:04.1523554Z 2025-03-14T04:59:04.1523889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1524630Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1525170Z 2025-03-14T04:59:04.1525520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1527480Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1529225Z 2025-03-14T04:59:04.1529580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1530396Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:59:04.1530988Z 2025-03-14T04:59:04.1531469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1533518Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1535224Z 2025-03-14T04:59:04.1535590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1536071Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:59:04.1536369Z 2025-03-14T04:59:04.1536877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1537494Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:59:04.1537755Z 2025-03-14T04:59:04.1538117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1538837Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1539373Z 2025-03-14T04:59:04.1539722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1541729Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1543545Z 2025-03-14T04:59:04.1543937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1544416Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:59:04.1544688Z 2025-03-14T04:59:04.1545022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1545772Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1546309Z 2025-03-14T04:59:04.1546657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1548522Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1550171Z 2025-03-14T04:59:04.1550546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1551016Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:59:04.1551378Z 2025-03-14T04:59:04.1551727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1552461Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1553118Z 2025-03-14T04:59:04.1553632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1555517Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1557432Z 2025-03-14T04:59:04.1557823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1558370Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:59:04.1558649Z 2025-03-14T04:59:04.1559039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1559573Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:59:04.1559845Z 2025-03-14T04:59:04.1560269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1561364Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1561941Z 2025-03-14T04:59:04.1562321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1564804Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1567424Z 2025-03-14T04:59:04.1567996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1568763Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:59:04.1569136Z 2025-03-14T04:59:04.1569667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1570922Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1571754Z 2025-03-14T04:59:04.1572141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1574098Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1575783Z 2025-03-14T04:59:04.1576180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1576661Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:59:04.1576940Z 2025-03-14T04:59:04.1577277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1578034Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1578576Z 2025-03-14T04:59:04.1578923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1580773Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1582415Z 2025-03-14T04:59:04.1582775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1583253Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:59:04.1583511Z 2025-03-14T04:59:04.1583872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1584380Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:59:04.1584643Z 2025-03-14T04:59:04.1584975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1585699Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1586228Z 2025-03-14T04:59:04.1586573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1588447Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1590091Z 2025-03-14T04:59:04.1590459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1590948Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:59:04.1591201Z 2025-03-14T04:59:04.1591538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1592277Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1592812Z 2025-03-14T04:59:04.1593163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1595091Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1596818Z 2025-03-14T04:59:04.1597212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1597716Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:59:04.1597981Z 2025-03-14T04:59:04.1598333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1599115Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1599679Z 2025-03-14T04:59:04.1600040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1601982Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1603690Z 2025-03-14T04:59:04.1604075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1604577Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:59:04.1604867Z 2025-03-14T04:59:04.1605247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1605768Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:59:04.1606038Z 2025-03-14T04:59:04.1606386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1607140Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1607709Z 2025-03-14T04:59:04.1608092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1610173Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1612068Z 2025-03-14T04:59:04.1612480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1613010Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:59:04.1613309Z 2025-03-14T04:59:04.1613671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1614490Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1615092Z 2025-03-14T04:59:04.1615477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1617583Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1619418Z 2025-03-14T04:59:04.1619827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1620370Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:59:04.1620650Z 2025-03-14T04:59:04.1621034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1621853Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1622388Z 2025-03-14T04:59:04.1622734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1624566Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1626176Z 2025-03-14T04:59:04.1626531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1627007Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:59:04.1627276Z 2025-03-14T04:59:04.1627657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1628175Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:59:04.1628446Z 2025-03-14T04:59:04.1628779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1629495Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1630022Z 2025-03-14T04:59:04.1630366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1632233Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1633878Z 2025-03-14T04:59:04.1634246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1634735Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:59:04.1634987Z 2025-03-14T04:59:04.1635334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1636105Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1636670Z 2025-03-14T04:59:04.1637035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1639008Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1640734Z 2025-03-14T04:59:04.1641114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1641609Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:59:04.1641891Z 2025-03-14T04:59:04.1642232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1643010Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1643581Z 2025-03-14T04:59:04.1643942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1645924Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1647626Z 2025-03-14T04:59:04.1647990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1648491Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:59:04.1648770Z 2025-03-14T04:59:04.1649168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1649663Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:59:04.1649934Z 2025-03-14T04:59:04.1650280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1651029Z x_88: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1651642Z 2025-03-14T04:59:04.1652014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1654027Z x_89: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1655684Z 2025-03-14T04:59:04.1656069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1656586Z out_52: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:59:04.1656839Z 2025-03-14T04:59:04.1657168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1657897Z x_90: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_52 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1658434Z 2025-03-14T04:59:04.1658778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1660791Z x_91: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1662459Z 2025-03-14T04:59:04.1662828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1663323Z out_53: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:59:04.1663577Z 2025-03-14T04:59:04.1663906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1664638Z x_92: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1665177Z 2025-03-14T04:59:04.1665518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1667352Z x_93: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1668982Z 2025-03-14T04:59:04.1669312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1670059Z x_94: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:59:04.1670644Z 2025-03-14T04:59:04.1670988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1672988Z x_95: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1674758Z 2025-03-14T04:59:04.1675133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1675646Z x_93 += x_95; out_54: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T04:59:04.1675924Z 2025-03-14T04:59:04.1676309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1676832Z out_55: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:59:04.1677103Z 2025-03-14T04:59:04.1677465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1678221Z x_96: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1678778Z 2025-03-14T04:59:04.1679143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1681094Z x_97: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1682818Z 2025-03-14T04:59:04.1683204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1683702Z out_56: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:59:04.1683967Z 2025-03-14T04:59:04.1684331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1685106Z x_98: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_56 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1685667Z 2025-03-14T04:59:04.1686032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1687993Z x_99: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1689710Z 2025-03-14T04:59:04.1690108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1690610Z out_57: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T04:59:04.1690893Z 2025-03-14T04:59:04.1691251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1692179Z x_100: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1692790Z 2025-03-14T04:59:04.1693180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1695110Z x_101: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1696764Z 2025-03-14T04:59:04.1697128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1697614Z x_101 += out_55; out_58: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T04:59:04.1697896Z 2025-03-14T04:59:04.1698268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1698766Z out_59: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:59:04.1699029Z 2025-03-14T04:59:04.1699359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1700083Z x_102: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.1700612Z 2025-03-14T04:59:04.1700955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1702817Z x_103: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1704473Z 2025-03-14T04:59:04.1704841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1705336Z out_60: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:59:04.1705593Z 2025-03-14T04:59:04.1705931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1706667Z x_104: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_60 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.1707200Z 2025-03-14T04:59:04.1707545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1709435Z x_105: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1711141Z 2025-03-14T04:59:04.1711526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1712027Z out_61: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T04:59:04.1712318Z 2025-03-14T04:59:04.1712670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1713446Z x_106: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.1714020Z 2025-03-14T04:59:04.1714387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.1716338Z x_107: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.1718056Z 2025-03-14T04:59:04.1718448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.1718956Z x_107 += out_59; out_62: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T04:59:04.1719255Z 2025-03-14T04:59:04.1719641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.1720167Z out_63: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:59:04.1720441Z 2025-03-14T04:59:04.1720975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:59:04.1721617Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:59:04.1721884Z 2025-03-14T04:59:04.1722262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:04.1722748Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:59:04.1723002Z 2025-03-14T04:59:04.1723524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:59:04.1724157Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:59:04.1724422Z 2025-03-14T04:59:04.1724795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:04.1725279Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:59:04.1725534Z 2025-03-14T04:59:04.1725989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:59:04.1726611Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:59:04.1726945Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:59:04.1727212Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:59:04.1727444Z 2025-03-14T04:59:04.1727856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:59:04.1728373Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:59:04.1728628Z 2025-03-14T04:59:04.1729064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:59:04.1729558Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:59:04.1729792Z 2025-03-14T04:59:04.1730254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:59:04.1730896Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:59:04.1731227Z 2025-03-14T04:59:04.1731842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:59:04.1732510Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:59:04.1733142Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:59:04.1733763Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:59:04.1734051Z x_108: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:59:04.1734282Z 2025-03-14T04:59:04.1734670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:59:04.1735146Z tensor: "f32[82125, 4][4, 1]cpu" = x_108.to(torch.float32); x_108 = None 2025-03-14T04:59:04.1735392Z 2025-03-14T04:59:04.1735727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.1736808Z x_109: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_63 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:59:04.1737688Z 2025-03-14T04:59:04.1738042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:59:04.1738557Z x_110: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_109, inplace = False); x_109 = None 2025-03-14T04:59:04.1738860Z 2025-03-14T04:59:04.1739320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:59:04.1740601Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_110, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:59:04.1741586Z 2025-03-14T04:59:04.1742024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:59:04.1743241Z x_111: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_110, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_110 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:59:04.1744166Z 2025-03-14T04:59:04.1744582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:59:04.1745119Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:59:04.1745462Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:59:04.1745737Z 2025-03-14T04:59:04.1746247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:59:04.1746887Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_111.view(4, -1, 4, 73, 75); x_111 = None 2025-03-14T04:59:04.1747282Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:59:04.1747684Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:59:04.1747974Z 2025-03-14T04:59:04.1748460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:59:04.1749117Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:59:04.1749433Z 2025-03-14T04:59:04.1749952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:59:04.1750581Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:59:04.1750932Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:59:04.1751271Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:59:04.1751524Z 2025-03-14T04:59:04.1751985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:04.1752578Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:59:04.1752857Z 2025-03-14T04:59:04.1753257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:04.1753781Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:59:04.1754040Z 2025-03-14T04:59:04.1754443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:04.1754940Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:04.1755252Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:04.1755581Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:59:04.1755850Z 2025-03-14T04:59:04.1756256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:04.1756751Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:04.1757056Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:04.1757381Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:59:04.1757644Z 2025-03-14T04:59:04.1758035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:04.1758510Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:04.1758809Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:59:04.1759066Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:59:04.1759299Z 2025-03-14T04:59:04.1759688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:04.1760212Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:04.1760661Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:59:04.1761090Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:59:04.1761340Z 2025-03-14T04:59:04.1761765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:04.1762268Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:04.1762604Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:59:04.1762834Z 2025-03-14T04:59:04.1763222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:04.1763720Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:04.1764034Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:59:04.1764266Z 2025-03-14T04:59:04.1764649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:04.1765151Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:04.1765466Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:59:04.1765700Z 2025-03-14T04:59:04.1766090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:04.1766634Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:04.1767037Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:59:04.1767273Z 2025-03-14T04:59:04.1767702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:04.1768245Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:04.1768511Z 2025-03-14T04:59:04.1768935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:04.1769465Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:04.1769722Z 2025-03-14T04:59:04.1770158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:04.1770707Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:04.1771030Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:59:04.1771410Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:04.1771779Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:59:04.1772040Z 2025-03-14T04:59:04.1772515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:04.1773081Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:04.1773438Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:59:04.1773765Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:04.1774133Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:59:04.1774388Z 2025-03-14T04:59:04.1774803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:04.1775298Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:04.1775626Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:04.1775966Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:59:04.1776214Z 2025-03-14T04:59:04.1776627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:04.1777124Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:04.1777451Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:04.1777802Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:59:04.1778051Z 2025-03-14T04:59:04.1778440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:04.1778895Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:04.1779155Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:04.1779390Z 2025-03-14T04:59:04.1779779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:04.1780251Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:04.1780510Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:04.1780743Z 2025-03-14T04:59:04.1781127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:04.1781595Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:04.1781888Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:04.1782135Z 2025-03-14T04:59:04.1782520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:04.1782988Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:04.1783273Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:04.1783516Z 2025-03-14T04:59:04.1783953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:04.1784521Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:04.1784809Z 2025-03-14T04:59:04.1785235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:04.1785780Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:59:04.1786073Z 2025-03-14T04:59:04.1786534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:59:04.1787147Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:59:04.1787433Z 2025-03-14T04:59:04.1788006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:59:04.1788682Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:59:04.1788933Z 2025-03-14T04:59:04.1789313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:04.1789810Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:59:04.1790066Z 2025-03-14T04:59:04.1790590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:59:04.1791193Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:59:04.1791461Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:59:04.1791727Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:59:04.1791957Z 2025-03-14T04:59:04.1792506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:59:04.1793185Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:59:04.1793640Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:59:04.1794002Z 2025-03-14T04:59:04.1794546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:59:04.1795224Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:59:04.1795503Z 2025-03-14T04:59:04.1795879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:04.1796384Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:59:04.1796652Z 2025-03-14T04:59:04.1797119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:59:04.1797693Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:59:04.1797950Z 2025-03-14T04:59:04.1798330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:59:04.1798822Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:59:04.1799096Z 2025-03-14T04:59:04.1799555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:59:04.1800135Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:59:04.1800386Z 2025-03-14T04:59:04.1800965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:59:04.1801629Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:59:04.1801936Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:04.1802255Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:59:04.1802586Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:59:04.1802834Z 2025-03-14T04:59:04.1803280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:59:04.1803813Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:59:04.1804045Z 2025-03-14T04:59:04.1804444Z 2025-03-14T04:59:04.1804541Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:04.1858052Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:59:04.1909948Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:59:04.1910459Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1911246Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1912085Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1912844Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1913506Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1914216Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1914916Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1915734Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1916506Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1917250Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1917904Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1918602Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1919343Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1920063Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1920762Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1921413Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1922102Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1922848Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1923600Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1924295Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1924975Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:59:04.1925684Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1926450Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1927195Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1927932Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1928609Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1929317Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1930083Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1930814Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1931600Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1932344Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1933025Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1933363Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1933690Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1933997Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1934288Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1934625Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1935010Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1935341Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1935650Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1935947Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1936279Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1936613Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1936930Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1937263Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1937545Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1937929Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1938284Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1938610Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1938919Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1939198Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1939546Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1939877Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1940192Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1940494Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1940778Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1941142Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1941467Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1941784Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1942083Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1942367Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1942699Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1943031Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1943356Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1943669Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1943965Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1944318Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1944662Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1944986Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1945294Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1945587Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:59:04.1945942Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1946282Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1946616Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1949438Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1949733Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1950081Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1950423Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1950751Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1951098Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1951391Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1951734Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1952085Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1952424Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1952769Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1953080Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1953474Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1953865Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1954224Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1954551Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1954844Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1955229Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1955615Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1955987Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1956373Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1956666Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1957018Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1957362Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1957693Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1958008Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1958301Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1958644Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1959013Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1959377Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1959736Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1960029Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1960374Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1960941Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1961277Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1961600Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1961883Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1962230Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1962568Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1962954Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1963277Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1963564Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1963911Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1964250Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1964577Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1964886Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1965177Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1965519Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1965887Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1966238Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1966596Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1966899Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1967267Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1967631Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1967974Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1968322Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1968617Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1969007Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1969369Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1969734Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1970079Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1970413Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:59:04.1970799Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1971179Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1971609Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1971972Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1972279Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1972665Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1973023Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1973399Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1973727Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1974034Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1974392Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1974756Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1975098Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1975422Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1975725Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1976084Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1976470Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1976807Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1977140Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1977438Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1977806Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1978161Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1978503Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1978837Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1979151Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1979515Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1979888Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1980246Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1980562Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1980859Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1981204Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1981548Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1981877Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1982188Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1982484Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1982827Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1983190Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1983508Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1983827Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1984111Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1984459Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1984808Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1985125Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1985442Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1985768Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1986121Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1986489Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1986825Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1987135Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1987423Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1987762Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1988103Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1988432Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1988742Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1989032Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1989392Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1989736Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1990056Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1990374Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1990656Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1991009Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1991352Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1991677Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1992007Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1992292Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1992657Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1993009Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1993341Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1993662Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1993953Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1994303Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1994640Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1994966Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1995278Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1995587Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.1995928Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1996267Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1996591Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1996898Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1997203Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.1997573Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.1997914Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.1998232Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.1998580Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.1999603Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.1999990Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2000350Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2000671Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2000990Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2001276Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2001624Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2001967Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2002310Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2002637Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2002987Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:59:04.2003366Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2003738Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2004092Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2004428Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2004735Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2005094Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2005455Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2005807Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2006144Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2006484Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2006845Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2007208Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2007544Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2007875Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2008172Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2008546Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2008895Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2009238Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2009607Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2009906Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2010270Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2010619Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2010959Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2011287Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2011655Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2012026Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2012433Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2012795Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2013139Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2013460Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2013820Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2014184Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2014522Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2014864Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2015234Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:59:04.2015578Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:59:04.2015912Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:59:04.2016301Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:59:04.2016707Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:59:04.2017077Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:59:04.2017445Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:59:04.2017517Z 2025-03-14T04:59:04.2017830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2018337Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2018416Z 2025-03-14T04:59:04.2018712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2020273Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2020375Z 2025-03-14T04:59:04.2020668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:59:04.2020818Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:59:04.2020880Z 2025-03-14T04:59:04.2021259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:59:04.2021499Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:59:04.2021572Z 2025-03-14T04:59:04.2021829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2022266Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2022328Z 2025-03-14T04:59:04.2022603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2024175Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2024260Z 2025-03-14T04:59:04.2024553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2024688Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:59:04.2024758Z 2025-03-14T04:59:04.2025010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2025446Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2025506Z 2025-03-14T04:59:04.2025779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2027353Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2027431Z 2025-03-14T04:59:04.2027723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2027863Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:59:04.2027931Z 2025-03-14T04:59:04.2028184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2028638Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2028706Z 2025-03-14T04:59:04.2028969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2030536Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2030618Z 2025-03-14T04:59:04.2030878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2031319Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:59:04.2031392Z 2025-03-14T04:59:04.2031665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2033368Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2033456Z 2025-03-14T04:59:04.2033733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2033911Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:59:04.2033973Z 2025-03-14T04:59:04.2034263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2034411Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:59:04.2034481Z 2025-03-14T04:59:04.2034730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2035166Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2035235Z 2025-03-14T04:59:04.2035507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2037051Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2037135Z 2025-03-14T04:59:04.2037430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2037579Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:59:04.2037640Z 2025-03-14T04:59:04.2037895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2038326Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2038398Z 2025-03-14T04:59:04.2038662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2040222Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2040309Z 2025-03-14T04:59:04.2040610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2040757Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:59:04.2040817Z 2025-03-14T04:59:04.2041075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2041515Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2041588Z 2025-03-14T04:59:04.2041851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2043410Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2043496Z 2025-03-14T04:59:04.2043773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2043935Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:59:04.2043995Z 2025-03-14T04:59:04.2044281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2044427Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:59:04.2044493Z 2025-03-14T04:59:04.2044741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2045174Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2045233Z 2025-03-14T04:59:04.2045504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2047112Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2047205Z 2025-03-14T04:59:04.2047516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2047662Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:59:04.2047734Z 2025-03-14T04:59:04.2048010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2048481Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2048550Z 2025-03-14T04:59:04.2048835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2050468Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2050561Z 2025-03-14T04:59:04.2050871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2051017Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:59:04.2051091Z 2025-03-14T04:59:04.2051444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2051978Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2052052Z 2025-03-14T04:59:04.2052400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2054052Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2054154Z 2025-03-14T04:59:04.2054456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2054619Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:59:04.2054692Z 2025-03-14T04:59:04.2054990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2055157Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:59:04.2055223Z 2025-03-14T04:59:04.2055495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2055953Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2056023Z 2025-03-14T04:59:04.2056298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2057930Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2058023Z 2025-03-14T04:59:04.2058323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2058482Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:59:04.2058544Z 2025-03-14T04:59:04.2058817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2059283Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2059355Z 2025-03-14T04:59:04.2059628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2061523Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2061627Z 2025-03-14T04:59:04.2061931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2062086Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:59:04.2062153Z 2025-03-14T04:59:04.2062428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2062864Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2062936Z 2025-03-14T04:59:04.2063197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2064780Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2064898Z 2025-03-14T04:59:04.2065149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2065600Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:59:04.2065668Z 2025-03-14T04:59:04.2065945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2067563Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2067641Z 2025-03-14T04:59:04.2067928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2068088Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:59:04.2068159Z 2025-03-14T04:59:04.2068446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2068606Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:59:04.2068666Z 2025-03-14T04:59:04.2068925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2069351Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2069424Z 2025-03-14T04:59:04.2069690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2071284Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2071372Z 2025-03-14T04:59:04.2071657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2071805Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:59:04.2071864Z 2025-03-14T04:59:04.2072124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2072560Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2072629Z 2025-03-14T04:59:04.2072904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2074473Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2074559Z 2025-03-14T04:59:04.2074859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2075005Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:59:04.2075067Z 2025-03-14T04:59:04.2075319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2075749Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2075822Z 2025-03-14T04:59:04.2076091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2077627Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2077715Z 2025-03-14T04:59:04.2077994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2078154Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:59:04.2078214Z 2025-03-14T04:59:04.2078503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2078649Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:59:04.2078718Z 2025-03-14T04:59:04.2078963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2079395Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2079464Z 2025-03-14T04:59:04.2079726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2081306Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2081383Z 2025-03-14T04:59:04.2081673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2081818Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:59:04.2081879Z 2025-03-14T04:59:04.2082136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2082569Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2082637Z 2025-03-14T04:59:04.2082892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2084392Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2084478Z 2025-03-14T04:59:04.2084763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2084907Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:59:04.2084966Z 2025-03-14T04:59:04.2085220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2085655Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2085724Z 2025-03-14T04:59:04.2085989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2087549Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2087633Z 2025-03-14T04:59:04.2087926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2088094Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:59:04.2088154Z 2025-03-14T04:59:04.2088444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2088592Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:59:04.2088661Z 2025-03-14T04:59:04.2088910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2089340Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2089400Z 2025-03-14T04:59:04.2089672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2091231Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2091318Z 2025-03-14T04:59:04.2091656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2091800Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:59:04.2091868Z 2025-03-14T04:59:04.2092115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2092579Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2092642Z 2025-03-14T04:59:04.2092926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2094520Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2094607Z 2025-03-14T04:59:04.2094904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2095044Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:59:04.2095113Z 2025-03-14T04:59:04.2095362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2095808Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2095871Z 2025-03-14T04:59:04.2096144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2097700Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2097781Z 2025-03-14T04:59:04.2098065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2098218Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:59:04.2098286Z 2025-03-14T04:59:04.2098569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2098725Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:59:04.2098786Z 2025-03-14T04:59:04.2099046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2099480Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2099551Z 2025-03-14T04:59:04.2099815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2101486Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2101572Z 2025-03-14T04:59:04.2101856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2101997Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:59:04.2102060Z 2025-03-14T04:59:04.2102319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2102748Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2102817Z 2025-03-14T04:59:04.2103078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2104626Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2104710Z 2025-03-14T04:59:04.2104992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2105133Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:59:04.2105194Z 2025-03-14T04:59:04.2105446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2105878Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2105947Z 2025-03-14T04:59:04.2106214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2107801Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2107888Z 2025-03-14T04:59:04.2108138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2108576Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:59:04.2108640Z 2025-03-14T04:59:04.2108907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2110503Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2110588Z 2025-03-14T04:59:04.2110874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2111013Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:59:04.2111081Z 2025-03-14T04:59:04.2111361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2111511Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:59:04.2111569Z 2025-03-14T04:59:04.2111831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2112254Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2112321Z 2025-03-14T04:59:04.2112590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2114186Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2114272Z 2025-03-14T04:59:04.2114555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2114694Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:59:04.2114755Z 2025-03-14T04:59:04.2115007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2115428Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2115498Z 2025-03-14T04:59:04.2115765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2117294Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2117384Z 2025-03-14T04:59:04.2117670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2117812Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:59:04.2117876Z 2025-03-14T04:59:04.2118134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2118566Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2118641Z 2025-03-14T04:59:04.2118916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2120482Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2120571Z 2025-03-14T04:59:04.2120862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2121021Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:59:04.2121086Z 2025-03-14T04:59:04.2121379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2121519Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:59:04.2121589Z 2025-03-14T04:59:04.2121842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2122268Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2122337Z 2025-03-14T04:59:04.2122603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2124152Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2124233Z 2025-03-14T04:59:04.2124522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2124658Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:59:04.2124719Z 2025-03-14T04:59:04.2124973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2125389Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2125459Z 2025-03-14T04:59:04.2125718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2127275Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2127364Z 2025-03-14T04:59:04.2127650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2127788Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:59:04.2127847Z 2025-03-14T04:59:04.2128100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2128519Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2128587Z 2025-03-14T04:59:04.2128844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2130387Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2130473Z 2025-03-14T04:59:04.2130750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2130902Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:59:04.2130963Z 2025-03-14T04:59:04.2131273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2131543Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:59:04.2131627Z 2025-03-14T04:59:04.2131903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2132372Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2132439Z 2025-03-14T04:59:04.2132735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2134442Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2134551Z 2025-03-14T04:59:04.2134878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2135024Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:59:04.2135099Z 2025-03-14T04:59:04.2135591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2136085Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2136154Z 2025-03-14T04:59:04.2136455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2138172Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2138315Z 2025-03-14T04:59:04.2138602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2138730Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:59:04.2138800Z 2025-03-14T04:59:04.2139045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2139468Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2139529Z 2025-03-14T04:59:04.2139793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2141319Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2141403Z 2025-03-14T04:59:04.2141683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2141822Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:59:04.2141887Z 2025-03-14T04:59:04.2142159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2142298Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:59:04.2142357Z 2025-03-14T04:59:04.2142606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2143002Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2143068Z 2025-03-14T04:59:04.2143323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2144803Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2144890Z 2025-03-14T04:59:04.2145163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2145296Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:59:04.2145356Z 2025-03-14T04:59:04.2145606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2146014Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2146081Z 2025-03-14T04:59:04.2146333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2147835Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2147923Z 2025-03-14T04:59:04.2148196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2148331Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:59:04.2148391Z 2025-03-14T04:59:04.2148642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2149056Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2149123Z 2025-03-14T04:59:04.2149376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2150864Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2150945Z 2025-03-14T04:59:04.2151213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2151361Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:59:04.2151421Z 2025-03-14T04:59:04.2151699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2151832Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:59:04.2151901Z 2025-03-14T04:59:04.2152138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2152549Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2152609Z 2025-03-14T04:59:04.2152868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2154387Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2154462Z 2025-03-14T04:59:04.2154746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2154871Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:59:04.2154941Z 2025-03-14T04:59:04.2155185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2155600Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2155659Z 2025-03-14T04:59:04.2155926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2157420Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2157500Z 2025-03-14T04:59:04.2157782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2157911Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:59:04.2157978Z 2025-03-14T04:59:04.2158218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2158641Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2158700Z 2025-03-14T04:59:04.2158963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2160497Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2160712Z 2025-03-14T04:59:04.2160999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2161142Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:59:04.2161210Z 2025-03-14T04:59:04.2161482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2161628Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:59:04.2161686Z 2025-03-14T04:59:04.2161936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2162340Z x_88: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2162407Z 2025-03-14T04:59:04.2162669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2164164Z x_89: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2164267Z 2025-03-14T04:59:04.2164543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2164679Z out_52: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:59:04.2164738Z 2025-03-14T04:59:04.2164983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2165396Z x_90: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_52 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2165456Z 2025-03-14T04:59:04.2165717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2167275Z x_91: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2167364Z 2025-03-14T04:59:04.2167652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2167787Z out_53: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:59:04.2167848Z 2025-03-14T04:59:04.2168105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2168542Z x_92: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2168604Z 2025-03-14T04:59:04.2168870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2170413Z x_93: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2170504Z 2025-03-14T04:59:04.2170757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2171206Z x_94: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:59:04.2171278Z 2025-03-14T04:59:04.2171668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2173403Z x_95: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2173479Z 2025-03-14T04:59:04.2173783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2173929Z x_93 += x_95; out_54: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T04:59:04.2173991Z 2025-03-14T04:59:04.2174280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2174422Z out_55: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:59:04.2174494Z 2025-03-14T04:59:04.2174741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2175165Z x_96: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2175227Z 2025-03-14T04:59:04.2175496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2177029Z x_97: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2177113Z 2025-03-14T04:59:04.2177407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2177539Z out_56: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:59:04.2177609Z 2025-03-14T04:59:04.2177862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2178291Z x_98: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_56 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2178356Z 2025-03-14T04:59:04.2178629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2180199Z x_99: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2180282Z 2025-03-14T04:59:04.2180567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2180692Z out_57: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T04:59:04.2180756Z 2025-03-14T04:59:04.2181007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2181441Z x_100: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2181514Z 2025-03-14T04:59:04.2181782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2183316Z x_101: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2183406Z 2025-03-14T04:59:04.2183693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2183844Z x_101 += out_55; out_58: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T04:59:04.2183911Z 2025-03-14T04:59:04.2184189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2184337Z out_59: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:59:04.2184397Z 2025-03-14T04:59:04.2184652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2185069Z x_102: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2185137Z 2025-03-14T04:59:04.2185397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2186965Z x_103: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2187047Z 2025-03-14T04:59:04.2187333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2187477Z out_60: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:59:04.2187537Z 2025-03-14T04:59:04.2187791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2188217Z x_104: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_60 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2188285Z 2025-03-14T04:59:04.2188545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2190082Z x_105: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2190168Z 2025-03-14T04:59:04.2190450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2190592Z out_61: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T04:59:04.2190655Z 2025-03-14T04:59:04.2190908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2191341Z x_106: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2191411Z 2025-03-14T04:59:04.2191676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2193236Z x_107: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2193321Z 2025-03-14T04:59:04.2193598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2193756Z x_107 += out_59; out_62: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T04:59:04.2193815Z 2025-03-14T04:59:04.2194100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2194242Z out_63: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:59:04.2194309Z 2025-03-14T04:59:04.2194760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:59:04.2194919Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:59:04.2194979Z 2025-03-14T04:59:04.2195275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:04.2195409Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:59:04.2195477Z 2025-03-14T04:59:04.2195910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:59:04.2196081Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:59:04.2196141Z 2025-03-14T04:59:04.2196437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:04.2196570Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:59:04.2196638Z 2025-03-14T04:59:04.2197007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:59:04.2197188Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:59:04.2197282Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:59:04.2197407Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:59:04.2197468Z 2025-03-14T04:59:04.2197807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:59:04.2197935Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:59:04.2197994Z 2025-03-14T04:59:04.2198320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:59:04.2198437Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:59:04.2198518Z 2025-03-14T04:59:04.2198897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:59:04.2199132Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:59:04.2199194Z 2025-03-14T04:59:04.2199628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:59:04.2199751Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:59:04.2200193Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:59:04.2200314Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:59:04.2200437Z x_108: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:59:04.2200499Z 2025-03-14T04:59:04.2200803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:59:04.2200928Z tensor: "f32[82125, 4][4, 1]cpu" = x_108.to(torch.float32); x_108 = None 2025-03-14T04:59:04.2200996Z 2025-03-14T04:59:04.2201245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2202034Z x_109: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_63 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:59:04.2202110Z 2025-03-14T04:59:04.2202388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:59:04.2202579Z x_110: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_109, inplace = False); x_109 = None 2025-03-14T04:59:04.2202647Z 2025-03-14T04:59:04.2203028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:59:04.2203873Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_110, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:59:04.2203946Z 2025-03-14T04:59:04.2204301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:59:04.2205143Z x_111: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_110, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_110 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:59:04.2205209Z 2025-03-14T04:59:04.2205566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:59:04.2205750Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:59:04.2205892Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:59:04.2205958Z 2025-03-14T04:59:04.2206369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:59:04.2206535Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_111.view(4, -1, 4, 73, 75); x_111 = None 2025-03-14T04:59:04.2206706Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:59:04.2206891Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:59:04.2206952Z 2025-03-14T04:59:04.2207355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:59:04.2207559Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:59:04.2207629Z 2025-03-14T04:59:04.2208061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:59:04.2208213Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:59:04.2208383Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:59:04.2208530Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:59:04.2208593Z 2025-03-14T04:59:04.2208973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:04.2209139Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:59:04.2209209Z 2025-03-14T04:59:04.2209520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:04.2209670Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:59:04.2209732Z 2025-03-14T04:59:04.2210052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:04.2210184Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:04.2210315Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:04.2210458Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:59:04.2210531Z 2025-03-14T04:59:04.2210859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:04.2211011Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:04.2211135Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:04.2211298Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:59:04.2211491Z 2025-03-14T04:59:04.2211833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:04.2211978Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:04.2212079Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:59:04.2212204Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:59:04.2212278Z 2025-03-14T04:59:04.2212607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:04.2212777Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:04.2212866Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:59:04.2213000Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:59:04.2213063Z 2025-03-14T04:59:04.2213405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:04.2213562Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:04.2213673Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:59:04.2213742Z 2025-03-14T04:59:04.2214042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:04.2214198Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:04.2214303Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:59:04.2214389Z 2025-03-14T04:59:04.2214689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:04.2214851Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:04.2214960Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:59:04.2215029Z 2025-03-14T04:59:04.2215331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:04.2215521Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:04.2215632Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:59:04.2215699Z 2025-03-14T04:59:04.2216035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:04.2216182Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:04.2216243Z 2025-03-14T04:59:04.2216578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:04.2216711Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:04.2216779Z 2025-03-14T04:59:04.2217138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:04.2217284Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:04.2217422Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:59:04.2217578Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:04.2217726Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:59:04.2217796Z 2025-03-14T04:59:04.2218149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:04.2218291Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:04.2218408Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:59:04.2218565Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:04.2218699Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:59:04.2218768Z 2025-03-14T04:59:04.2219104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:04.2219227Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:04.2219392Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:04.2219520Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:59:04.2219587Z 2025-03-14T04:59:04.2219924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:04.2220043Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:04.2220218Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:04.2220352Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:59:04.2220414Z 2025-03-14T04:59:04.2220726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:04.2220819Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:04.2220939Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:04.2221000Z 2025-03-14T04:59:04.2221312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:04.2221402Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:04.2221521Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:04.2221584Z 2025-03-14T04:59:04.2221892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:04.2222004Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:04.2222135Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:04.2222197Z 2025-03-14T04:59:04.2222499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:04.2222607Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:04.2222749Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:04.2222812Z 2025-03-14T04:59:04.2223175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:04.2223383Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:04.2223453Z 2025-03-14T04:59:04.2223781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:04.2223949Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:59:04.2224009Z 2025-03-14T04:59:04.2224400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:59:04.2224571Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:59:04.2224642Z 2025-03-14T04:59:04.2225130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:59:04.2225262Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:59:04.2225321Z 2025-03-14T04:59:04.2225610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:04.2225742Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:59:04.2225808Z 2025-03-14T04:59:04.2226227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:59:04.2226363Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:59:04.2226460Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:59:04.2226574Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:59:04.2226633Z 2025-03-14T04:59:04.2227083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:59:04.2227243Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:59:04.2227466Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:59:04.2227533Z 2025-03-14T04:59:04.2227976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:59:04.2228142Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:59:04.2228200Z 2025-03-14T04:59:04.2228488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:04.2228628Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:59:04.2228693Z 2025-03-14T04:59:04.2229074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:59:04.2229223Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:59:04.2229297Z 2025-03-14T04:59:04.2229616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:59:04.2229760Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:59:04.2229825Z 2025-03-14T04:59:04.2230209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:59:04.2230349Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:59:04.2230411Z 2025-03-14T04:59:04.2230904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:59:04.2231039Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:59:04.2231171Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:04.2231317Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:59:04.2231450Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:59:04.2231509Z 2025-03-14T04:59:04.2231888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:59:04.2232000Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:59:04.2232069Z 2025-03-14T04:59:04.2232095Z 2025-03-14T04:59:04.2232188Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:04.2284069Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:59:04.2284500Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:59:04.2284853Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2285239Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2285641Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2286015Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2286417Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2286788Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2287191Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2287611Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2288018Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2288380Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2288738Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2289162Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2289576Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2289982Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2290351Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2290707Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2291107Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2291569Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2291967Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2292333Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2292678Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:59:04.2293144Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2293561Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2293993Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2294411Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2294780Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2295197Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2295615Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2296015Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2296394Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2296771Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2297196Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2297614Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2298031Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2298409Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2298768Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2299188Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2299603Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2300014Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2300384Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2300747Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2301181Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2301601Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2302029Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2302401Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2302748Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2303129Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2303504Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2303858Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2304213Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2304526Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2304915Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2305310Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2305663Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2306022Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2306331Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2306718Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2307085Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2307442Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2307794Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2308117Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2308514Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2308897Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2309274Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2309625Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2309940Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2310313Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2310691Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2311043Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2311384Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2311729Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:59:04.2312111Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2312531Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2312903Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2313260Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2313573Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2313947Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2314319Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2314666Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2315045Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2315371Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2315773Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2316162Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2316521Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2316886Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2317199Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2317584Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2317964Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2318319Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2318668Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2318982Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2319372Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2319748Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2320104Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2320449Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2320760Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2321130Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2321500Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2321846Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2322207Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2322518Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2322928Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2323298Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2323646Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2323989Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2324298Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2324677Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2325040Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2325390Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2325723Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2326057Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2326433Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2326798Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2327153Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2327487Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2327808Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2328179Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2328550Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2328910Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2329256Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2331543Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2331928Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2332302Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2332668Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2333031Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2333365Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2333720Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2334073Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2334413Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2334736Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2335058Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2335499Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2336030Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2336353Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2336669Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2336969Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:59:04.2337329Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2337680Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2338042Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2338377Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2338751Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2339102Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2339439Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2339768Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2340081Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2340375Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2340723Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2341058Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2341386Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2341711Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2342000Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2342336Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2342678Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2342992Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2343310Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2343598Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2343935Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2344290Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2344609Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2344964Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2345249Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2345596Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2345933Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2346260Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2346582Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2346868Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2347221Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2347561Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2347925Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2348238Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2348530Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2348881Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2349233Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2349551Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2349871Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2350154Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2350513Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2350877Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2351251Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2351595Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2351880Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2352251Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2352589Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2352921Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2353244Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2353549Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2353891Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2354218Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2354558Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2354857Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2355139Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2355469Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2355800Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2356114Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2356420Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2356702Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2357045Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2357381Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2357722Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2358033Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2358310Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2358648Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2358975Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2359298Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2359608Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2359881Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2360224Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2360744Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2361182Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2361494Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2361784Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2362128Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2362471Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2362797Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2363107Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2363398Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2363771Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2364176Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2364501Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2364824Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2365117Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2365469Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2365819Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2366142Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2366462Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2366749Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2367103Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2367483Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2367825Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2368160Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2368486Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:59:04.2368865Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2369252Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2369632Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2369973Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2370290Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2370674Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2371079Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2371520Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2371891Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2372214Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2372661Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2373032Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2373378Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2373721Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2374018Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2374422Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2374779Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2375142Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2375489Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2375796Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:59:04.2376180Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2376532Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2376875Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2377216Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2377525Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:59:04.2377917Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2378282Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2378624Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2378952Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2379253Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:59:04.2379613Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:59:04.2379973Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:59:04.2380306Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:59:04.2380656Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:59:04.2381002Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:59:04.2381354Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:59:04.2381673Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:59:04.2382044Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:59:04.2382423Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:59:04.2382774Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:59:04.2383129Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:59:04.2383195Z 2025-03-14T04:59:04.2383484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2383980Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2384056Z 2025-03-14T04:59:04.2384332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2385881Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2385953Z 2025-03-14T04:59:04.2386237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:59:04.2386385Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:59:04.2386448Z 2025-03-14T04:59:04.2386812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:59:04.2387047Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:59:04.2387117Z 2025-03-14T04:59:04.2387371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2387807Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2387907Z 2025-03-14T04:59:04.2388172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2389751Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2389815Z 2025-03-14T04:59:04.2390111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2390245Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:59:04.2390314Z 2025-03-14T04:59:04.2390562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2391015Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2391097Z 2025-03-14T04:59:04.2391377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2392932Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2392996Z 2025-03-14T04:59:04.2393296Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2393434Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:59:04.2393502Z 2025-03-14T04:59:04.2393757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2394210Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2394296Z 2025-03-14T04:59:04.2394562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2396085Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2396151Z 2025-03-14T04:59:04.2396407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2396848Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:59:04.2396911Z 2025-03-14T04:59:04.2397191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2398856Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2398944Z 2025-03-14T04:59:04.2399230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2399378Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:59:04.2399451Z 2025-03-14T04:59:04.2399738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2399897Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:59:04.2399960Z 2025-03-14T04:59:04.2400215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2400638Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2400707Z 2025-03-14T04:59:04.2400983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2402527Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2402600Z 2025-03-14T04:59:04.2402885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2403034Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:59:04.2403097Z 2025-03-14T04:59:04.2403351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2403786Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2403856Z 2025-03-14T04:59:04.2404115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2405704Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2405775Z 2025-03-14T04:59:04.2406062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2406212Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:59:04.2406272Z 2025-03-14T04:59:04.2406526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2406955Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2407026Z 2025-03-14T04:59:04.2407288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2408888Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2408964Z 2025-03-14T04:59:04.2409253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2409419Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:59:04.2409485Z 2025-03-14T04:59:04.2409790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2409944Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:59:04.2410014Z 2025-03-14T04:59:04.2410284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2410758Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2410843Z 2025-03-14T04:59:04.2411130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2412857Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2412939Z 2025-03-14T04:59:04.2413249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2413394Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:59:04.2413466Z 2025-03-14T04:59:04.2413736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2414201Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2414265Z 2025-03-14T04:59:04.2414573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2416209Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2416278Z 2025-03-14T04:59:04.2416593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2416737Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:59:04.2416806Z 2025-03-14T04:59:04.2417073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2417562Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2417627Z 2025-03-14T04:59:04.2417923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2419626Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2419691Z 2025-03-14T04:59:04.2419992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2420158Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:59:04.2420232Z 2025-03-14T04:59:04.2420529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2420699Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:59:04.2420763Z 2025-03-14T04:59:04.2421035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2421492Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2421580Z 2025-03-14T04:59:04.2421850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2423381Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2423455Z 2025-03-14T04:59:04.2423735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2423881Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:59:04.2423942Z 2025-03-14T04:59:04.2424194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2424635Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2424720Z 2025-03-14T04:59:04.2425002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2426557Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2426632Z 2025-03-14T04:59:04.2426913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2427062Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:59:04.2427124Z 2025-03-14T04:59:04.2427377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2427811Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2427900Z 2025-03-14T04:59:04.2428165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2429720Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2429789Z 2025-03-14T04:59:04.2430033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2430471Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:59:04.2430531Z 2025-03-14T04:59:04.2430792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2432397Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2432476Z 2025-03-14T04:59:04.2432761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2432907Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:59:04.2432978Z 2025-03-14T04:59:04.2433263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2433422Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:59:04.2433484Z 2025-03-14T04:59:04.2433750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2434176Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2434238Z 2025-03-14T04:59:04.2434501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2436041Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2436110Z 2025-03-14T04:59:04.2436382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2436527Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:59:04.2436586Z 2025-03-14T04:59:04.2436836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2437259Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2437333Z 2025-03-14T04:59:04.2437596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2439133Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2439223Z 2025-03-14T04:59:04.2439498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2439643Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:59:04.2439714Z 2025-03-14T04:59:04.2439954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2440382Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2440443Z 2025-03-14T04:59:04.2440707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2442208Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2442290Z 2025-03-14T04:59:04.2442572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2442722Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:59:04.2442790Z 2025-03-14T04:59:04.2443070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2443226Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:59:04.2443286Z 2025-03-14T04:59:04.2443537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2443968Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2444036Z 2025-03-14T04:59:04.2444312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2445885Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2445957Z 2025-03-14T04:59:04.2446237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2446379Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:59:04.2446438Z 2025-03-14T04:59:04.2446687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2447107Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2447175Z 2025-03-14T04:59:04.2447447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2448983Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2449050Z 2025-03-14T04:59:04.2449331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2449475Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:59:04.2449535Z 2025-03-14T04:59:04.2449793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2450269Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2450340Z 2025-03-14T04:59:04.2450630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2452422Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2452495Z 2025-03-14T04:59:04.2452777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2452945Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:59:04.2453008Z 2025-03-14T04:59:04.2453298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2453446Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:59:04.2453515Z 2025-03-14T04:59:04.2453774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2454217Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2454294Z 2025-03-14T04:59:04.2454561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2456086Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2456151Z 2025-03-14T04:59:04.2456447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2456581Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:59:04.2456652Z 2025-03-14T04:59:04.2456895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2457366Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2457445Z 2025-03-14T04:59:04.2457713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2459280Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2459345Z 2025-03-14T04:59:04.2459637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2459774Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:59:04.2459840Z 2025-03-14T04:59:04.2460089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2460661Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2460771Z 2025-03-14T04:59:04.2461046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2462601Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2462666Z 2025-03-14T04:59:04.2462952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2463102Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:59:04.2463171Z 2025-03-14T04:59:04.2463448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2463600Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:59:04.2463660Z 2025-03-14T04:59:04.2463936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2464357Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2464471Z 2025-03-14T04:59:04.2464730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2466270Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2466342Z 2025-03-14T04:59:04.2466623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2466763Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:59:04.2466823Z 2025-03-14T04:59:04.2467076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2467495Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2467578Z 2025-03-14T04:59:04.2467845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2469326Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2469395Z 2025-03-14T04:59:04.2469669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2469805Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:59:04.2469864Z 2025-03-14T04:59:04.2470112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2470539Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2470621Z 2025-03-14T04:59:04.2470896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2472394Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2472464Z 2025-03-14T04:59:04.2472713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2473153Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:59:04.2473214Z 2025-03-14T04:59:04.2473482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2475070Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2475150Z 2025-03-14T04:59:04.2475436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2475574Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:59:04.2475644Z 2025-03-14T04:59:04.2475927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2476077Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:59:04.2476137Z 2025-03-14T04:59:04.2476391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2476822Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2476885Z 2025-03-14T04:59:04.2477160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2478724Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2478793Z 2025-03-14T04:59:04.2479068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2479204Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:59:04.2479263Z 2025-03-14T04:59:04.2479510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2479929Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2479989Z 2025-03-14T04:59:04.2480258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2481810Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2481880Z 2025-03-14T04:59:04.2482164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2482304Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:59:04.2482364Z 2025-03-14T04:59:04.2482617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2483047Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2483107Z 2025-03-14T04:59:04.2483391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2484968Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2485052Z 2025-03-14T04:59:04.2485334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2485482Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:59:04.2485550Z 2025-03-14T04:59:04.2485835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2485980Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:59:04.2486042Z 2025-03-14T04:59:04.2486298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2486715Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2486798Z 2025-03-14T04:59:04.2487061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2488669Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2488743Z 2025-03-14T04:59:04.2489085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2489656Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:59:04.2489929Z 2025-03-14T04:59:04.2490314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2491185Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2491893Z 2025-03-14T04:59:04.2492305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2494227Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2495874Z 2025-03-14T04:59:04.2496259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2496731Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:59:04.2496981Z 2025-03-14T04:59:04.2497305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2498079Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2498618Z 2025-03-14T04:59:04.2498958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2500858Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2502499Z 2025-03-14T04:59:04.2502862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2503344Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:59:04.2503608Z 2025-03-14T04:59:04.2503969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2504450Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:59:04.2504706Z 2025-03-14T04:59:04.2505034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2505772Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2506319Z 2025-03-14T04:59:04.2506678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2508559Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2510183Z 2025-03-14T04:59:04.2510551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2511021Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:59:04.2511277Z 2025-03-14T04:59:04.2511610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2512341Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2512897Z 2025-03-14T04:59:04.2513244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2515179Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2516908Z 2025-03-14T04:59:04.2517290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2517808Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:59:04.2518077Z 2025-03-14T04:59:04.2518439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2519250Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2519834Z 2025-03-14T04:59:04.2520213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2522240Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2523968Z 2025-03-14T04:59:04.2524349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2524853Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:59:04.2525129Z 2025-03-14T04:59:04.2525511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2526016Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:59:04.2526288Z 2025-03-14T04:59:04.2526634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2527387Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2527951Z 2025-03-14T04:59:04.2528295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2530238Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2532041Z 2025-03-14T04:59:04.2532465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2533002Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:59:04.2533254Z 2025-03-14T04:59:04.2533586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2534334Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2534887Z 2025-03-14T04:59:04.2535248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2537135Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2538773Z 2025-03-14T04:59:04.2539147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2539640Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:59:04.2539904Z 2025-03-14T04:59:04.2540256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2541036Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2541609Z 2025-03-14T04:59:04.2541956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2543810Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2545456Z 2025-03-14T04:59:04.2545819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2546296Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:59:04.2546554Z 2025-03-14T04:59:04.2546915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2547401Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:59:04.2547655Z 2025-03-14T04:59:04.2548011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2548756Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2549315Z 2025-03-14T04:59:04.2549659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2551519Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2553150Z 2025-03-14T04:59:04.2553521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2553986Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:59:04.2554236Z 2025-03-14T04:59:04.2554567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2555297Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2556176Z 2025-03-14T04:59:04.2556530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2558415Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2560067Z 2025-03-14T04:59:04.2560434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2561050Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:59:04.2561309Z 2025-03-14T04:59:04.2561639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2562420Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2562983Z 2025-03-14T04:59:04.2563347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2565192Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2566823Z 2025-03-14T04:59:04.2567188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2567673Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:59:04.2567959Z 2025-03-14T04:59:04.2568364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2568892Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:59:04.2569183Z 2025-03-14T04:59:04.2569542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2570388Z x_88: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2570985Z 2025-03-14T04:59:04.2571396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2573429Z x_89: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2575162Z 2025-03-14T04:59:04.2575561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2576085Z out_52: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:59:04.2576354Z 2025-03-14T04:59:04.2576732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2577560Z x_90: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_52 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2578155Z 2025-03-14T04:59:04.2578527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2580491Z x_91: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2582240Z 2025-03-14T04:59:04.2582636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2583141Z out_53: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:59:04.2583411Z 2025-03-14T04:59:04.2583766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2584493Z x_92: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2585072Z 2025-03-14T04:59:04.2585411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2587270Z x_93: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2588903Z 2025-03-14T04:59:04.2589235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2589979Z x_94: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:59:04.2590528Z 2025-03-14T04:59:04.2590893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2592849Z x_95: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2594584Z 2025-03-14T04:59:04.2594952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2595426Z x_93 += x_95; out_54: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T04:59:04.2595674Z 2025-03-14T04:59:04.2596038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2596524Z out_55: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:59:04.2596781Z 2025-03-14T04:59:04.2597112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2597836Z x_96: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2598385Z 2025-03-14T04:59:04.2598730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2600577Z x_97: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2602213Z 2025-03-14T04:59:04.2602580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2603051Z out_56: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:59:04.2603304Z 2025-03-14T04:59:04.2603632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2604379Z x_98: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_56 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2604920Z 2025-03-14T04:59:04.2605263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2607147Z x_99: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2608875Z 2025-03-14T04:59:04.2609264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2609767Z out_57: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T04:59:04.2610033Z 2025-03-14T04:59:04.2610386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2611169Z x_100: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2611845Z 2025-03-14T04:59:04.2612238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2614318Z x_101: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2616052Z 2025-03-14T04:59:04.2616437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2616955Z x_101 += out_55; out_58: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T04:59:04.2617248Z 2025-03-14T04:59:04.2617631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2618141Z out_59: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:59:04.2618414Z 2025-03-14T04:59:04.2618795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2619565Z x_102: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:59:04.2620140Z 2025-03-14T04:59:04.2620522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2622502Z x_103: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2624215Z 2025-03-14T04:59:04.2624579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2625056Z out_60: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:59:04.2625312Z 2025-03-14T04:59:04.2625641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2626389Z x_104: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_60 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:59:04.2626974Z 2025-03-14T04:59:04.2627342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2629251Z x_105: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2630898Z 2025-03-14T04:59:04.2631265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2631739Z out_61: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T04:59:04.2631996Z 2025-03-14T04:59:04.2632324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2633071Z x_106: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:59:04.2633614Z 2025-03-14T04:59:04.2633976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:59:04.2635837Z x_107: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:59:04.2637461Z 2025-03-14T04:59:04.2637819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:59:04.2638300Z x_107 += out_59; out_62: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T04:59:04.2638566Z 2025-03-14T04:59:04.2638923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:59:04.2639401Z out_63: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:59:04.2639657Z 2025-03-14T04:59:04.2640173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:59:04.2640858Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:59:04.2641129Z 2025-03-14T04:59:04.2641508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:04.2641987Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:59:04.2642236Z 2025-03-14T04:59:04.2642761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:59:04.2643394Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:59:04.2643661Z 2025-03-14T04:59:04.2644035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:04.2644521Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:59:04.2644780Z 2025-03-14T04:59:04.2645234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:59:04.2645850Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:59:04.2646193Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:59:04.2646474Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:59:04.2646720Z 2025-03-14T04:59:04.2647173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:59:04.2647731Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:59:04.2647980Z 2025-03-14T04:59:04.2648427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:59:04.2648983Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:59:04.2649249Z 2025-03-14T04:59:04.2649733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:59:04.2650462Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:59:04.2650820Z 2025-03-14T04:59:04.2651439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:59:04.2652128Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:59:04.2652801Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:59:04.2653447Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:59:04.2653758Z x_108: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:59:04.2654003Z 2025-03-14T04:59:04.2654404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:59:04.2654939Z tensor: "f32[82125, 4][4, 1]cpu" = x_108.to(torch.float32); x_108 = None 2025-03-14T04:59:04.2655202Z 2025-03-14T04:59:04.2655560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:04.2656711Z x_109: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_63 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:59:04.2657640Z 2025-03-14T04:59:04.2658016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:59:04.2658565Z x_110: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_109, inplace = False); x_109 = None 2025-03-14T04:59:04.2658887Z 2025-03-14T04:59:04.2659379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:59:04.2660826Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_110, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:59:04.2661777Z 2025-03-14T04:59:04.2662204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:59:04.2663452Z x_111: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_110, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_110 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:59:04.2664387Z 2025-03-14T04:59:04.2664811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:59:04.2665356Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:59:04.2665705Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:59:04.2665972Z 2025-03-14T04:59:04.2666476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:59:04.2667097Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_111.view(4, -1, 4, 73, 75); x_111 = None 2025-03-14T04:59:04.2667480Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:59:04.2667885Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:59:04.2668181Z 2025-03-14T04:59:04.2668666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:59:04.2669356Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:59:04.2669684Z 2025-03-14T04:59:04.2670203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:59:04.2670837Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:59:04.2671186Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:59:04.2671521Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:59:04.2671779Z 2025-03-14T04:59:04.2672237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:04.2672838Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:59:04.2673131Z 2025-03-14T04:59:04.2673529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:04.2674033Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:59:04.2674290Z 2025-03-14T04:59:04.2674711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:04.2675205Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:04.2675511Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:04.2675856Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:59:04.2676121Z 2025-03-14T04:59:04.2676537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:04.2677024Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:04.2677319Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:04.2677638Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:59:04.2677893Z 2025-03-14T04:59:04.2678283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:04.2678761Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:04.2679029Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:59:04.2679289Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:59:04.2679530Z 2025-03-14T04:59:04.2679920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:04.2680436Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:04.2680724Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:59:04.2680989Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:59:04.2681233Z 2025-03-14T04:59:04.2681657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:04.2682182Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:04.2682511Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:59:04.2682750Z 2025-03-14T04:59:04.2683139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:04.2683639Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:04.2683961Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:59:04.2684189Z 2025-03-14T04:59:04.2684570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:04.2685095Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:04.2685434Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:59:04.2685676Z 2025-03-14T04:59:04.2686093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:04.2686661Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:04.2687030Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:59:04.2687273Z 2025-03-14T04:59:04.2687716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:04.2688334Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:04.2688627Z 2025-03-14T04:59:04.2689128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:04.2689781Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:04.2690090Z 2025-03-14T04:59:04.2690575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:04.2691202Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:04.2691621Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:59:04.2692007Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:04.2692392Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:59:04.2692685Z 2025-03-14T04:59:04.2693152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:04.2693694Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:04.2694011Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:59:04.2694383Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:04.2694772Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:59:04.2695061Z 2025-03-14T04:59:04.2695549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:04.2696164Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:04.2696532Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:04.2696918Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:59:04.2697196Z 2025-03-14T04:59:04.2697716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:04.2698319Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:04.2698705Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:04.2699100Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:59:04.2699385Z 2025-03-14T04:59:04.2699826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:04.2700341Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:04.2700648Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:04.2700911Z 2025-03-14T04:59:04.2701348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:04.2701830Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:04.2702085Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:04.2702320Z 2025-03-14T04:59:04.2702738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:04.2703211Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:04.2703522Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:04.2703766Z 2025-03-14T04:59:04.2704162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:04.2704629Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:04.2704915Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:04.2705161Z 2025-03-14T04:59:04.2705590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:04.2706166Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:04.2706460Z 2025-03-14T04:59:04.2706870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:04.2707412Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:59:04.2707689Z 2025-03-14T04:59:04.2708151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:59:04.2708745Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:59:04.2709027Z 2025-03-14T04:59:04.2709587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:59:04.2710273Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:59:04.2710519Z 2025-03-14T04:59:04.2710892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:04.2711372Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:59:04.2711625Z 2025-03-14T04:59:04.2712138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:59:04.2712731Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:59:04.2712991Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:59:04.2713255Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:59:04.2713481Z 2025-03-14T04:59:04.2714018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:59:04.2714705Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:59:04.2715177Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:59:04.2715526Z 2025-03-14T04:59:04.2716079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:59:04.2716754Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:59:04.2717053Z 2025-03-14T04:59:04.2717446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:04.2717946Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:59:04.2718206Z 2025-03-14T04:59:04.2718674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:59:04.2719253Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:59:04.2719514Z 2025-03-14T04:59:04.2719895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:59:04.2720390Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:59:04.2720653Z 2025-03-14T04:59:04.2721121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:59:04.2721688Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:59:04.2721938Z 2025-03-14T04:59:04.2722491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:59:04.2723145Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:59:04.2723446Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:04.2723790Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:59:04.2724114Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:59:04.2724358Z 2025-03-14T04:59:04.2724795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:59:04.2725314Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:59:04.2725538Z 2025-03-14T04:59:13.5091623Z 2025-03-14T04:59:13.5097747Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:13.5103506Z def forward(self, L_features_res5_: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:59:13.5105080Z l_features_res5_ = L_features_res5_ 2025-03-14T04:59:13.5105487Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:59:13.5106362Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:59:13.5106901Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:59:13.5107476Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:59:13.5108195Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:59:13.5108770Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:59:13.5109323Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:59:13.5109690Z 2025-03-14T04:59:13.5110286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:59:13.5110972Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:59:13.5111252Z 2025-03-14T04:59:13.5111649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:13.5112163Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:59:13.5112417Z 2025-03-14T04:59:13.5112960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:59:13.5113614Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:59:13.5113885Z 2025-03-14T04:59:13.5114273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:13.5114812Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:59:13.5115069Z 2025-03-14T04:59:13.5115537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:59:13.5116152Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:59:13.5116483Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:59:13.5116751Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:59:13.5116990Z 2025-03-14T04:59:13.5117414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:59:13.5117938Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:59:13.5118182Z 2025-03-14T04:59:13.5118601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:59:13.5119109Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:59:13.5119345Z 2025-03-14T04:59:13.5119821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:59:13.5120476Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:59:13.5120810Z 2025-03-14T04:59:13.5121349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:59:13.5121989Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:59:13.5122537Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:59:13.5123021Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:59:13.5123305Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:59:13.5123536Z 2025-03-14T04:59:13.5123923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:59:13.5124392Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:59:13.5124629Z 2025-03-14T04:59:13.5124965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:13.5125885Z x_1: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(l_features_res5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res5_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:59:13.5126593Z 2025-03-14T04:59:13.5126947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:59:13.5127455Z x_2: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:59:13.5127752Z 2025-03-14T04:59:13.5128211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:59:13.5129319Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:59:13.5130095Z 2025-03-14T04:59:13.5130549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:59:13.5131714Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:59:13.5132460Z 2025-03-14T04:59:13.5132886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:59:13.5133423Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:59:13.5133766Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:59:13.5134025Z 2025-03-14T04:59:13.5134542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:59:13.5135158Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T04:59:13.5135554Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:59:13.5135964Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:59:13.5136261Z 2025-03-14T04:59:13.5136752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:59:13.5137414Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:59:13.5137737Z 2025-03-14T04:59:13.5138515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:59:13.5139150Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:59:13.5139497Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:59:13.5139833Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:59:13.5140090Z 2025-03-14T04:59:13.5140546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:13.5141136Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:59:13.5141426Z 2025-03-14T04:59:13.5141820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:13.5142353Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:59:13.5142618Z 2025-03-14T04:59:13.5143020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:13.5143545Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:13.5143865Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:13.5144222Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:59:13.5144491Z 2025-03-14T04:59:13.5144898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:13.5145397Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:13.5145707Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:13.5146032Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:59:13.5146302Z 2025-03-14T04:59:13.5146702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:13.5147328Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:13.5147594Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:59:13.5147851Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:59:13.5148088Z 2025-03-14T04:59:13.5148500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:13.5149010Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:13.5149323Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:59:13.5149628Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:59:13.5149871Z 2025-03-14T04:59:13.5150288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:13.5150794Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:13.5151119Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:59:13.5151355Z 2025-03-14T04:59:13.5151739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:13.5152238Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:13.5152565Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:59:13.5152796Z 2025-03-14T04:59:13.5153174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:13.5153676Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:13.5153996Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:59:13.5154228Z 2025-03-14T04:59:13.5154615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:13.5155150Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:13.5155517Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:59:13.5155749Z 2025-03-14T04:59:13.5156163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:13.5156695Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:13.5156953Z 2025-03-14T04:59:13.5157361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:13.5157880Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:13.5158135Z 2025-03-14T04:59:13.5158560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:13.5159102Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:13.5159420Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:59:13.5159751Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:13.5160099Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:59:13.5160356Z 2025-03-14T04:59:13.5161122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:13.5161746Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:13.5162066Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:59:13.5162392Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:13.5162771Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:59:13.5163550Z 2025-03-14T04:59:13.5163979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:13.5164499Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:13.5164824Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:13.5165168Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:59:13.5165422Z 2025-03-14T04:59:13.5165844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:13.5166341Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:13.5166671Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:13.5167022Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:59:13.5167273Z 2025-03-14T04:59:13.5167666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:13.5168118Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:13.5168380Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:13.5168615Z 2025-03-14T04:59:13.5169008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:13.5169485Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:13.5169741Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:13.5169970Z 2025-03-14T04:59:13.5170361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:13.5170842Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:13.5171140Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:13.5171454Z 2025-03-14T04:59:13.5171871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:13.5172366Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:13.5172668Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:13.5172921Z 2025-03-14T04:59:13.5173378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:13.5173983Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:13.5174291Z 2025-03-14T04:59:13.5174726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:13.5175318Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:59:13.5175621Z 2025-03-14T04:59:13.5176122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:59:13.5176775Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:59:13.5177092Z 2025-03-14T04:59:13.5177684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:59:13.5178415Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:59:13.5178678Z 2025-03-14T04:59:13.5179083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:13.5179603Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:59:13.5179875Z 2025-03-14T04:59:13.5180415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:59:13.5181045Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:59:13.5181324Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:59:13.5181602Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:59:13.5181830Z 2025-03-14T04:59:13.5182372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:59:13.5183059Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:59:13.5183525Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:59:13.5183869Z 2025-03-14T04:59:13.5184409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:59:13.5185082Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:59:13.5185362Z 2025-03-14T04:59:13.5185739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:13.5186239Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:59:13.5186502Z 2025-03-14T04:59:13.5186961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:59:13.5187542Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:59:13.5187803Z 2025-03-14T04:59:13.5188181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:59:13.5188677Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:59:13.5188938Z 2025-03-14T04:59:13.5189412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:59:13.5189981Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:59:13.5190241Z 2025-03-14T04:59:13.5190850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:59:13.5191517Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:59:13.5191830Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:13.5192153Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:59:13.5192492Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:59:13.5192741Z 2025-03-14T04:59:13.5193196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:59:13.5193734Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:59:13.5193969Z 2025-03-14T04:59:13.5194111Z 2025-03-14T04:59:13.5194199Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:13.5195534Z def forward(self, L_features_res5_: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:59:13.5196863Z l_features_res5_ = L_features_res5_ 2025-03-14T04:59:13.5197264Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:59:13.5197813Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:59:13.5198309Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:59:13.5198850Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:59:13.5199454Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:59:13.5200080Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:59:13.5200653Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:59:13.5201030Z 2025-03-14T04:59:13.5201590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:59:13.5202256Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:59:13.5202535Z 2025-03-14T04:59:13.5202931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:13.5203449Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:59:13.5203710Z 2025-03-14T04:59:13.5204250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:59:13.5204964Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:59:13.5205233Z 2025-03-14T04:59:13.5205625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:13.5206127Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:59:13.5206393Z 2025-03-14T04:59:13.5206872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:59:13.5207506Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:59:13.5207851Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:59:13.5208131Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:59:13.5208374Z 2025-03-14T04:59:13.5208811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:59:13.5209348Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:59:13.5209596Z 2025-03-14T04:59:13.5210027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:59:13.5210551Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:59:13.5210798Z 2025-03-14T04:59:13.5211293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:59:13.5212068Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:59:13.5212412Z 2025-03-14T04:59:13.5212938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:59:13.5213560Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:59:13.5214084Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:59:13.5214596Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:59:13.5214900Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:59:13.5215145Z 2025-03-14T04:59:13.5215545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:59:13.5216036Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:59:13.5216304Z 2025-03-14T04:59:13.5216657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:59:13.5217637Z x_1: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(l_features_res5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res5_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:59:13.5218403Z 2025-03-14T04:59:13.5218759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:59:13.5219304Z x_2: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:59:13.5219607Z 2025-03-14T04:59:13.5220078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:59:13.5221149Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:59:13.5221907Z 2025-03-14T04:59:13.5222359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:59:13.5223369Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:59:13.5224080Z 2025-03-14T04:59:13.5224511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:59:13.5225062Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:59:13.5225421Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:59:13.5225676Z 2025-03-14T04:59:13.5226168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:59:13.5226777Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T04:59:13.5227155Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:59:13.5227550Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:59:13.5227840Z 2025-03-14T04:59:13.5228317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:59:13.5228976Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:59:13.5229293Z 2025-03-14T04:59:13.5229804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:59:13.5230430Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:59:13.5230770Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:59:13.5231125Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:59:13.5231383Z 2025-03-14T04:59:13.5231844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:13.5232456Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:59:13.5232741Z 2025-03-14T04:59:13.5233133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:13.5233637Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:59:13.5233894Z 2025-03-14T04:59:13.5234291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:13.5234789Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:13.5235095Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:13.5235419Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:59:13.5235682Z 2025-03-14T04:59:13.5236081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:13.5236580Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:13.5236878Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:13.5237198Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:59:13.5237460Z 2025-03-14T04:59:13.5237851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:13.5238348Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:13.5238610Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:59:13.5238867Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:59:13.5239104Z 2025-03-14T04:59:13.5239494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:13.5239992Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:13.5240280Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:59:13.5240545Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:59:13.5240786Z 2025-03-14T04:59:13.5241195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:13.5241700Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:13.5242022Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:59:13.5242247Z 2025-03-14T04:59:13.5242630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:13.5243127Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:13.5243448Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:59:13.5243678Z 2025-03-14T04:59:13.5244077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:13.5244577Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:13.5244918Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:59:13.5255746Z 2025-03-14T04:59:13.5256352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:13.5256918Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:13.5257280Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:59:13.5257524Z 2025-03-14T04:59:13.5257961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:13.5258493Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:13.5258753Z 2025-03-14T04:59:13.5259169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:13.5259691Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:13.5259943Z 2025-03-14T04:59:13.5260370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:13.5261139Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:13.5261466Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:59:13.5261807Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:13.5262164Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:59:13.5262641Z 2025-03-14T04:59:13.5263082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:13.5263622Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:13.5263948Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:59:13.5264278Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:13.5264628Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:59:13.5264886Z 2025-03-14T04:59:13.5265299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:13.5265800Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:13.5266129Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:13.5266477Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:59:13.5266727Z 2025-03-14T04:59:13.5267142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:13.5267641Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:13.5267976Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:13.5268374Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:59:13.5268625Z 2025-03-14T04:59:13.5269038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:13.5269538Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:13.5269825Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:13.5270061Z 2025-03-14T04:59:13.5270450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:13.5270909Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:13.5271170Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:13.5271403Z 2025-03-14T04:59:13.5271789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:13.5272257Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:13.5272550Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:13.5272794Z 2025-03-14T04:59:13.5273180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:13.5273646Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:13.5273934Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:13.5274176Z 2025-03-14T04:59:13.5274603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:13.5275181Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:13.5275490Z 2025-03-14T04:59:13.5275908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:13.5276456Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:59:13.5276735Z 2025-03-14T04:59:13.5277203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:59:13.5277807Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:59:13.5278094Z 2025-03-14T04:59:13.5278660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:59:13.5279336Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:59:13.5279582Z 2025-03-14T04:59:13.5279958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:13.5280441Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:59:13.5280699Z 2025-03-14T04:59:13.5281220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:59:13.5281834Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:59:13.5282105Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:59:13.5282372Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:59:13.5282619Z 2025-03-14T04:59:13.5283188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:59:13.5283866Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:59:13.5284314Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:59:13.5284660Z 2025-03-14T04:59:13.5285211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:59:13.5285884Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:59:13.5286168Z 2025-03-14T04:59:13.5286550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:13.5287046Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:59:13.5287308Z 2025-03-14T04:59:13.5287775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:59:13.5288352Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:59:13.5288612Z 2025-03-14T04:59:13.5288990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:59:13.5289497Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:59:13.5289757Z 2025-03-14T04:59:13.5290219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:59:13.5290792Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:59:13.5291052Z 2025-03-14T04:59:13.5291704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:59:13.5292419Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:59:13.5292740Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:13.5293092Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:59:13.5293429Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:59:13.5293688Z 2025-03-14T04:59:13.5294150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:59:13.5294693Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:59:13.5294928Z 2025-03-14T04:59:14.9391323Z 2025-03-14T04:59:14.9396356Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:14.9402064Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 82125, 4][328500, 4, 1]cpu", L_anchors_0_tensor: "f32[82125, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 82125][82125, 1]cpu"): 2025-03-14T04:59:14.9403089Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T04:59:14.9403463Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T04:59:14.9403750Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T04:59:14.9404002Z 2025-03-14T04:59:14.9404687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:59:14.9405432Z pred_anchor_deltas_i: "f32[328500, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T04:59:14.9405778Z 2025-03-14T04:59:14.9406365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:59:14.9407093Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T04:59:14.9407507Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:59:14.9407860Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:59:14.9408125Z 2025-03-14T04:59:14.9408650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:14.9409310Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T04:59:14.9409661Z 2025-03-14T04:59:14.9410054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:14.9410555Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:59:14.9410866Z 2025-03-14T04:59:14.9411277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:14.9411912Z getitem: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:14.9412232Z getitem_1: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:14.9412575Z widths: "f32[328500][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T04:59:14.9412834Z 2025-03-14T04:59:14.9413257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:14.9413749Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:14.9414049Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:14.9414370Z heights: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:59:14.9414637Z 2025-03-14T04:59:14.9415030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:14.9415511Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:14.9415772Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:59:14.9416028Z ctr_x: "f32[328500][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T04:59:14.9416270Z 2025-03-14T04:59:14.9416743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:14.9417253Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:14.9417541Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:59:14.9417854Z ctr_y: "f32[328500][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T04:59:14.9418102Z 2025-03-14T04:59:14.9418549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:14.9419056Z getitem_6: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:14.9419381Z dx: "f32[328500, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T04:59:14.9419613Z 2025-03-14T04:59:14.9419995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:14.9420490Z getitem_7: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:14.9420805Z dy: "f32[328500, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T04:59:14.9421035Z 2025-03-14T04:59:14.9421412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:14.9421908Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:14.9422217Z dw: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:59:14.9422445Z 2025-03-14T04:59:14.9422828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:14.9423352Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:14.9423696Z dh: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:59:14.9423924Z 2025-03-14T04:59:14.9424371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:14.9424902Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:14.9425158Z 2025-03-14T04:59:14.9425579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:14.9426095Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:14.9426348Z 2025-03-14T04:59:14.9426783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:14.9427323Z getitem_10: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:14.9427647Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T04:59:14.9427974Z getitem_11: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:14.9428321Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T04:59:14.9428581Z 2025-03-14T04:59:14.9429010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:14.9429553Z getitem_12: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:14.9429891Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T04:59:14.9430226Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:14.9430570Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T04:59:14.9430848Z 2025-03-14T04:59:14.9431279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:14.9431786Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:14.9432116Z getitem_14: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:14.9432463Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T04:59:14.9432714Z 2025-03-14T04:59:14.9433130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:14.9433631Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:14.9433968Z getitem_15: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:14.9434325Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T04:59:14.9434576Z 2025-03-14T04:59:14.9434974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:14.9435435Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:14.9435695Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:14.9435928Z 2025-03-14T04:59:14.9436321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:14.9436779Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:14.9437078Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:14.9437312Z 2025-03-14T04:59:14.9437699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:14.9438178Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:14.9438460Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:14.9438705Z 2025-03-14T04:59:14.9439084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:14.9439548Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:14.9439826Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:14.9440070Z 2025-03-14T04:59:14.9440495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:14.9441085Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:14.9441370Z 2025-03-14T04:59:14.9441779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:14.9442332Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:59:14.9442607Z 2025-03-14T04:59:14.9443105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:59:14.9443725Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:59:14.9444028Z 2025-03-14T04:59:14.9444612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:59:14.9445317Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:59:14.9445551Z 2025-03-14T04:59:14.9445927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:14.9446405Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:59:14.9446658Z 2025-03-14T04:59:14.9447174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:59:14.9447828Z topk = l_pred_objectness_logits_0_.topk(6000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T04:59:14.9448156Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:59:14.9448422Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:59:14.9448647Z 2025-03-14T04:59:14.9449186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:59:14.9449857Z getitem_18: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:59:14.9450299Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_18, topk_idx)]; proposals_i_1 = getitem_18 = topk_idx = None 2025-03-14T04:59:14.9450667Z 2025-03-14T04:59:14.9451219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:59:14.9452035Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:59:14.9452361Z 2025-03-14T04:59:14.9452751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:59:14.9453265Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:59:14.9453532Z 2025-03-14T04:59:14.9454002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:59:14.9454586Z getitem_20: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:59:14.9454851Z 2025-03-14T04:59:14.9455233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:59:14.9455707Z tensor: "f32[6000, 4][4, 1]cpu" = getitem_20.to(torch.float32); getitem_20 = None 2025-03-14T04:59:14.9455961Z 2025-03-14T04:59:14.9456420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:59:14.9457006Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:59:14.9457261Z 2025-03-14T04:59:14.9457827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:59:14.9458530Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T04:59:14.9458838Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:14.9459158Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:59:14.9459492Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:59:14.9459745Z 2025-03-14T04:59:14.9460198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:59:14.9461077Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:59:14.9461320Z 2025-03-14T04:59:21.9346075Z 2025-03-14T04:59:21.9347659Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:21.9350204Z def forward(self, L_stack0_: "f32[3230, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T04:59:21.9352850Z l_stack0_ = L_stack0_ 2025-03-14T04:59:21.9353235Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:59:21.9353782Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:59:21.9354283Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:59:21.9354734Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:59:21.9355235Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:59:21.9355791Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:59:21.9356346Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:59:21.9356896Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:59:21.9357371Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9357768Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9358160Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9358600Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9358895Z 2025-03-14T04:59:21.9359297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:59:21.9359885Z x: "f32[3230, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:59:21.9360826Z x_1: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:59:21.9361557Z x_2: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:59:21.9362279Z x_3: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:59:21.9363078Z x_4: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:59:21.9363355Z 2025-03-14T04:59:21.9363762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:59:21.9364719Z scores: "f32[3230, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:59:21.9365424Z 2025-03-14T04:59:21.9365848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:59:21.9366952Z proposal_deltas: "f32[3230, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:59:21.9367736Z 2025-03-14T04:59:21.9368156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:21.9368671Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:21.9368956Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:59:21.9369206Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:59:21.9369513Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:21.9369806Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T04:59:21.9370083Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:59:21.9370362Z 2025-03-14T04:59:21.9370776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:59:21.9371904Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:59:21.9372703Z 2025-03-14T04:59:21.9373248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:21.9373893Z deltas: "f32[3230, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:59:21.9374223Z 2025-03-14T04:59:21.9374660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:21.9375269Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:59:21.9375576Z 2025-03-14T04:59:21.9376026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:21.9376582Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:21.9376926Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:21.9377307Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:59:21.9377588Z 2025-03-14T04:59:21.9378039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:21.9378594Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:21.9378916Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:21.9379272Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:59:21.9379568Z 2025-03-14T04:59:21.9380010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:21.9380545Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:21.9380824Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T04:59:21.9381076Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:59:21.9381333Z 2025-03-14T04:59:21.9381730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:21.9382235Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:21.9382516Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T04:59:21.9382779Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:59:21.9383021Z 2025-03-14T04:59:21.9383441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:21.9383956Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:21.9384284Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:59:21.9384515Z 2025-03-14T04:59:21.9384902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:21.9385411Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:21.9385734Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:59:21.9385962Z 2025-03-14T04:59:21.9386344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:21.9386840Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:21.9387275Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:59:21.9387594Z 2025-03-14T04:59:21.9388186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:21.9388758Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:21.9389127Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:59:21.9389375Z 2025-03-14T04:59:21.9390037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:21.9390873Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:21.9391127Z 2025-03-14T04:59:21.9391557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:21.9392102Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:21.9392356Z 2025-03-14T04:59:21.9392789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:21.9393330Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:21.9393641Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:59:21.9393967Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:21.9394308Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:59:21.9394558Z 2025-03-14T04:59:21.9394992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:21.9395550Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:21.9395858Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:59:21.9396175Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:21.9396535Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:59:21.9396784Z 2025-03-14T04:59:21.9397219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:21.9397728Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:21.9398055Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:21.9398399Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:59:21.9398659Z 2025-03-14T04:59:21.9399090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:21.9399607Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:21.9399939Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:21.9400291Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:59:21.9400547Z 2025-03-14T04:59:21.9400979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:21.9401459Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:21.9401731Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:21.9402023Z 2025-03-14T04:59:21.9402512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:21.9402976Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:21.9403241Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:21.9403482Z 2025-03-14T04:59:21.9403872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:21.9404364Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:21.9404669Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:21.9404924Z 2025-03-14T04:59:21.9405332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:21.9405831Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:21.9406128Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:21.9406383Z 2025-03-14T04:59:21.9406833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:21.9407545Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:21.9407854Z 2025-03-14T04:59:21.9408295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:21.9408883Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T04:59:21.9409211Z 2025-03-14T04:59:21.9409688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:59:21.9410329Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:59:21.9410712Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:59:21.9411011Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:59:21.9411347Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:59:21.9411824Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:59:21.9412099Z 2025-03-14T04:59:21.9412505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:21.9413084Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:59:21.9413432Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:59:21.9413675Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:59:21.9414036Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:59:21.9414389Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T04:59:21.9414639Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:59:21.9414858Z 2025-03-14T04:59:21.9415306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:59:21.9415949Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:59:21.9416270Z 2025-03-14T04:59:21.9416736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:59:21.9417354Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:59:21.9417720Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:59:21.9418018Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:59:21.9418320Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:59:21.9418641Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:59:21.9418903Z 2025-03-14T04:59:21.9419470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:59:21.9420187Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:59:21.9420531Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:21.9420875Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:59:21.9421217Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:59:21.9421515Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:59:21.9421748Z 2025-03-14T04:59:21.9422197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:59:21.9422742Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:59:21.9422978Z 2025-03-14T04:59:21.9423071Z 2025-03-14T04:59:21.9423159Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:21.9425132Z def forward(self, L_stack0_: "f32[3230, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T04:59:21.9427224Z l_stack0_ = L_stack0_ 2025-03-14T04:59:21.9427574Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:59:21.9428062Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:59:21.9428545Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:59:21.9429028Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:59:21.9429534Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:59:21.9430148Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:59:21.9430699Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:59:21.9431240Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:59:21.9431708Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9432099Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9432490Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9432878Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9433164Z 2025-03-14T04:59:21.9433524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:59:21.9433989Z x: "f32[3230, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:59:21.9434678Z x_1: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:59:21.9435391Z x_2: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:59:21.9436102Z x_3: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:59:21.9436834Z x_4: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:59:21.9437112Z 2025-03-14T04:59:21.9437513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:59:21.9438522Z scores: "f32[3230, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:59:21.9439231Z 2025-03-14T04:59:21.9440726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:59:21.9442721Z proposal_deltas: "f32[3230, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:59:21.9443521Z 2025-03-14T04:59:21.9443928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:21.9444420Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:21.9444741Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:59:21.9444983Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:59:21.9445268Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:21.9445571Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T04:59:21.9445830Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:59:21.9446126Z 2025-03-14T04:59:21.9446541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:59:21.9447552Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:59:21.9448358Z 2025-03-14T04:59:21.9448879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:21.9449518Z deltas: "f32[3230, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:59:21.9449803Z 2025-03-14T04:59:21.9450224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:21.9450778Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:59:21.9451080Z 2025-03-14T04:59:21.9451581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:21.9452144Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:21.9452493Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:21.9452847Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:59:21.9453142Z 2025-03-14T04:59:21.9453570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:21.9454088Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:21.9454398Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:21.9454728Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:59:21.9454999Z 2025-03-14T04:59:21.9455414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:21.9455916Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:21.9456182Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T04:59:21.9456449Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:59:21.9456689Z 2025-03-14T04:59:21.9457104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:21.9457629Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:21.9457923Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T04:59:21.9458194Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:59:21.9458447Z 2025-03-14T04:59:21.9458915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:21.9459458Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:21.9459799Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:59:21.9460065Z 2025-03-14T04:59:21.9460508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:21.9461223Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:21.9461562Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:59:21.9461810Z 2025-03-14T04:59:21.9462215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:21.9462725Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:21.9463059Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:59:21.9463317Z 2025-03-14T04:59:21.9463703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:21.9464234Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:21.9464576Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:59:21.9464804Z 2025-03-14T04:59:21.9465223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:21.9465747Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:21.9466005Z 2025-03-14T04:59:21.9466420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:21.9467007Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:21.9467253Z 2025-03-14T04:59:21.9467698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:21.9468262Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:21.9468586Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:59:21.9468924Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:21.9469264Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:59:21.9469516Z 2025-03-14T04:59:21.9469946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:21.9470478Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:21.9470785Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:59:21.9471107Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:21.9471442Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:59:21.9471688Z 2025-03-14T04:59:21.9472124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:21.9472627Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:21.9472950Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:21.9473309Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:59:21.9473555Z 2025-03-14T04:59:21.9473986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:21.9474487Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:21.9474814Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:21.9475164Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:59:21.9475418Z 2025-03-14T04:59:21.9475809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:21.9476284Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:21.9476538Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:21.9476772Z 2025-03-14T04:59:21.9477165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:21.9477627Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:21.9477884Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:21.9478114Z 2025-03-14T04:59:21.9478502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:21.9478974Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:21.9479259Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:21.9479523Z 2025-03-14T04:59:21.9479906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:21.9480380Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:21.9480666Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:21.9480906Z 2025-03-14T04:59:21.9481343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:21.9481922Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:21.9482210Z 2025-03-14T04:59:21.9482625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:21.9483177Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T04:59:21.9483462Z 2025-03-14T04:59:21.9483904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:59:21.9484511Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:59:21.9484869Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:59:21.9485157Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:59:21.9485474Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:59:21.9485789Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:59:21.9486067Z 2025-03-14T04:59:21.9486433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:21.9486996Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:59:21.9487361Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:59:21.9487609Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:59:21.9487986Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:59:21.9488405Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T04:59:21.9488761Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:59:21.9489091Z 2025-03-14T04:59:21.9489545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:59:21.9490172Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:59:21.9490470Z 2025-03-14T04:59:21.9490925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:59:21.9491623Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:59:21.9492012Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:59:21.9492329Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:59:21.9492664Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:59:21.9492997Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:59:21.9493308Z 2025-03-14T04:59:21.9493871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:59:21.9494578Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:59:21.9494921Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:21.9495266Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:59:21.9495610Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:59:21.9495908Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:59:21.9496148Z 2025-03-14T04:59:21.9496587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:59:21.9497120Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:59:21.9497357Z 2025-03-14T04:59:21.9497506Z 2025-03-14T04:59:21.9497602Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:21.9499615Z def forward(self, L_stack0_: "f32[3230, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T04:59:21.9501740Z l_stack0_ = L_stack0_ 2025-03-14T04:59:21.9502094Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:59:21.9502587Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:59:21.9503073Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:59:21.9503557Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:59:21.9504088Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:59:21.9504639Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:59:21.9505187Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:59:21.9505735Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:59:21.9506205Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9506664Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9507328Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9507833Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9508119Z 2025-03-14T04:59:21.9508484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:59:21.9508948Z x: "f32[3230, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:59:21.9509641Z x_1: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:59:21.9510345Z x_2: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:59:21.9511052Z x_3: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:59:21.9511928Z x_4: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:59:21.9512201Z 2025-03-14T04:59:21.9512616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:59:21.9513641Z scores: "f32[3230, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:59:21.9514400Z 2025-03-14T04:59:21.9514831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:59:21.9515827Z proposal_deltas: "f32[3230, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:59:21.9516615Z 2025-03-14T04:59:21.9517008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:21.9517502Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:21.9517759Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:59:21.9518000Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:59:21.9518286Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:21.9518562Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T04:59:21.9518803Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:59:21.9519028Z 2025-03-14T04:59:21.9519393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:59:21.9520327Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:59:21.9521038Z 2025-03-14T04:59:21.9521512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:21.9522090Z deltas: "f32[3230, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:59:21.9522360Z 2025-03-14T04:59:21.9522754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:21.9523275Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:59:21.9523552Z 2025-03-14T04:59:21.9523949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:21.9524445Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:21.9524753Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:21.9525069Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:59:21.9525327Z 2025-03-14T04:59:21.9525734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:21.9526227Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:21.9526521Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:21.9526832Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:59:21.9527103Z 2025-03-14T04:59:21.9527535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:21.9528043Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:21.9528326Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T04:59:21.9528587Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:59:21.9528849Z 2025-03-14T04:59:21.9529265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:21.9529803Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:21.9530098Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T04:59:21.9530369Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:59:21.9530621Z 2025-03-14T04:59:21.9531043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:21.9531695Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:21.9532059Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:59:21.9532316Z 2025-03-14T04:59:21.9532744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:21.9533277Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:21.9533613Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:59:21.9533855Z 2025-03-14T04:59:21.9534252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:21.9534797Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:21.9535145Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:59:21.9535391Z 2025-03-14T04:59:21.9535809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:21.9536391Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:21.9536758Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:59:21.9537006Z 2025-03-14T04:59:21.9537465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:21.9538033Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:21.9538307Z 2025-03-14T04:59:21.9538755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:21.9539320Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:21.9539591Z 2025-03-14T04:59:21.9540053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:21.9540626Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:21.9540958Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:59:21.9541311Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:21.9541650Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:59:21.9541922Z 2025-03-14T04:59:21.9542371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:21.9542899Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:21.9543204Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:59:21.9543523Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:21.9543855Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:59:21.9544100Z 2025-03-14T04:59:21.9544513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:21.9545005Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:21.9545319Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:21.9545652Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:59:21.9545893Z 2025-03-14T04:59:21.9546300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:21.9546790Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:21.9547113Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:21.9547459Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:59:21.9547708Z 2025-03-14T04:59:21.9548097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:21.9548600Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:21.9548857Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:21.9549089Z 2025-03-14T04:59:21.9549482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:21.9549934Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:21.9550186Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:21.9550417Z 2025-03-14T04:59:21.9550810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:21.9551275Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:21.9551566Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:21.9551799Z 2025-03-14T04:59:21.9552183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:21.9552645Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:21.9552927Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:21.9553172Z 2025-03-14T04:59:21.9553620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:21.9554197Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:21.9554484Z 2025-03-14T04:59:21.9554920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:21.9555502Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T04:59:21.9555785Z 2025-03-14T04:59:21.9556227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:59:21.9556840Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:59:21.9557200Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:59:21.9557482Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:59:21.9557782Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:59:21.9558098Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:59:21.9558354Z 2025-03-14T04:59:21.9558732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:21.9559283Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:59:21.9559627Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:59:21.9559859Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:59:21.9560221Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:59:21.9560759Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T04:59:21.9561014Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:59:21.9561285Z 2025-03-14T04:59:21.9561701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:59:21.9562257Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:59:21.9562541Z 2025-03-14T04:59:21.9562977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:59:21.9563638Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:59:21.9563991Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:59:21.9564271Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:59:21.9564557Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:59:21.9564867Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:59:21.9565124Z 2025-03-14T04:59:21.9565674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:59:21.9566359Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:59:21.9566694Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:21.9567030Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:59:21.9567400Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:59:21.9567701Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:59:21.9567979Z 2025-03-14T04:59:21.9568448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:59:21.9568979Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:59:21.9569204Z 2025-03-14T04:59:21.9569341Z 2025-03-14T04:59:21.9569436Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:21.9571503Z def forward(self, L_stack0_: "f32[3230, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T04:59:21.9573716Z l_stack0_ = L_stack0_ 2025-03-14T04:59:21.9574049Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:59:21.9574531Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:59:21.9575004Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:59:21.9575495Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:59:21.9576017Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:59:21.9576596Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:59:21.9577166Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:59:21.9577727Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:59:21.9578212Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9578616Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9579013Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9579396Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:59:21.9579685Z 2025-03-14T04:59:21.9580054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:59:21.9580531Z x: "f32[3230, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:59:21.9581267Z x_1: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:59:21.9582004Z x_2: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:59:21.9582765Z x_3: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:59:21.9583484Z x_4: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:59:21.9583762Z 2025-03-14T04:59:21.9584163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:59:21.9585137Z scores: "f32[3230, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:59:21.9585856Z 2025-03-14T04:59:21.9586272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:59:21.9587276Z proposal_deltas: "f32[3230, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:59:21.9588016Z 2025-03-14T04:59:21.9588389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:21.9588856Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:21.9589105Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:59:21.9589335Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:59:21.9589608Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:21.9589867Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T04:59:21.9590107Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:59:21.9590315Z 2025-03-14T04:59:21.9590678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:59:21.9591612Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:59:21.9592321Z 2025-03-14T04:59:21.9592774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:21.9593340Z deltas: "f32[3230, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:59:21.9593608Z 2025-03-14T04:59:21.9593995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:21.9594507Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:59:21.9594771Z 2025-03-14T04:59:21.9595178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:21.9595672Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:21.9595991Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:21.9596316Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:59:21.9596576Z 2025-03-14T04:59:21.9596984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:21.9597472Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:21.9597764Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:21.9598078Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:59:21.9598336Z 2025-03-14T04:59:21.9598727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:21.9599220Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:21.9599475Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T04:59:21.9599723Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:59:21.9599954Z 2025-03-14T04:59:21.9600345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:21.9600855Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:21.9601133Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T04:59:21.9601395Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:59:21.9601631Z 2025-03-14T04:59:21.9602026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:21.9602567Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:21.9602889Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:59:21.9603121Z 2025-03-14T04:59:21.9603506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:21.9604011Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:21.9604330Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:59:21.9604562Z 2025-03-14T04:59:21.9604944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:21.9605446Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:21.9605767Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:59:21.9605994Z 2025-03-14T04:59:21.9606394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:21.9606953Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:21.9607311Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:59:21.9607548Z 2025-03-14T04:59:21.9608005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:21.9608556Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:21.9608847Z 2025-03-14T04:59:21.9609295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:21.9609837Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:21.9610093Z 2025-03-14T04:59:21.9610537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:21.9611095Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:21.9611535Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:59:21.9611920Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:21.9612307Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:59:21.9612598Z 2025-03-14T04:59:21.9613088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:21.9613695Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:21.9614025Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:59:21.9614388Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:21.9614762Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:59:21.9615037Z 2025-03-14T04:59:21.9615498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:21.9616075Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:21.9616433Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:21.9616812Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:59:21.9617083Z 2025-03-14T04:59:21.9617539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:21.9618089Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:21.9618454Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:21.9618834Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:59:21.9619111Z 2025-03-14T04:59:21.9619550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:21.9620064Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:21.9620351Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:21.9620605Z 2025-03-14T04:59:21.9621037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:21.9621542Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:21.9621846Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:21.9622111Z 2025-03-14T04:59:21.9622542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:21.9623085Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:21.9623467Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:21.9623739Z 2025-03-14T04:59:21.9624173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:21.9624691Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:21.9625003Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:21.9625244Z 2025-03-14T04:59:21.9625668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:21.9626239Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:21.9626526Z 2025-03-14T04:59:21.9626942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:21.9627500Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T04:59:21.9627794Z 2025-03-14T04:59:21.9628250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:59:21.9628852Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:59:21.9629217Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:59:21.9629527Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:59:21.9629855Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:59:21.9630210Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:59:21.9630491Z 2025-03-14T04:59:21.9630909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:21.9631502Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:59:21.9631858Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:59:21.9632111Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:59:21.9632491Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:59:21.9632855Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T04:59:21.9633112Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:59:21.9633339Z 2025-03-14T04:59:21.9633772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:59:21.9634343Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:59:21.9634637Z 2025-03-14T04:59:21.9635090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:59:21.9635727Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:59:21.9636105Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:59:21.9636412Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:59:21.9636757Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:59:21.9637119Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:59:21.9637407Z 2025-03-14T04:59:21.9638017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:59:21.9638781Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:59:21.9639162Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:21.9639548Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:59:21.9639908Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:59:21.9640222Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:59:21.9640469Z 2025-03-14T04:59:21.9640923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:59:21.9641463Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:59:21.9641706Z 2025-03-14T04:59:24.0180912Z 2025-03-14T04:59:24.0184152Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:24.0189479Z def forward(self, L_predictions_0_: "f32[3230, 81][81, 1]cpu", L_predictions_1_: "f32[3230, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T04:59:24.0191360Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:59:24.0191668Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:59:24.0192027Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:59:24.0192439Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:59:24.0192851Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:59:24.0193241Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:59:24.0193528Z 2025-03-14T04:59:24.0193949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:24.0194426Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:24.0194685Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:59:24.0194916Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:59:24.0195203Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:24.0195460Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T04:59:24.0195697Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:59:24.0195915Z 2025-03-14T04:59:24.0196321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:59:24.0197459Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:59:24.0198389Z 2025-03-14T04:59:24.0198928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:24.0199567Z deltas: "f32[3230, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:59:24.0199828Z 2025-03-14T04:59:24.0200227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:24.0200753Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:59:24.0201022Z 2025-03-14T04:59:24.0201420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:24.0201919Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:24.0202218Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:24.0202530Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:59:24.0202788Z 2025-03-14T04:59:24.0203176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:24.0203655Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:24.0203940Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:24.0204249Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:59:24.0204505Z 2025-03-14T04:59:24.0204887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:24.0205383Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:24.0205634Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T04:59:24.0205890Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:59:24.0206124Z 2025-03-14T04:59:24.0206517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:24.0207016Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:24.0207299Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T04:59:24.0207559Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:59:24.0207801Z 2025-03-14T04:59:24.0208218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:24.0208732Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:24.0209057Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:59:24.0209291Z 2025-03-14T04:59:24.0209675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:24.0210180Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:24.0210502Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:59:24.0210739Z 2025-03-14T04:59:24.0211147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:24.0211837Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:24.0212214Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:59:24.0212468Z 2025-03-14T04:59:24.0212893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:24.0213435Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:24.0213785Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:59:24.0214016Z 2025-03-14T04:59:24.0214433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:24.0214970Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:24.0215233Z 2025-03-14T04:59:24.0215660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:24.0216184Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:24.0216433Z 2025-03-14T04:59:24.0216861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:24.0217413Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:24.0217727Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:59:24.0218057Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:24.0218423Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:59:24.0218680Z 2025-03-14T04:59:24.0219114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:24.0220371Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:24.0220712Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:59:24.0221044Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:24.0221385Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:59:24.0221649Z 2025-03-14T04:59:24.0222081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:24.0222608Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:24.0222943Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:24.0223291Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:59:24.0224043Z 2025-03-14T04:59:24.0224514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:24.0225043Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:24.0225425Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:24.0225796Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:59:24.0226058Z 2025-03-14T04:59:24.0226475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:24.0227000Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:24.0227275Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:24.0227517Z 2025-03-14T04:59:24.0227918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:24.0228381Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:24.0229157Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:24.0229446Z 2025-03-14T04:59:24.0229861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:24.0230351Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:24.0230650Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:24.0230906Z 2025-03-14T04:59:24.0231300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:24.0231776Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:24.0232062Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:24.0233176Z 2025-03-14T04:59:24.0233698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:24.0234307Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:24.0234649Z 2025-03-14T04:59:24.0235080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:24.0235645Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T04:59:24.0235932Z 2025-03-14T04:59:24.0236387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:59:24.0237009Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:59:24.0237380Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:59:24.0237673Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:59:24.0237982Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:59:24.0238311Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:59:24.0238585Z 2025-03-14T04:59:24.0238959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:24.0239521Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:59:24.0239864Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:59:24.0240108Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:59:24.0240487Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:59:24.0240843Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T04:59:24.0241093Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:59:24.0241365Z 2025-03-14T04:59:24.0241803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:59:24.0242404Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:59:24.0242727Z 2025-03-14T04:59:24.0243162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:59:24.0243757Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:59:24.0244114Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:59:24.0244402Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:59:24.0244699Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:59:24.0245009Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:59:24.0245272Z 2025-03-14T04:59:24.0245825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:59:24.0246522Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:59:24.0246860Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:24.0247197Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:59:24.0247536Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:59:24.0247847Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:59:24.0248088Z 2025-03-14T04:59:24.0248518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:59:24.0249028Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:59:24.0249255Z 2025-03-14T04:59:24.0249396Z 2025-03-14T04:59:24.0249487Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:24.0250312Z def forward(self, L_predictions_0_: "f32[3230, 81][81, 1]cpu", L_predictions_1_: "f32[3230, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T04:59:24.0251121Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:59:24.0251430Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:59:24.0251825Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:59:24.0252239Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:59:24.0252645Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:59:24.0253048Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:59:24.0253331Z 2025-03-14T04:59:24.0253736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:24.0254196Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:24.0254451Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:59:24.0254700Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:59:24.0254966Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:24.0255236Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T04:59:24.0255474Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:59:24.0255693Z 2025-03-14T04:59:24.0256059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:59:24.0257002Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:59:24.0257729Z 2025-03-14T04:59:24.0259161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:24.0260083Z deltas: "f32[3230, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:59:24.0260354Z 2025-03-14T04:59:24.0260951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:24.0261474Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:59:24.0261746Z 2025-03-14T04:59:24.0262137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:24.0262620Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:24.0262971Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:24.0263280Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:59:24.0263534Z 2025-03-14T04:59:24.0263923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:24.0264399Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:24.0264685Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:24.0264994Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:59:24.0265251Z 2025-03-14T04:59:24.0265631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:24.0266098Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:24.0266339Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T04:59:24.0266585Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:59:24.0266811Z 2025-03-14T04:59:24.0267214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:24.0267707Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:24.0267984Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T04:59:24.0268235Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:59:24.0268468Z 2025-03-14T04:59:24.0268903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:24.0269402Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:24.0269746Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:59:24.0270012Z 2025-03-14T04:59:24.0270387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:24.0270877Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:24.0271194Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:59:24.0271424Z 2025-03-14T04:59:24.0271802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:24.0272285Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:24.0272596Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:59:24.0272821Z 2025-03-14T04:59:24.0273196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:24.0273712Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:24.0274044Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:59:24.0274267Z 2025-03-14T04:59:24.0274671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:24.0275185Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:24.0275450Z 2025-03-14T04:59:24.0275856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:24.0276368Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:24.0276614Z 2025-03-14T04:59:24.0277031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:24.0277550Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:24.0277857Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:59:24.0278178Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:24.0278519Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:59:24.0278772Z 2025-03-14T04:59:24.0279198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:24.0279721Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:24.0280025Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:59:24.0280338Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:24.0280667Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:59:24.0280912Z 2025-03-14T04:59:24.0281342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:24.0281830Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:24.0282162Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:24.0282507Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:59:24.0282747Z 2025-03-14T04:59:24.0283153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:24.0283640Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:24.0283956Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:24.0284292Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:59:24.0284528Z 2025-03-14T04:59:24.0284913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:24.0285362Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:24.0285614Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:24.0285845Z 2025-03-14T04:59:24.0286228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:24.0286670Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:24.0286920Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:24.0287142Z 2025-03-14T04:59:24.0287519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:24.0287998Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:24.0288279Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:24.0288518Z 2025-03-14T04:59:24.0288896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:24.0289354Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:24.0289632Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:24.0289873Z 2025-03-14T04:59:24.0290309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:24.0290903Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:24.0291197Z 2025-03-14T04:59:24.0291726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:24.0292326Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T04:59:24.0292631Z 2025-03-14T04:59:24.0293107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:59:24.0293754Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:59:24.0294163Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:59:24.0294461Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:59:24.0294775Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:59:24.0295117Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:59:24.0295378Z 2025-03-14T04:59:24.0295774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:24.0296336Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:59:24.0296694Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:59:24.0296939Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:59:24.0297308Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:59:24.0297665Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T04:59:24.0297915Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:59:24.0298129Z 2025-03-14T04:59:24.0298550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:59:24.0299150Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:59:24.0299479Z 2025-03-14T04:59:24.0299925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:59:24.0300532Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:59:24.0300901Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:59:24.0301195Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:59:24.0301515Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:59:24.0301833Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:59:24.0302099Z 2025-03-14T04:59:24.0302656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:59:24.0303354Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:59:24.0303702Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:24.0304043Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:59:24.0304386Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:59:24.0304689Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:59:24.0304936Z 2025-03-14T04:59:24.0305378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:59:24.0305901Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:59:24.0306134Z 2025-03-14T04:59:24.0306264Z 2025-03-14T04:59:24.0306360Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:24.0308151Z def forward(self, L_predictions_0_: "f32[3230, 81][81, 1]cpu", L_predictions_1_: "f32[3230, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T04:59:24.0308943Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:59:24.0309183Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:59:24.0309482Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:59:24.0309892Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:59:24.0310270Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:59:24.0310644Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:59:24.0310924Z 2025-03-14T04:59:24.0311302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:24.0311763Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:24.0312000Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:59:24.0312228Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:59:24.0312497Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:59:24.0312749Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T04:59:24.0312987Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:59:24.0313202Z 2025-03-14T04:59:24.0313564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:59:24.0314488Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:59:24.0315184Z 2025-03-14T04:59:24.0315637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:59:24.0316220Z deltas: "f32[3230, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:59:24.0316480Z 2025-03-14T04:59:24.0316861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:59:24.0317369Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:59:24.0317633Z 2025-03-14T04:59:24.0318027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:59:24.0318508Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:59:24.0318800Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:24.0319109Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:59:24.0319360Z 2025-03-14T04:59:24.0319747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:59:24.0320220Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:59:24.0320496Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:59:24.0320800Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:59:24.0321053Z 2025-03-14T04:59:24.0321450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:59:24.0321925Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:59:24.0322194Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T04:59:24.0322443Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:59:24.0322674Z 2025-03-14T04:59:24.0323083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:59:24.0323571Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:59:24.0323843Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T04:59:24.0324096Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:59:24.0324326Z 2025-03-14T04:59:24.0324719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:59:24.0325218Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:59:24.0325534Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:59:24.0325761Z 2025-03-14T04:59:24.0326132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:59:24.0326620Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:59:24.0326928Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:59:24.0327153Z 2025-03-14T04:59:24.0327522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:59:24.0328009Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:59:24.0328341Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:59:24.0328562Z 2025-03-14T04:59:24.0328942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:59:24.0329468Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:59:24.0329806Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:59:24.0330031Z 2025-03-14T04:59:24.0330450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:59:24.0330973Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:59:24.0331244Z 2025-03-14T04:59:24.0331767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:59:24.0332327Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:59:24.0332595Z 2025-03-14T04:59:24.0333033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:59:24.0333571Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:59:24.0333884Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:59:24.0334232Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:59:24.0334574Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:59:24.0334830Z 2025-03-14T04:59:24.0335281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:59:24.0335833Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:59:24.0336141Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:59:24.0336465Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:59:24.0336797Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:59:24.0337047Z 2025-03-14T04:59:24.0337463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:59:24.0337966Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:59:24.0338294Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:59:24.0338634Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:59:24.0338879Z 2025-03-14T04:59:24.0339294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:59:24.0339792Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:59:24.0340127Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:59:24.0340477Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:59:24.0340733Z 2025-03-14T04:59:24.0341128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:59:24.0341626Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:59:24.0341892Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:59:24.0342121Z 2025-03-14T04:59:24.0342509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:59:24.0342966Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:59:24.0343221Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:59:24.0343454Z 2025-03-14T04:59:24.0343845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:59:24.0344302Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:59:24.0344581Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:59:24.0344811Z 2025-03-14T04:59:24.0345188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:59:24.0345649Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:59:24.0345922Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:59:24.0346157Z 2025-03-14T04:59:24.0346574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:59:24.0347153Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:59:24.0347431Z 2025-03-14T04:59:24.0347840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:59:24.0348410Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T04:59:24.0348687Z 2025-03-14T04:59:24.0349113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:59:24.0349706Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:59:24.0350056Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:59:24.0350332Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:59:24.0350624Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:59:24.0350931Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:59:24.0351186Z 2025-03-14T04:59:24.0351550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:59:24.0352089Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:59:24.0352424Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:59:24.0352653Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:59:24.0353002Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:59:24.0353342Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T04:59:24.0353577Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:59:24.0353786Z 2025-03-14T04:59:24.0354209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:59:24.0354787Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:59:24.0355098Z 2025-03-14T04:59:24.0355524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:59:24.0356106Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:59:24.0356453Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:59:24.0356728Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:59:24.0357016Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:59:24.0357322Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:59:24.0357570Z 2025-03-14T04:59:24.0358103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:59:24.0358764Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:59:24.0359090Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:24.0359419Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:59:24.0359761Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:59:24.0360049Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:59:24.0360280Z 2025-03-14T04:59:24.0360897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:59:24.0361451Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:59:24.0361683Z 2025-03-14T04:59:26.1834451Z 2025-03-14T04:59:26.1835316Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:26.1835970Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T04:59:26.1836391Z l_scores_0_ = L_scores_0_ 2025-03-14T04:59:26.1836733Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:59:26.1836936Z 2025-03-14T04:59:26.1837756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:59:26.1838617Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:59:26.1839054Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:26.1839432Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:59:26.1839806Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:59:26.1840141Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:59:26.1840441Z 2025-03-14T04:59:26.1840919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:59:26.1841499Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:59:26.1841750Z 2025-03-14T04:59:26.1842171Z 2025-03-14T04:59:26.1842268Z class GraphModule(torch.nn.Module): 2025-03-14T04:59:26.1842594Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T04:59:26.1842908Z l_scores_0_ = L_scores_0_ 2025-03-14T04:59:26.1843110Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:59:26.1843304Z 2025-03-14T04:59:26.1843888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:59:26.1844588Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:59:26.1844919Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:59:26.1845250Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:59:26.1845566Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:59:26.1845862Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:59:26.1846098Z 2025-03-14T04:59:26.1846574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:59:26.1847110Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:59:26.1847340Z 2025-03-14T04:59:41.2839837Z Compilation time (from dynamo_timed): 34.015178256 2025-03-14T04:59:41.2840324Z pass 2025-03-14T04:59:41.2844831Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:59:41.2846091Z TIMING: entire_frame_compile:34.01518 gc:0.03173 _recursive_pre_grad_passes:0.02747 async_compile.wait:8.36549 backend_compile:22.97429 _recursive_joint_graph_passes:0.44985 _recursive_post_grad_passes:0.09334 code_gen:11.37255 inductor_compile:12.85523 total_wall_time:34.01518 2025-03-14T04:59:41.2847341Z STATS: call_* op count: 611 | FakeTensorMode.__torch_dispatch__:18545 | FakeTensor.__torch_dispatch__:1849 | ProxyTorchDispatchMode.__torch_dispatch__:5936 | attempt fast:51 | slow no contiguity match:20 | fast is_contiguous:31 2025-03-14T04:59:41.2848017Z Dynamo produced 52 graphs covering 611 ops with 42 graph breaks (6 unique) 2025-03-14T04:59:46.3424558Z 2025-03-14T04:59:51.9143685Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:59:51.9147178Z loading model: 0it [00:05, ?it/s] 2025-03-14T04:59:51.9151265Z cpu eval detectron2_fasterrcnn_r_50_fpn 2025-03-14T05:00:05.7666021Z WARNING:common:fp64 golden ref were not generated for detectron2_fasterrcnn_r_50_fpn. Setting accuracy check to cosine 2025-03-14T05:00:05.7893168Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:00:14.4400107Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:00:22.1579143Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:00:32.2283352Z 2025-03-14T05:00:32.2284056Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:32.2366480Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:00:32.2435269Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:00:32.2435917Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2436812Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2437773Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2438736Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2439699Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2440701Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2441685Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2442684Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2477672Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2478635Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2479437Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2480467Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2481363Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2482330Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2483145Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2483914Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2484763Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2485645Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2486496Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2487321Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2488128Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:32.2489028Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2489970Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2490882Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2492034Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2492974Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2493833Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2494702Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2495583Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2496492Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2497269Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2498074Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2498932Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2499815Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2500675Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2501477Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2502302Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2503209Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2504124Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2505001Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2505825Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2506688Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2507610Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2508505Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2509382Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2510228Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2511135Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2512066Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2512979Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2513866Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2514721Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2515604Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2516544Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2517452Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2518405Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2519196Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2520015Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2520900Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2521760Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2522572Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2523330Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2524161Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2525030Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2525909Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2526747Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2527547Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2528389Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2529328Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2530223Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2531090Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2532063Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:32.2533004Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2533921Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2534818Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2535696Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2536514Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2537343Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2538254Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2539122Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2540004Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2540811Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2541638Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2542536Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2543411Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2544245Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2545052Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2545890Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2546811Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2547677Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2548516Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2549315Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2550154Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2551044Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2551911Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2552777Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2553556Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2554435Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2555307Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2556150Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2556966Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2557742Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2558556Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2559421Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2560262Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2561262Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2562086Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2562921Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2563798Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2564646Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2565464Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2566244Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2567132Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2568062Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2568925Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2569774Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2570581Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2571483Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2572421Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2573318Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2574171Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2575021Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2575866Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2576757Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2577667Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2578513Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2579322Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2580157Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2581077Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2581955Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2582847Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2583657Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2584484Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2585369Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2586243Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2587074Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2587887Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:32.2588757Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2589712Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2590620Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2591487Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2592285Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2593110Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2593999Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2594834Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2595671Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2596463Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2597300Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2598173Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2599021Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2599856Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2600652Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2601484Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2602349Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2603194Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2604069Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2604884Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2605725Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2606635Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2607545Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2608410Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2609259Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2610121Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2611088Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2613129Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2614334Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2615411Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2616353Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2617272Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2618147Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2618998Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2619853Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2620685Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2621600Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2622483Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2623306Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2624089Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2624903Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2626129Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2626995Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2628030Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2628847Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2629685Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2630560Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2631412Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2632239Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2633040Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2633845Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2634759Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2635918Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2636759Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2637682Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2638539Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2639427Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2640279Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2641131Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2641954Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2642779Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2643662Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2644517Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2645632Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2646444Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2647519Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2648409Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2649319Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2650173Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2650986Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2651959Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2652940Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2653829Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2654667Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2655822Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2656688Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2657775Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2658675Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2659531Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2660358Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2661318Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2662225Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2663104Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2663948Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2664823Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2666001Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2666898Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2667869Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2668691Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2669474Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2670285Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2671190Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2672063Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2672903Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2673705Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:32.2674550Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2675717Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2676627Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2677597Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2678419Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2679251Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2680170Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2681020Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2681850Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2682647Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2683462Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2684311Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2685425Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2686320Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2687755Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2688613Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2689515Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2690414Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2691288Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2692234Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.2693107Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2693986Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2694862Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2696014Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2696831Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.2697678Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2698574Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2699460Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2700305Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2701138Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.2701977Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.2702902Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.2703774Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.2704617Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.2705331Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T05:00:32.2705852Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T05:00:32.2706355Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T05:00:32.2706855Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T05:00:32.2707354Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T05:00:32.2707850Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T05:00:32.2708347Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T05:00:32.2708871Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T05:00:32.2709378Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T05:00:32.2709881Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T05:00:32.2710384Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T05:00:32.2710882Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T05:00:32.2711382Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T05:00:32.2711885Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T05:00:32.2712389Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T05:00:32.2712898Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T05:00:32.2713536Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:00:32.2714320Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:00:32.2715125Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:00:32.2715902Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:00:32.2716737Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:00:32.2717495Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:00:32.2718206Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:00:32.2718980Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:00:32.2719823Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:00:32.2720635Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:00:32.2721426Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:00:32.2721927Z 2025-03-14T05:00:32.2722358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2723311Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.2724026Z 2025-03-14T05:00:32.2724416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2727819Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2730003Z 2025-03-14T05:00:32.2730435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:00:32.2730981Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:00:32.2731277Z 2025-03-14T05:00:32.2731918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:00:32.2732700Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:00:32.2733109Z 2025-03-14T05:00:32.2733494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2734399Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.2735082Z 2025-03-14T05:00:32.2736170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2738738Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2740808Z 2025-03-14T05:00:32.2741233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2741744Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:00:32.2742015Z 2025-03-14T05:00:32.2742374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2743226Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.2743875Z 2025-03-14T05:00:32.2744246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2746891Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2749219Z 2025-03-14T05:00:32.2749645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2750226Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:00:32.2750503Z 2025-03-14T05:00:32.2750859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2751672Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.2752317Z 2025-03-14T05:00:32.2752681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2756198Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2759184Z 2025-03-14T05:00:32.2759566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2760406Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:32.2761138Z 2025-03-14T05:00:32.2761504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2763985Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2766785Z 2025-03-14T05:00:32.2767212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.2767813Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:00:32.2768147Z 2025-03-14T05:00:32.2768568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2769128Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:00:32.2769438Z 2025-03-14T05:00:32.2769827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2770771Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.2771581Z 2025-03-14T05:00:32.2771996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2774374Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2776467Z 2025-03-14T05:00:32.2776856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2777363Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:00:32.2777641Z 2025-03-14T05:00:32.2777992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2778826Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.2779466Z 2025-03-14T05:00:32.2779834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2782064Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2784004Z 2025-03-14T05:00:32.2784368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2784846Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:00:32.2785102Z 2025-03-14T05:00:32.2785440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2786259Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.2786916Z 2025-03-14T05:00:32.2787278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2789529Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2791580Z 2025-03-14T05:00:32.2791968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.2792491Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:00:32.2792773Z 2025-03-14T05:00:32.2793163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2793685Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:00:32.2793963Z 2025-03-14T05:00:32.2794322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2795167Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.2795795Z 2025-03-14T05:00:32.2796178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2798529Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2800602Z 2025-03-14T05:00:32.2801011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2801523Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:00:32.2801793Z 2025-03-14T05:00:32.2802144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2802994Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.2803632Z 2025-03-14T05:00:32.2803998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2806352Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2808485Z 2025-03-14T05:00:32.2808910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2809462Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:00:32.2809758Z 2025-03-14T05:00:32.2810137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2811082Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.2811862Z 2025-03-14T05:00:32.2812279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2814638Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2816674Z 2025-03-14T05:00:32.2817057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.2817570Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:00:32.2817850Z 2025-03-14T05:00:32.2818237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2818757Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:00:32.2819039Z 2025-03-14T05:00:32.2819391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2820261Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.2820903Z 2025-03-14T05:00:32.2821279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2823522Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2825440Z 2025-03-14T05:00:32.2825815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2826326Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:00:32.2826599Z 2025-03-14T05:00:32.2826934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2827800Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.2828435Z 2025-03-14T05:00:32.2828786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2830919Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2832841Z 2025-03-14T05:00:32.2833229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2833712Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:00:32.2833997Z 2025-03-14T05:00:32.2834346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2835198Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.2835853Z 2025-03-14T05:00:32.2836222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2838474Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2840519Z 2025-03-14T05:00:32.2840893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2841765Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:32.2842432Z 2025-03-14T05:00:32.2842799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2845113Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2847350Z 2025-03-14T05:00:32.2847757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.2848297Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:00:32.2848594Z 2025-03-14T05:00:32.2849026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2849584Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:00:32.2849881Z 2025-03-14T05:00:32.2850252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2851141Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.2851887Z 2025-03-14T05:00:32.2852319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2854686Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2856830Z 2025-03-14T05:00:32.2857240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2857803Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:00:32.2858100Z 2025-03-14T05:00:32.2858476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2859392Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.2860078Z 2025-03-14T05:00:32.2860464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2862986Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2865173Z 2025-03-14T05:00:32.2865588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2866132Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:00:32.2866425Z 2025-03-14T05:00:32.2866795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2867692Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.2868383Z 2025-03-14T05:00:32.2868770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2871088Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2873147Z 2025-03-14T05:00:32.2873518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.2874008Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:00:32.2874277Z 2025-03-14T05:00:32.2874637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2875128Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:00:32.2875399Z 2025-03-14T05:00:32.2875733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2876537Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.2877138Z 2025-03-14T05:00:32.2877483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2879649Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2881572Z 2025-03-14T05:00:32.2881941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2882421Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:00:32.2882687Z 2025-03-14T05:00:32.2883022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2883826Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.2884435Z 2025-03-14T05:00:32.2884781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2886986Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2889004Z 2025-03-14T05:00:32.2889392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2889905Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:00:32.2890182Z 2025-03-14T05:00:32.2890533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2892877Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.2893656Z 2025-03-14T05:00:32.2894484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2897017Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2899222Z 2025-03-14T05:00:32.2899619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.2900151Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:00:32.2900444Z 2025-03-14T05:00:32.2900835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2901358Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:00:32.2901637Z 2025-03-14T05:00:32.2901995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2902876Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.2903563Z 2025-03-14T05:00:32.2903961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2906733Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2908951Z 2025-03-14T05:00:32.2909350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2909850Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:00:32.2910117Z 2025-03-14T05:00:32.2910457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2911272Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.2911919Z 2025-03-14T05:00:32.2912269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2914399Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2916678Z 2025-03-14T05:00:32.2917082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2917589Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:00:32.2917866Z 2025-03-14T05:00:32.2918241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2919073Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.2919706Z 2025-03-14T05:00:32.2920055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2922325Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2924298Z 2025-03-14T05:00:32.2924684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.2925220Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:00:32.2925510Z 2025-03-14T05:00:32.2925912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2926485Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:00:32.2926790Z 2025-03-14T05:00:32.2927163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2928054Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.2928728Z 2025-03-14T05:00:32.2929114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2931628Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2933897Z 2025-03-14T05:00:32.2934300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2934822Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:00:32.2935100Z 2025-03-14T05:00:32.2935454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2936338Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.2936981Z 2025-03-14T05:00:32.2937347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2939604Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2941632Z 2025-03-14T05:00:32.2942028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2942530Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:00:32.2942803Z 2025-03-14T05:00:32.2943156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2943994Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.2944629Z 2025-03-14T05:00:32.2944976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2947133Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2949050Z 2025-03-14T05:00:32.2949399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2950251Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:32.2950856Z 2025-03-14T05:00:32.2951226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2953549Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2955667Z 2025-03-14T05:00:32.2956049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.2956528Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:00:32.2956784Z 2025-03-14T05:00:32.2957140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2957624Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:00:32.2957876Z 2025-03-14T05:00:32.2958208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2959023Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.2959668Z 2025-03-14T05:00:32.2960028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2962494Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2964543Z 2025-03-14T05:00:32.2964939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2965439Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:00:32.2965712Z 2025-03-14T05:00:32.2966061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2966900Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.2967544Z 2025-03-14T05:00:32.2967913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2970286Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2972596Z 2025-03-14T05:00:32.2972995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2973495Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:00:32.2973761Z 2025-03-14T05:00:32.2974117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2974931Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.2975542Z 2025-03-14T05:00:32.2975895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2978168Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2980076Z 2025-03-14T05:00:32.2980439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.2980945Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:00:32.2981227Z 2025-03-14T05:00:32.2981614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2982154Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:00:32.2982426Z 2025-03-14T05:00:32.2982775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2983582Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.2984175Z 2025-03-14T05:00:32.2984529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2987381Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2989385Z 2025-03-14T05:00:32.2989773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2990280Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:00:32.2990545Z 2025-03-14T05:00:32.2990895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2991752Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.2992390Z 2025-03-14T05:00:32.2992756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.2995070Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.2997075Z 2025-03-14T05:00:32.2997458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.2997951Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:00:32.2998210Z 2025-03-14T05:00:32.2998556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.2999409Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3000079Z 2025-03-14T05:00:32.3000478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3002728Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3004737Z 2025-03-14T05:00:32.3005124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3005634Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:00:32.3005913Z 2025-03-14T05:00:32.3006300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3006833Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:00:32.3007107Z 2025-03-14T05:00:32.3007453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3008311Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3008936Z 2025-03-14T05:00:32.3009302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3011749Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3013953Z 2025-03-14T05:00:32.3014368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3014909Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:00:32.3015197Z 2025-03-14T05:00:32.3015572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3016492Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3017167Z 2025-03-14T05:00:32.3017552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3019943Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3022067Z 2025-03-14T05:00:32.3022450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3022923Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:00:32.3023177Z 2025-03-14T05:00:32.3023535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3024350Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3042265Z 2025-03-14T05:00:32.3042907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3045129Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3047296Z 2025-03-14T05:00:32.3047737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3048422Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:00:32.3048734Z 2025-03-14T05:00:32.3049165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3049720Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:00:32.3050019Z 2025-03-14T05:00:32.3050401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3051314Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3052869Z 2025-03-14T05:00:32.3053292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3055638Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3057705Z 2025-03-14T05:00:32.3058133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3058655Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:00:32.3058928Z 2025-03-14T05:00:32.3059324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3060191Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3061070Z 2025-03-14T05:00:32.3061474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3063751Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3065778Z 2025-03-14T05:00:32.3066148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3066624Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:00:32.3066880Z 2025-03-14T05:00:32.3067215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3068009Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3068617Z 2025-03-14T05:00:32.3068967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3071192Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3073254Z 2025-03-14T05:00:32.3073636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3074141Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:00:32.3074406Z 2025-03-14T05:00:32.3074773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3075253Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:00:32.3075518Z 2025-03-14T05:00:32.3075853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3076647Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3077241Z 2025-03-14T05:00:32.3077599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3079831Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3081872Z 2025-03-14T05:00:32.3082262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3082774Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:00:32.3083050Z 2025-03-14T05:00:32.3083413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3084266Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3084915Z 2025-03-14T05:00:32.3085305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3087717Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3089934Z 2025-03-14T05:00:32.3090341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3090880Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:00:32.3091173Z 2025-03-14T05:00:32.3091626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3092570Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3093248Z 2025-03-14T05:00:32.3093640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3095969Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3098053Z 2025-03-14T05:00:32.3098457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3098986Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:00:32.3099272Z 2025-03-14T05:00:32.3099677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3100209Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:00:32.3100497Z 2025-03-14T05:00:32.3100880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3101766Z x_88: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3102449Z 2025-03-14T05:00:32.3102856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3105271Z x_89: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3107391Z 2025-03-14T05:00:32.3107809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3108347Z out_52: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:00:32.3108630Z 2025-03-14T05:00:32.3109010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3109898Z x_90: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3110586Z 2025-03-14T05:00:32.3110963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3113313Z x_91: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3115457Z 2025-03-14T05:00:32.3115863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3116409Z out_53: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:00:32.3116692Z 2025-03-14T05:00:32.3117066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3117988Z x_92: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3118663Z 2025-03-14T05:00:32.3119045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3121327Z x_93: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3123326Z 2025-03-14T05:00:32.3123690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3124533Z x_94: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:32.3125202Z 2025-03-14T05:00:32.3125562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3127867Z x_95: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3130231Z 2025-03-14T05:00:32.3130634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3131161Z x_93 += x_95; out_54: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T05:00:32.3131505Z 2025-03-14T05:00:32.3131940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3132485Z out_55: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:00:32.3132804Z 2025-03-14T05:00:32.3133153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3134002Z x_96: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3134631Z 2025-03-14T05:00:32.3134998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3137139Z x_97: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3139044Z 2025-03-14T05:00:32.3139411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3139897Z out_56: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:00:32.3140141Z 2025-03-14T05:00:32.3140486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3141299Z x_98: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3141901Z 2025-03-14T05:00:32.3142253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3144413Z x_99: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3146337Z 2025-03-14T05:00:32.3146720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3147232Z out_57: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T05:00:32.3147484Z 2025-03-14T05:00:32.3147833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3148631Z x_100: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3149238Z 2025-03-14T05:00:32.3149586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3151704Z x_101: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3153634Z 2025-03-14T05:00:32.3153997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3154485Z x_101 += out_55; out_58: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T05:00:32.3154751Z 2025-03-14T05:00:32.3155117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3155596Z out_59: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:00:32.3155854Z 2025-03-14T05:00:32.3156184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3156963Z x_102: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3157556Z 2025-03-14T05:00:32.3157904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3160045Z x_103: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3162085Z 2025-03-14T05:00:32.3162466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3162952Z out_60: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:00:32.3163229Z 2025-03-14T05:00:32.3163593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3164440Z x_104: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3165086Z 2025-03-14T05:00:32.3165457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3167734Z x_105: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3169914Z 2025-03-14T05:00:32.3170318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3170851Z out_61: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T05:00:32.3171133Z 2025-03-14T05:00:32.3171562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3172524Z x_106: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3173181Z 2025-03-14T05:00:32.3173545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3175843Z x_107: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3177884Z 2025-03-14T05:00:32.3178262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3178778Z x_107 += out_59; out_62: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T05:00:32.3179060Z 2025-03-14T05:00:32.3179450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3179930Z out_63: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:00:32.3180191Z 2025-03-14T05:00:32.3180522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3181397Z x_108: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_63 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T05:00:32.3182075Z 2025-03-14T05:00:32.3182404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3183281Z x_109: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_108, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T05:00:32.3183944Z 2025-03-14T05:00:32.3184435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:00:32.3185171Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_108, scale_factor = 2.0, mode = 'nearest'); x_108 = None 2025-03-14T05:00:32.3185553Z 2025-03-14T05:00:32.3185881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3186882Z x_110: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T05:00:32.3189101Z 2025-03-14T05:00:32.3189616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:00:32.3190290Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_110 + top_down_features; x_110 = top_down_features = None 2025-03-14T05:00:32.3190597Z 2025-03-14T05:00:32.3190929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3191877Z x_111: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T05:00:32.3192582Z 2025-03-14T05:00:32.3193090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:00:32.3193896Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T05:00:32.3194347Z 2025-03-14T05:00:32.3194702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3195652Z x_112: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T05:00:32.3196391Z 2025-03-14T05:00:32.3196839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:00:32.3197490Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_112 + top_down_features_1; x_112 = top_down_features_1 = None 2025-03-14T05:00:32.3197832Z 2025-03-14T05:00:32.3198202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3199142Z x_113: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T05:00:32.3199897Z 2025-03-14T05:00:32.3200434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:00:32.3201800Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T05:00:32.3202276Z 2025-03-14T05:00:32.3202660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3203593Z x_114: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T05:00:32.3204322Z 2025-03-14T05:00:32.3204771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:00:32.3205461Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_114 + top_down_features_2; x_114 = top_down_features_2 = None 2025-03-14T05:00:32.3205805Z 2025-03-14T05:00:32.3206179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3207178Z x_115: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T05:00:32.3209069Z 2025-03-14T05:00:32.3209888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T05:00:32.3210603Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_109, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T05:00:32.3211008Z 2025-03-14T05:00:32.3211907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3212749Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:00:32.3213049Z 2025-03-14T05:00:32.3213484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3214041Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:00:32.3214327Z 2025-03-14T05:00:32.3214917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3216022Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:00:32.3216346Z 2025-03-14T05:00:32.3216786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3217544Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:00:32.3217837Z 2025-03-14T05:00:32.3218576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.3219406Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:00:32.3219891Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:00:32.3220355Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:00:32.3220625Z 2025-03-14T05:00:32.3221090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.3221659Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:00:32.3221930Z 2025-03-14T05:00:32.3222404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.3223079Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:00:32.3223347Z 2025-03-14T05:00:32.3223897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.3224615Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:00:32.3224991Z 2025-03-14T05:00:32.3225870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.3226516Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:00:32.3227472Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:00:32.3228105Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:00:32.3228412Z x_116: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:00:32.3228661Z 2025-03-14T05:00:32.3229201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3229848Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:00:32.3230120Z 2025-03-14T05:00:32.3230505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3231002Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:00:32.3231263Z 2025-03-14T05:00:32.3231793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3232468Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:00:32.3232735Z 2025-03-14T05:00:32.3233118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3233608Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:00:32.3233862Z 2025-03-14T05:00:32.3234325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.3234954Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:00:32.3235613Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:00:32.3235922Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:00:32.3236175Z 2025-03-14T05:00:32.3236607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.3237130Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:00:32.3237382Z 2025-03-14T05:00:32.3237806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.3238316Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:00:32.3238565Z 2025-03-14T05:00:32.3239057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.3239740Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:00:32.3240076Z 2025-03-14T05:00:32.3240600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.3241213Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:00:32.3241839Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:00:32.3242447Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:00:32.3242758Z x_117: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:00:32.3242999Z 2025-03-14T05:00:32.3243528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3244170Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:00:32.3244441Z 2025-03-14T05:00:32.3244822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3245341Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:00:32.3245600Z 2025-03-14T05:00:32.3246123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3246797Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:00:32.3247069Z 2025-03-14T05:00:32.3247453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3247945Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:00:32.3248216Z 2025-03-14T05:00:32.3248688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.3249331Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:00:32.3249698Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:00:32.3249985Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:00:32.3250233Z 2025-03-14T05:00:32.3250663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.3251192Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:00:32.3251518Z 2025-03-14T05:00:32.3251968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.3252537Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:00:32.3252835Z 2025-03-14T05:00:32.3253319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.3253993Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:00:32.3254319Z 2025-03-14T05:00:32.3254814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.3255410Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:00:32.3256013Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:00:32.3256606Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:00:32.3256902Z x_118: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T05:00:32.3257139Z 2025-03-14T05:00:32.3257657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3258296Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:00:32.3258563Z 2025-03-14T05:00:32.3258946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3259446Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:00:32.3259707Z 2025-03-14T05:00:32.3260227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3261039Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:00:32.3261312Z 2025-03-14T05:00:32.3261698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3262194Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:00:32.3262458Z 2025-03-14T05:00:32.3262924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.3263551Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:00:32.3263906Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:00:32.3264178Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:00:32.3264409Z 2025-03-14T05:00:32.3264831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.3265347Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:00:32.3265594Z 2025-03-14T05:00:32.3266008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.3266575Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:00:32.3266825Z 2025-03-14T05:00:32.3267303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.3268016Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:00:32.3268354Z 2025-03-14T05:00:32.3268866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.3269470Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:00:32.3270084Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:00:32.3270692Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:00:32.3270996Z x_119: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T05:00:32.3271237Z 2025-03-14T05:00:32.3271771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3272417Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:00:32.3272684Z 2025-03-14T05:00:32.3273086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3273570Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:00:32.3273826Z 2025-03-14T05:00:32.3274376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3275019Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:00:32.3275282Z 2025-03-14T05:00:32.3275668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3276149Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:00:32.3276412Z 2025-03-14T05:00:32.3276875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.3277497Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:00:32.3277844Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:00:32.3278115Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:00:32.3278352Z 2025-03-14T05:00:32.3278773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.3279286Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:00:32.3279529Z 2025-03-14T05:00:32.3279955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.3280455Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:00:32.3280691Z 2025-03-14T05:00:32.3281155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.3281830Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:00:32.3282153Z 2025-03-14T05:00:32.3282645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.3283221Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:00:32.3283820Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:00:32.3284406Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:00:32.3284698Z x_120: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T05:00:32.3284931Z 2025-03-14T05:00:32.3285312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:32.3285788Z tensor: "f32[269952, 4][4, 1]cpu" = x_116.to(torch.float32); x_116 = None 2025-03-14T05:00:32.3286096Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_117.to(torch.float32); x_117 = None 2025-03-14T05:00:32.3286396Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_118.to(torch.float32); x_118 = None 2025-03-14T05:00:32.3286696Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_119.to(torch.float32); x_119 = None 2025-03-14T05:00:32.3286991Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_120.to(torch.float32); x_120 = None 2025-03-14T05:00:32.3287247Z 2025-03-14T05:00:32.3287586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3288404Z x_121: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_115, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_115 = None 2025-03-14T05:00:32.3289031Z 2025-03-14T05:00:32.3289394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.3289931Z x_122: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_121, inplace = False); x_121 = None 2025-03-14T05:00:32.3290255Z 2025-03-14T05:00:32.3290739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.3291813Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:32.3292533Z 2025-03-14T05:00:32.3293011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.3293986Z x_131: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_122 = None 2025-03-14T05:00:32.3294671Z 2025-03-14T05:00:32.3295051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3295863Z x_123: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_113, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_113 = None 2025-03-14T05:00:32.3296480Z 2025-03-14T05:00:32.3296844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.3297045Z x_124: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_123, inplace = False); x_123 = None 2025-03-14T05:00:32.3297118Z 2025-03-14T05:00:32.3297501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.3298041Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:32.3298112Z 2025-03-14T05:00:32.3298475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.3299012Z x_132: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_124 = None 2025-03-14T05:00:32.3299103Z 2025-03-14T05:00:32.3299371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3299861Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_111, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_111 = None 2025-03-14T05:00:32.3299935Z 2025-03-14T05:00:32.3300212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.3300409Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_125, inplace = False); x_125 = None 2025-03-14T05:00:32.3300472Z 2025-03-14T05:00:32.3300859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.3301389Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:32.3301460Z 2025-03-14T05:00:32.3301827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.3302364Z x_133: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_126 = None 2025-03-14T05:00:32.3302454Z 2025-03-14T05:00:32.3302733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3303226Z x_127: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_109, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_109 = None 2025-03-14T05:00:32.3303289Z 2025-03-14T05:00:32.3303576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.3303760Z x_128: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_127, inplace = False); x_127 = None 2025-03-14T05:00:32.3303832Z 2025-03-14T05:00:32.3304218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.3304737Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:32.3304799Z 2025-03-14T05:00:32.3305172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.3305700Z x_134: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_128 = None 2025-03-14T05:00:32.3305786Z 2025-03-14T05:00:32.3306056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3306848Z x_129: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:00:32.3306922Z 2025-03-14T05:00:32.3307196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.3307382Z x_130: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_129, inplace = False); x_129 = None 2025-03-14T05:00:32.3307447Z 2025-03-14T05:00:32.3307840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.3308742Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:00:32.3308815Z 2025-03-14T05:00:32.3309191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.3310063Z x_135: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_130 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:00:32.3310136Z 2025-03-14T05:00:32.3310483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:00:32.3310662Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:00:32.3310811Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:00:32.3310988Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:00:32.3311132Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:00:32.3311295Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:00:32.3311434Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:00:32.3311603Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:00:32.3311737Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:00:32.3311885Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:00:32.3312030Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:00:32.3312097Z 2025-03-14T05:00:32.3312522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:00:32.3312704Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_131.view(4, -1, 4, 296, 304); x_131 = None 2025-03-14T05:00:32.3312892Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:00:32.3313068Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:00:32.3313235Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_132.view(4, -1, 4, 148, 152); x_132 = None 2025-03-14T05:00:32.3313408Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:00:32.3313585Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:00:32.3313732Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_133.view(4, -1, 4, 74, 76); x_133 = None 2025-03-14T05:00:32.3313899Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:00:32.3314066Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:00:32.3314230Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_134.view(4, -1, 4, 37, 38); x_134 = None 2025-03-14T05:00:32.3314388Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:00:32.3314578Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:00:32.3314730Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_135.view(4, -1, 4, 19, 19); x_135 = None 2025-03-14T05:00:32.3314898Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:00:32.3315058Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:00:32.3315128Z 2025-03-14T05:00:32.3315534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.3315741Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:00:32.3315806Z 2025-03-14T05:00:32.3316248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.3316408Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:00:32.3316553Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:00:32.3316698Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:00:32.3316759Z 2025-03-14T05:00:32.3317150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.3317323Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:00:32.3317415Z 2025-03-14T05:00:32.3317743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.3317897Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:00:32.3317962Z 2025-03-14T05:00:32.3318295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.3318432Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:32.3318572Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3318733Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:00:32.3318806Z 2025-03-14T05:00:32.3319136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.3319287Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:32.3319411Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:32.3319576Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:00:32.3319641Z 2025-03-14T05:00:32.3319963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.3320107Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3320203Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:00:32.3320331Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:00:32.3320428Z 2025-03-14T05:00:32.3320760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.3320919Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:32.3321010Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:00:32.3321150Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:00:32.3321211Z 2025-03-14T05:00:32.3321566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.3321734Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.3321858Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:00:32.3321922Z 2025-03-14T05:00:32.3322235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.3322385Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.3322504Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:00:32.3322564Z 2025-03-14T05:00:32.3322871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.3323019Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.3323139Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:00:32.3323202Z 2025-03-14T05:00:32.3323526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.3323718Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:32.3323828Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:00:32.3323896Z 2025-03-14T05:00:32.3324231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.3324378Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:32.3324440Z 2025-03-14T05:00:32.3324779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.3324912Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:32.3324981Z 2025-03-14T05:00:32.3325321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.3325465Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:32.3325589Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:00:32.3325745Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:32.3325898Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:00:32.3325967Z 2025-03-14T05:00:32.3326313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.3326475Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:32.3326610Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:00:32.3326767Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:32.3326899Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:00:32.3326968Z 2025-03-14T05:00:32.3327292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.3327413Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:32.3327572Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:32.3327712Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:00:32.3327772Z 2025-03-14T05:00:32.3328108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.3328223Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:32.3328398Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:32.3328534Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:00:32.3328604Z 2025-03-14T05:00:32.3328918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.3329046Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:32.3329166Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:32.3329237Z 2025-03-14T05:00:32.3329556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.3329658Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:32.3329773Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:32.3329845Z 2025-03-14T05:00:32.3330167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.3330298Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:32.3330432Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:32.3330508Z 2025-03-14T05:00:32.3330828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.3330955Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:32.3331088Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:32.3331159Z 2025-03-14T05:00:32.3331615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.3331816Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:32.3331912Z 2025-03-14T05:00:32.3332262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.3332461Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:00:32.3332529Z 2025-03-14T05:00:32.3332951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.3333147Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:00:32.3333220Z 2025-03-14T05:00:32.3333631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.3333854Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:00:32.3333917Z 2025-03-14T05:00:32.3334367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.3334522Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:00:32.3334681Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:00:32.3334823Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:00:32.3334892Z 2025-03-14T05:00:32.3335273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.3335453Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:00:32.3335533Z 2025-03-14T05:00:32.3335860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.3336009Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:00:32.3336080Z 2025-03-14T05:00:32.3336400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.3336542Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:00:32.3336670Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3336834Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:00:32.3336897Z 2025-03-14T05:00:32.3337232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.3337363Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:00:32.3337496Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:00:32.3337654Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:00:32.3337724Z 2025-03-14T05:00:32.3338040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.3338199Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3338294Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:00:32.3338436Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:00:32.3338517Z 2025-03-14T05:00:32.3338855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.3339009Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:00:32.3339109Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:00:32.3339238Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:00:32.3339308Z 2025-03-14T05:00:32.3339621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.3339778Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.3339901Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:00:32.3339965Z 2025-03-14T05:00:32.3340272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.3340423Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.3340541Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:00:32.3340604Z 2025-03-14T05:00:32.3340913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.3341066Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.3341184Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:00:32.3341265Z 2025-03-14T05:00:32.3341575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.3341765Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:00:32.3341885Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:00:32.3341944Z 2025-03-14T05:00:32.3342289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.3342431Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:00:32.3342499Z 2025-03-14T05:00:32.3342832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.3342980Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:00:32.3343039Z 2025-03-14T05:00:32.3343399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.3343531Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:00:32.3343659Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:00:32.3343809Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:00:32.3343974Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:00:32.3344034Z 2025-03-14T05:00:32.3344378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.3344528Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:00:32.3344664Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:00:32.3344821Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:00:32.3344959Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:00:32.3345024Z 2025-03-14T05:00:32.3345351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.3345470Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:00:32.3345634Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:00:32.3345777Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:00:32.3345837Z 2025-03-14T05:00:32.3346174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.3346284Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:00:32.3346458Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:00:32.3346591Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:00:32.3346661Z 2025-03-14T05:00:32.3346971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.3347094Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:00:32.3347212Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:00:32.3347282Z 2025-03-14T05:00:32.3347586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.3347684Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:00:32.3347799Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:00:32.3347866Z 2025-03-14T05:00:32.3348173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.3348295Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:00:32.3348428Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:00:32.3348496Z 2025-03-14T05:00:32.3348798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.3348916Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:00:32.3349045Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:00:32.3349111Z 2025-03-14T05:00:32.3349462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.3349684Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:00:32.3349746Z 2025-03-14T05:00:32.3350088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.3350289Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:00:32.3350361Z 2025-03-14T05:00:32.3350746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.3350933Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:00:32.3350993Z 2025-03-14T05:00:32.3351410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.3351612Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:00:32.3351684Z 2025-03-14T05:00:32.3352117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.3352274Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:00:32.3352429Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:00:32.3352565Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:00:32.3352634Z 2025-03-14T05:00:32.3353005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.3353198Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:00:32.3353260Z 2025-03-14T05:00:32.3353575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.3353715Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:00:32.3353783Z 2025-03-14T05:00:32.3354092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.3354227Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:00:32.3354347Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3354500Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:00:32.3354564Z 2025-03-14T05:00:32.3354887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.3355006Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:00:32.3355129Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:00:32.3355279Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:00:32.3355346Z 2025-03-14T05:00:32.3355671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.3355800Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3355889Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:00:32.3356044Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:00:32.3356104Z 2025-03-14T05:00:32.3356434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.3356581Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:00:32.3356680Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:00:32.3356809Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:00:32.3356880Z 2025-03-14T05:00:32.3357183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.3357345Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.3357464Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:00:32.3357537Z 2025-03-14T05:00:32.3357840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.3358000Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.3358112Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:00:32.3358183Z 2025-03-14T05:00:32.3358488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.3358644Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.3358779Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:00:32.3358839Z 2025-03-14T05:00:32.3359150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.3359331Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:00:32.3359446Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:00:32.3359505Z 2025-03-14T05:00:32.3359842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.3359979Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:00:32.3360047Z 2025-03-14T05:00:32.3360374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.3360678Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:00:32.3360751Z 2025-03-14T05:00:32.3361105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.3361237Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:00:32.3361369Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:00:32.3361570Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:00:32.3361718Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:00:32.3361781Z 2025-03-14T05:00:32.3362177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.3362330Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:00:32.3362460Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:00:32.3362607Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:00:32.3362753Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:00:32.3362814Z 2025-03-14T05:00:32.3363147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.3363260Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:00:32.3363426Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:00:32.3363557Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:00:32.3363636Z 2025-03-14T05:00:32.3363960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.3364077Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:00:32.3364237Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:00:32.3364375Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:00:32.3364434Z 2025-03-14T05:00:32.3364748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.3364878Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:00:32.3365001Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:00:32.3365061Z 2025-03-14T05:00:32.3365466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.3365560Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:00:32.3365676Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:00:32.3365736Z 2025-03-14T05:00:32.3366047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.3366159Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:00:32.3366301Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:00:32.3366361Z 2025-03-14T05:00:32.3366668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.3366785Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:00:32.3366912Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:00:32.3366983Z 2025-03-14T05:00:32.3367343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.3367541Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:00:32.3367620Z 2025-03-14T05:00:32.3367973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.3368134Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:00:32.3368203Z 2025-03-14T05:00:32.3368583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.3368766Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:00:32.3368829Z 2025-03-14T05:00:32.3369252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.3369457Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:00:32.3369524Z 2025-03-14T05:00:32.3369968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.3370125Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:00:32.3370274Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:00:32.3370419Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:00:32.3370479Z 2025-03-14T05:00:32.3370870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.3371096Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:00:32.3371168Z 2025-03-14T05:00:32.3374316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.3374545Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:00:32.3374616Z 2025-03-14T05:00:32.3374956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.3375100Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:00:32.3375268Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3375455Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:00:32.3375536Z 2025-03-14T05:00:32.3375865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.3375999Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:00:32.3376119Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:00:32.3376277Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:00:32.3376340Z 2025-03-14T05:00:32.3376732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.3376864Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3376978Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:00:32.3377121Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:00:32.3377209Z 2025-03-14T05:00:32.3377534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.3377681Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:00:32.3377784Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:00:32.3377915Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:00:32.3377985Z 2025-03-14T05:00:32.3378308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.3378473Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.3378587Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:00:32.3378658Z 2025-03-14T05:00:32.3378962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.3379130Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.3379239Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:00:32.3379304Z 2025-03-14T05:00:32.3379600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.3379755Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.3379892Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:00:32.3379965Z 2025-03-14T05:00:32.3380277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.3380472Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:00:32.3380583Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:00:32.3380653Z 2025-03-14T05:00:32.3381000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.3381148Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:00:32.3381212Z 2025-03-14T05:00:32.3381561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.3381703Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:00:32.3381772Z 2025-03-14T05:00:32.3382126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.3382265Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:00:32.3382389Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:00:32.3382569Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:00:32.3382718Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:00:32.3382796Z 2025-03-14T05:00:32.3383174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.3383310Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:00:32.3383440Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:00:32.3383592Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:00:32.3383735Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:00:32.3383796Z 2025-03-14T05:00:32.3384147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.3384263Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:00:32.3384434Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:00:32.3384566Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:00:32.3384635Z 2025-03-14T05:00:32.3384980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.3385100Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:00:32.3385267Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:00:32.3385405Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:00:32.3385484Z 2025-03-14T05:00:32.3385804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.3385904Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:00:32.3386025Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:00:32.3386094Z 2025-03-14T05:00:32.3386490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.3386591Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:00:32.3386714Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:00:32.3386777Z 2025-03-14T05:00:32.3387094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.3387211Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:00:32.3387351Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:00:32.3387413Z 2025-03-14T05:00:32.3387725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.3387836Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:00:32.3387972Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:00:32.3388034Z 2025-03-14T05:00:32.3388409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.3388602Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:00:32.3388690Z 2025-03-14T05:00:32.3389056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.3389228Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:00:32.3389288Z 2025-03-14T05:00:32.3389684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.3389860Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:00:32.3389928Z 2025-03-14T05:00:32.3390333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.3390553Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:00:32.3390621Z 2025-03-14T05:00:32.3391066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.3391215Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:00:32.3391360Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:00:32.3391498Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:00:32.3391558Z 2025-03-14T05:00:32.3391927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.3392117Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:00:32.3392185Z 2025-03-14T05:00:32.3392488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.3392631Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:00:32.3392691Z 2025-03-14T05:00:32.3393004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.3393126Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:00:32.3393256Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3393399Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:00:32.3393467Z 2025-03-14T05:00:32.3393776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.3393903Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:00:32.3394020Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:00:32.3394174Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:00:32.3394235Z 2025-03-14T05:00:32.3394576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.3394697Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3394811Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:00:32.3394957Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:00:32.3395028Z 2025-03-14T05:00:32.3395355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.3395505Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:00:32.3395590Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:00:32.3395724Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:00:32.3395783Z 2025-03-14T05:00:32.3396088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.3396240Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.3396355Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:00:32.3396415Z 2025-03-14T05:00:32.3396725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.3396870Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.3396984Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:00:32.3397043Z 2025-03-14T05:00:32.3397344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.3397493Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.3397626Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:00:32.3397693Z 2025-03-14T05:00:32.3397995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.3398180Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:00:32.3398285Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:00:32.3398353Z 2025-03-14T05:00:32.3398687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.3398830Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:00:32.3398893Z 2025-03-14T05:00:32.3399227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.3399357Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:00:32.3399424Z 2025-03-14T05:00:32.3399764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.3399903Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:00:32.3400038Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:00:32.3400198Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:00:32.3400330Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:00:32.3400415Z 2025-03-14T05:00:32.3400777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.3400916Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:00:32.3401035Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:00:32.3401189Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:00:32.3401319Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:00:32.3401388Z 2025-03-14T05:00:32.3401720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.3401841Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:00:32.3402000Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:00:32.3402134Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:00:32.3402197Z 2025-03-14T05:00:32.3402535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.3402644Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:00:32.3402814Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:00:32.3402940Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:00:32.3403027Z 2025-03-14T05:00:32.3403341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.3403444Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:00:32.3403554Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:00:32.3403620Z 2025-03-14T05:00:32.3403930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.3404028Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:00:32.3404137Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:00:32.3404205Z 2025-03-14T05:00:32.3404512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.3404633Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:00:32.3404773Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:00:32.3404834Z 2025-03-14T05:00:32.3405143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.3405253Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:00:32.3405387Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:00:32.3405448Z 2025-03-14T05:00:32.3405816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.3406005Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:00:32.3406093Z 2025-03-14T05:00:32.3406456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.3406630Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:00:32.3406695Z 2025-03-14T05:00:32.3407102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.3407281Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:00:32.3407353Z 2025-03-14T05:00:32.3407863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:00:32.3408015Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:00:32.3408079Z 2025-03-14T05:00:32.3408422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3408567Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:00:32.3408638Z 2025-03-14T05:00:32.3409109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.3409245Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:00:32.3409377Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:00:32.3409510Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:00:32.3409576Z 2025-03-14T05:00:32.3410101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.3410246Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:32.3410507Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:00:32.3410573Z 2025-03-14T05:00:32.3411097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.3411271Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.3411342Z 2025-03-14T05:00:32.3411733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3411881Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:00:32.3411949Z 2025-03-14T05:00:32.3412435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.3412586Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:00:32.3412697Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:00:32.3412828Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:00:32.3412919Z 2025-03-14T05:00:32.3414059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.3414225Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:32.3414475Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:00:32.3414541Z 2025-03-14T05:00:32.3415027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.3415200Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.3415273Z 2025-03-14T05:00:32.3415580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3415719Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:00:32.3415785Z 2025-03-14T05:00:32.3416245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.3416365Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:00:32.3416482Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:00:32.3416602Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:00:32.3416694Z 2025-03-14T05:00:32.3417176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.3417320Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:32.3417565Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:00:32.3417636Z 2025-03-14T05:00:32.3418112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.3418286Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.3418352Z 2025-03-14T05:00:32.3418664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3418791Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:00:32.3418862Z 2025-03-14T05:00:32.3419308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.3419430Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:00:32.3419542Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:00:32.3419682Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:00:32.3419752Z 2025-03-14T05:00:32.3420240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.3420422Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:32.3420665Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:00:32.3420737Z 2025-03-14T05:00:32.3421208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.3421381Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.3421451Z 2025-03-14T05:00:32.3421749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3421870Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:00:32.3421936Z 2025-03-14T05:00:32.3422357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.3422471Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:00:32.3422571Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:00:32.3422690Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:00:32.3422751Z 2025-03-14T05:00:32.3423202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.3423386Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:00:32.3423622Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:00:32.3423682Z 2025-03-14T05:00:32.3424133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.3424289Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.3424358Z 2025-03-14T05:00:32.3424646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3424777Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:00:32.3424838Z 2025-03-14T05:00:32.3425124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:32.3425503Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:00:32.3425563Z 2025-03-14T05:00:32.3425863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:32.3426322Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:00:32.3426407Z 2025-03-14T05:00:32.3426699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:32.3426904Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:00:32.3426964Z 2025-03-14T05:00:32.3427363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:00:32.3427500Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:00:32.3427569Z 2025-03-14T05:00:32.3427862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:32.3428013Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:00:32.3428073Z 2025-03-14T05:00:32.3428452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:00:32.3428583Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:00:32.3428649Z 2025-03-14T05:00:32.3429131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:00:32.3429284Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:00:32.3429422Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:32.3429580Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:00:32.3429708Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:00:32.3429778Z 2025-03-14T05:00:32.3430138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:00:32.3430259Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:00:32.3430320Z 2025-03-14T05:00:32.3430890Z 2025-03-14T05:00:32.3430982Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:32.3498386Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:00:32.3499063Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:00:32.3499504Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3500019Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3500545Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3500979Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3501429Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3501885Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3502431Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3502902Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3503357Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3503769Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3504179Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3504650Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3505094Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3505546Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3505985Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3506386Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3506849Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3507298Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3507736Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3508169Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3508617Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:32.3509148Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3509616Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3510139Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3510611Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3511015Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3511473Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3511916Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3512358Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3512791Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3513205Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3513699Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3514148Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3514599Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3515038Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3515450Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3515922Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3516394Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3516843Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3517305Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3517710Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3518176Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3518615Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3519040Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3519435Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3519771Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3520171Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3520557Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3520956Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3521324Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3521661Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3522065Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3522454Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3522834Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3523208Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3523553Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3523997Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3524423Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3524854Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3525258Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3525657Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3526101Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3526546Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3526976Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3527409Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3527811Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3528299Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3528799Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3529293Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3529781Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3530251Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:32.3530813Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3531427Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3532019Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3532562Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3533019Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3533522Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3533986Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3534410Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3534837Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3535211Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3535680Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3536114Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3536538Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3536952Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3537333Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3537790Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3538258Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3538681Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3539132Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3539522Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3539969Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3540407Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3540833Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3541243Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3541630Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3542076Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3542533Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3542955Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3543361Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3543749Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3544190Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3544637Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3545059Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3545485Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3545870Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3546355Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3546796Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3547211Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3547629Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3548021Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3548460Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3548910Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3549321Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3549756Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3550133Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3550587Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3551030Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3551451Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3551863Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3552237Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3552707Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3553175Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3553602Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3554015Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3554392Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3554836Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3555270Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3555690Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3556092Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3556491Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3556942Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3557376Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3557796Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3558202Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3558605Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:32.3559059Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3559532Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3559976Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3560451Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3560949Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3561399Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3561828Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3562207Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3562586Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3562932Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3563328Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3563791Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3564204Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3564631Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3565016Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3565471Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3565916Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3566332Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3566767Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3567185Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3567673Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3568115Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3568540Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3568960Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3569346Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3569804Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3570258Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3570695Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3571141Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3571578Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3572089Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3572614Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3573076Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3573496Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3573897Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3574348Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3574818Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3575245Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3575655Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3576039Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3576486Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3576935Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3577360Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3577770Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3578188Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3578626Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3579070Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3579483Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3579896Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3580280Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3580716Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3581173Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3581596Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3582045Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3582423Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3582873Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3583316Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3583734Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3584148Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3584526Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3584971Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3585427Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3585847Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3586259Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3586640Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3587103Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3587550Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3587971Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3588393Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3588811Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3589263Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3589698Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3590124Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3590532Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3590919Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3591355Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3591794Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3592232Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3592640Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3593023Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3593462Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3593911Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3594329Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3594740Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3595149Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3595592Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3596110Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3596509Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3596883Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3597221Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3597628Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3598029Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3598404Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3598804Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3599229Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:32.3599695Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3600142Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3600581Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3601016Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3601401Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3601846Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3602279Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3602717Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3603140Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3603523Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3603969Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3604407Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3604839Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3605249Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3605641Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3606092Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3606551Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3606977Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3607397Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3607798Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.3608258Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3608717Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3609171Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3609594Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3610031Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.3610485Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3610948Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3611478Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3611987Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3612448Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.3612981Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.3613521Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.3614050Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.3614539Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.3614834Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T05:00:32.3615121Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T05:00:32.3615400Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T05:00:32.3615677Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T05:00:32.3615970Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T05:00:32.3616240Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T05:00:32.3616521Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T05:00:32.3616783Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T05:00:32.3617097Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T05:00:32.3617340Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T05:00:32.3617611Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T05:00:32.3617865Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T05:00:32.3618125Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T05:00:32.3618366Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T05:00:32.3618619Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T05:00:32.3618856Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T05:00:32.3619269Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:00:32.3619677Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:00:32.3620083Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:00:32.3620490Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:00:32.3620886Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:00:32.3621232Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:00:32.3621544Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:00:32.3621919Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:00:32.3622280Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:00:32.3622639Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:00:32.3622982Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:00:32.3623052Z 2025-03-14T05:00:32.3623344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3623919Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3623993Z 2025-03-14T05:00:32.3624276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3626068Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3626145Z 2025-03-14T05:00:32.3626449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:00:32.3626592Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:00:32.3626662Z 2025-03-14T05:00:32.3627032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:00:32.3627281Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:00:32.3627341Z 2025-03-14T05:00:32.3627609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3628120Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3628184Z 2025-03-14T05:00:32.3628466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3630253Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3630324Z 2025-03-14T05:00:32.3630612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3630767Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:00:32.3630835Z 2025-03-14T05:00:32.3631088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3631631Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3631693Z 2025-03-14T05:00:32.3631975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3633776Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3633848Z 2025-03-14T05:00:32.3634149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3634287Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:00:32.3634352Z 2025-03-14T05:00:32.3634620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3635135Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3635194Z 2025-03-14T05:00:32.3635472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3637277Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3637340Z 2025-03-14T05:00:32.3637608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3638104Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:32.3638204Z 2025-03-14T05:00:32.3638467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3640442Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3640521Z 2025-03-14T05:00:32.3640831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3641010Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:00:32.3641074Z 2025-03-14T05:00:32.3641381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3641558Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:00:32.3641637Z 2025-03-14T05:00:32.3641888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3642387Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3642457Z 2025-03-14T05:00:32.3642722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3644554Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3644617Z 2025-03-14T05:00:32.3644911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3645075Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:00:32.3645152Z 2025-03-14T05:00:32.3645410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3645904Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3645973Z 2025-03-14T05:00:32.3646239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3648138Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3648233Z 2025-03-14T05:00:32.3648545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3648711Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:00:32.3648776Z 2025-03-14T05:00:32.3649071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3649631Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3649709Z 2025-03-14T05:00:32.3650003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3652092Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3652200Z 2025-03-14T05:00:32.3652555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3652741Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:00:32.3652815Z 2025-03-14T05:00:32.3653155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3653305Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:00:32.3653377Z 2025-03-14T05:00:32.3653644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3654152Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3654220Z 2025-03-14T05:00:32.3654500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3656299Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3656376Z 2025-03-14T05:00:32.3656670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3656808Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:00:32.3656876Z 2025-03-14T05:00:32.3657123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3657624Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3657691Z 2025-03-14T05:00:32.3657952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3659888Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3659968Z 2025-03-14T05:00:32.3660260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3660401Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:00:32.3660463Z 2025-03-14T05:00:32.3660837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3661348Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3661418Z 2025-03-14T05:00:32.3661683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3663524Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3663633Z 2025-03-14T05:00:32.3663917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3664075Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:00:32.3664136Z 2025-03-14T05:00:32.3664419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3664567Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:00:32.3664633Z 2025-03-14T05:00:32.3664875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3665378Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3665441Z 2025-03-14T05:00:32.3665706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3667550Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3667616Z 2025-03-14T05:00:32.3667906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3668046Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:00:32.3668114Z 2025-03-14T05:00:32.3668361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3668861Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3668939Z 2025-03-14T05:00:32.3669213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3670990Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3671052Z 2025-03-14T05:00:32.3671338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3671474Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:00:32.3671541Z 2025-03-14T05:00:32.3671778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3672289Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3672371Z 2025-03-14T05:00:32.3672642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3674427Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3674495Z 2025-03-14T05:00:32.3674740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3675239Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:32.3675300Z 2025-03-14T05:00:32.3675580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3677386Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3677455Z 2025-03-14T05:00:32.3677732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3677876Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:00:32.3677943Z 2025-03-14T05:00:32.3678216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3678384Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:00:32.3678445Z 2025-03-14T05:00:32.3678698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3679215Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3679283Z 2025-03-14T05:00:32.3679552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3681333Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3681406Z 2025-03-14T05:00:32.3681690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3681840Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:00:32.3681923Z 2025-03-14T05:00:32.3682182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3682681Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3682750Z 2025-03-14T05:00:32.3683012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3684835Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3684908Z 2025-03-14T05:00:32.3685209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3685355Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:00:32.3685432Z 2025-03-14T05:00:32.3685703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3686207Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3686274Z 2025-03-14T05:00:32.3686544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3688497Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3688578Z 2025-03-14T05:00:32.3688894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3689084Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:00:32.3689158Z 2025-03-14T05:00:32.3689477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3689647Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:00:32.3689713Z 2025-03-14T05:00:32.3690004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3690541Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3690618Z 2025-03-14T05:00:32.3690918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3693268Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3693371Z 2025-03-14T05:00:32.3693696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3693858Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:00:32.3693934Z 2025-03-14T05:00:32.3694214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3694742Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3694818Z 2025-03-14T05:00:32.3695103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3697099Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3697194Z 2025-03-14T05:00:32.3697497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3697648Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:00:32.3697712Z 2025-03-14T05:00:32.3697984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3698508Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3698582Z 2025-03-14T05:00:32.3698859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3700798Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3700895Z 2025-03-14T05:00:32.3701191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3701363Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:00:32.3701432Z 2025-03-14T05:00:32.3701741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3701901Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:00:32.3701977Z 2025-03-14T05:00:32.3702242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3702766Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3702841Z 2025-03-14T05:00:32.3703122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3705041Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3705130Z 2025-03-14T05:00:32.3705431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3705586Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:00:32.3705648Z 2025-03-14T05:00:32.3705912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3706433Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3706549Z 2025-03-14T05:00:32.3706826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3708776Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3708872Z 2025-03-14T05:00:32.3709177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3709332Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:00:32.3709395Z 2025-03-14T05:00:32.3709661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3710188Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3710261Z 2025-03-14T05:00:32.3710541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3712469Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3712544Z 2025-03-14T05:00:32.3712838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3713003Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:00:32.3713068Z 2025-03-14T05:00:32.3713370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3713524Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:00:32.3713614Z 2025-03-14T05:00:32.3713874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3714423Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3714488Z 2025-03-14T05:00:32.3714776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3716681Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3716747Z 2025-03-14T05:00:32.3717052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3717193Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:00:32.3717264Z 2025-03-14T05:00:32.3717526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3718066Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3718137Z 2025-03-14T05:00:32.3718414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3720320Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3720393Z 2025-03-14T05:00:32.3720706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3720853Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:00:32.3720917Z 2025-03-14T05:00:32.3721203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3721700Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3721768Z 2025-03-14T05:00:32.3722029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3723822Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3723891Z 2025-03-14T05:00:32.3724140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3724643Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:32.3724721Z 2025-03-14T05:00:32.3724988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3726840Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3726905Z 2025-03-14T05:00:32.3727187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3727338Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:00:32.3727406Z 2025-03-14T05:00:32.3727687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3727849Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:00:32.3727911Z 2025-03-14T05:00:32.3728179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3728658Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3728726Z 2025-03-14T05:00:32.3728990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3730836Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3730909Z 2025-03-14T05:00:32.3731238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3731434Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:00:32.3731509Z 2025-03-14T05:00:32.3731805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3732352Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3732423Z 2025-03-14T05:00:32.3732718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3734595Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3734693Z 2025-03-14T05:00:32.3734991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3735138Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:00:32.3735209Z 2025-03-14T05:00:32.3735465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3735976Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3736039Z 2025-03-14T05:00:32.3736311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3738143Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3738230Z 2025-03-14T05:00:32.3738518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3738660Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:00:32.3738726Z 2025-03-14T05:00:32.3739005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3739152Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:00:32.3739214Z 2025-03-14T05:00:32.3739468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3739947Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3740015Z 2025-03-14T05:00:32.3740277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3742109Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3742195Z 2025-03-14T05:00:32.3742475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3742612Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:00:32.3742674Z 2025-03-14T05:00:32.3742928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3743415Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3743482Z 2025-03-14T05:00:32.3743743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3745506Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3745590Z 2025-03-14T05:00:32.3745865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3745998Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:00:32.3746058Z 2025-03-14T05:00:32.3746307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3746778Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3746845Z 2025-03-14T05:00:32.3747106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3748916Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3749002Z 2025-03-14T05:00:32.3749285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3749437Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:00:32.3749518Z 2025-03-14T05:00:32.3749795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3749936Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:00:32.3749993Z 2025-03-14T05:00:32.3750241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3750708Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3750789Z 2025-03-14T05:00:32.3751046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3752804Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3752870Z 2025-03-14T05:00:32.3753143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3753276Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:00:32.3753335Z 2025-03-14T05:00:32.3753578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3754060Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3754144Z 2025-03-14T05:00:32.3754402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3756222Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3756294Z 2025-03-14T05:00:32.3756581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3756718Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:00:32.3756780Z 2025-03-14T05:00:32.3757032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3757513Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3757599Z 2025-03-14T05:00:32.3757853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3759600Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3759674Z 2025-03-14T05:00:32.3759951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3760100Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:00:32.3760160Z 2025-03-14T05:00:32.3760467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3760729Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:00:32.3760846Z 2025-03-14T05:00:32.3761096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3761602Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3761670Z 2025-03-14T05:00:32.3761925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3763765Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3763837Z 2025-03-14T05:00:32.3764124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3764287Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:00:32.3764350Z 2025-03-14T05:00:32.3764603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3765078Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3765146Z 2025-03-14T05:00:32.3765404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3767229Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3767300Z 2025-03-14T05:00:32.3767582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3767734Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:00:32.3767795Z 2025-03-14T05:00:32.3768078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3768593Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3768664Z 2025-03-14T05:00:32.3768940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3770849Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3770944Z 2025-03-14T05:00:32.3771233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3771434Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:00:32.3771504Z 2025-03-14T05:00:32.3771807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3771951Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:00:32.3772026Z 2025-03-14T05:00:32.3772287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3772805Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3772868Z 2025-03-14T05:00:32.3773142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3774969Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3775051Z 2025-03-14T05:00:32.3775343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3775471Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:00:32.3775541Z 2025-03-14T05:00:32.3775787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3776279Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3776349Z 2025-03-14T05:00:32.3776611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3778424Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3778504Z 2025-03-14T05:00:32.3778795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3778932Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:00:32.3778993Z 2025-03-14T05:00:32.3779247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3779738Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3779807Z 2025-03-14T05:00:32.3780068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3781888Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3781977Z 2025-03-14T05:00:32.3782257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3782406Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:00:32.3782468Z 2025-03-14T05:00:32.3782757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3782897Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:00:32.3782964Z 2025-03-14T05:00:32.3783212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3783694Z x_88: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3783755Z 2025-03-14T05:00:32.3784027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3785865Z x_89: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3785928Z 2025-03-14T05:00:32.3786217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3786349Z out_52: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:00:32.3786419Z 2025-03-14T05:00:32.3786663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3787164Z x_90: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3787226Z 2025-03-14T05:00:32.3787497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3789327Z x_91: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3789392Z 2025-03-14T05:00:32.3789684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3789815Z out_53: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:00:32.3789885Z 2025-03-14T05:00:32.3790131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3790633Z x_92: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3790717Z 2025-03-14T05:00:32.3790979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3792793Z x_93: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3792856Z 2025-03-14T05:00:32.3793113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3793608Z x_94: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:32.3793670Z 2025-03-14T05:00:32.3793952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3795841Z x_95: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3795930Z 2025-03-14T05:00:32.3796242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3796379Z x_93 += x_95; out_54: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T05:00:32.3796449Z 2025-03-14T05:00:32.3796731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3796872Z out_55: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:00:32.3796933Z 2025-03-14T05:00:32.3797190Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3797663Z x_96: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3797752Z 2025-03-14T05:00:32.3798016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3799821Z x_97: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3799892Z 2025-03-14T05:00:32.3800173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3800311Z out_56: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:00:32.3800372Z 2025-03-14T05:00:32.3800638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3801138Z x_98: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3801226Z 2025-03-14T05:00:32.3801491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3803289Z x_99: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3803362Z 2025-03-14T05:00:32.3803645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3803785Z out_57: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T05:00:32.3803848Z 2025-03-14T05:00:32.3804110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3804622Z x_100: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3804695Z 2025-03-14T05:00:32.3804958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3806843Z x_101: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3806917Z 2025-03-14T05:00:32.3807210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3807394Z x_101 += out_55; out_58: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T05:00:32.3807460Z 2025-03-14T05:00:32.3807765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3807934Z out_59: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:00:32.3808021Z 2025-03-14T05:00:32.3808291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3808809Z x_102: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.3808881Z 2025-03-14T05:00:32.3809159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3811089Z x_103: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3811226Z 2025-03-14T05:00:32.3811599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3811764Z out_60: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:00:32.3811832Z 2025-03-14T05:00:32.3812114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3812651Z x_104: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.3812734Z 2025-03-14T05:00:32.3813006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3814933Z x_105: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3815028Z 2025-03-14T05:00:32.3815350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3815503Z out_61: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T05:00:32.3815566Z 2025-03-14T05:00:32.3815833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3816351Z x_106: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.3816424Z 2025-03-14T05:00:32.3816696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.3818603Z x_107: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.3818694Z 2025-03-14T05:00:32.3818989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.3819149Z x_107 += out_59; out_62: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T05:00:32.3819213Z 2025-03-14T05:00:32.3819512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.3819655Z out_63: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:00:32.3819728Z 2025-03-14T05:00:32.3819986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3820595Z x_108: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_63 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T05:00:32.3820667Z 2025-03-14T05:00:32.3820925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3821521Z x_109: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_108, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T05:00:32.3821598Z 2025-03-14T05:00:32.3822033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:00:32.3822301Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_108, scale_factor = 2.0, mode = 'nearest'); x_108 = None 2025-03-14T05:00:32.3822368Z 2025-03-14T05:00:32.3822613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3823180Z x_110: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T05:00:32.3823243Z 2025-03-14T05:00:32.3823594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:00:32.3823784Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_110 + top_down_features; x_110 = top_down_features = None 2025-03-14T05:00:32.3823853Z 2025-03-14T05:00:32.3824096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3824664Z x_111: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T05:00:32.3824750Z 2025-03-14T05:00:32.3825151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:00:32.3825479Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T05:00:32.3825542Z 2025-03-14T05:00:32.3825796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3826369Z x_112: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T05:00:32.3826440Z 2025-03-14T05:00:32.3826782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:00:32.3826997Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_112 + top_down_features_1; x_112 = top_down_features_1 = None 2025-03-14T05:00:32.3827058Z 2025-03-14T05:00:32.3827312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3827912Z x_113: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T05:00:32.3827990Z 2025-03-14T05:00:32.3828405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:00:32.3828728Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T05:00:32.3828796Z 2025-03-14T05:00:32.3829042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3829623Z x_114: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T05:00:32.3829687Z 2025-03-14T05:00:32.3830038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:00:32.3830246Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_114 + top_down_features_2; x_114 = top_down_features_2 = None 2025-03-14T05:00:32.3830315Z 2025-03-14T05:00:32.3830560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3831187Z x_115: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T05:00:32.3831277Z 2025-03-14T05:00:32.3831638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T05:00:32.3831852Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_109, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T05:00:32.3831915Z 2025-03-14T05:00:32.3832356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3832508Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:00:32.3832580Z 2025-03-14T05:00:32.3832873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3833019Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:00:32.3833082Z 2025-03-14T05:00:32.3833521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3833670Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:00:32.3833741Z 2025-03-14T05:00:32.3834044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3834192Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:00:32.3834282Z 2025-03-14T05:00:32.3834674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.3834855Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:00:32.3834960Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:00:32.3835081Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:00:32.3835151Z 2025-03-14T05:00:32.3835489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.3835622Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:00:32.3835683Z 2025-03-14T05:00:32.3836017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.3836150Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:00:32.3836217Z 2025-03-14T05:00:32.3836589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.3836802Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:00:32.3836860Z 2025-03-14T05:00:32.3837280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.3837421Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:00:32.3837841Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:00:32.3837968Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:00:32.3838084Z x_116: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:00:32.3838151Z 2025-03-14T05:00:32.3838580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3838732Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:00:32.3838796Z 2025-03-14T05:00:32.3839093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3839233Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:00:32.3839301Z 2025-03-14T05:00:32.3839729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3839877Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:00:32.3839938Z 2025-03-14T05:00:32.3840251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3840388Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:00:32.3840477Z 2025-03-14T05:00:32.3840864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.3841068Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:00:32.3841169Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:00:32.3841299Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:00:32.3841362Z 2025-03-14T05:00:32.3841691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.3841817Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:00:32.3841888Z 2025-03-14T05:00:32.3842212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.3842343Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:00:32.3842404Z 2025-03-14T05:00:32.3842797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.3843019Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:00:32.3843089Z 2025-03-14T05:00:32.3843521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.3843682Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:00:32.3844144Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:00:32.3844280Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:00:32.3844414Z x_117: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:00:32.3844480Z 2025-03-14T05:00:32.3844969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3845130Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:00:32.3845206Z 2025-03-14T05:00:32.3845531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3845688Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:00:32.3845756Z 2025-03-14T05:00:32.3846243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3846415Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:00:32.3846493Z 2025-03-14T05:00:32.3846813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3846985Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:00:32.3847052Z 2025-03-14T05:00:32.3847491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.3847707Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:00:32.3847823Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:00:32.3847954Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:00:32.3848029Z 2025-03-14T05:00:32.3848394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.3848540Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:00:32.3848609Z 2025-03-14T05:00:32.3848980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.3849111Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:00:32.3849190Z 2025-03-14T05:00:32.3849636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.3849886Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:00:32.3849953Z 2025-03-14T05:00:32.3850441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.3850600Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:00:32.3851071Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:00:32.3851211Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:00:32.3851336Z x_118: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T05:00:32.3851481Z 2025-03-14T05:00:32.3851990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3852161Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:00:32.3852230Z 2025-03-14T05:00:32.3852574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3852737Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:00:32.3852815Z 2025-03-14T05:00:32.3853306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3853489Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:00:32.3853558Z 2025-03-14T05:00:32.3853893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3854057Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:00:32.3854150Z 2025-03-14T05:00:32.3854562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.3854779Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:00:32.3854887Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:00:32.3855023Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:00:32.3855093Z 2025-03-14T05:00:32.3855466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.3855604Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:00:32.3855681Z 2025-03-14T05:00:32.3856046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.3856185Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:00:32.3856254Z 2025-03-14T05:00:32.3856684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.3856915Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:00:32.3856989Z 2025-03-14T05:00:32.3857450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.3857616Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:00:32.3858078Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:00:32.3858208Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:00:32.3858340Z x_119: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T05:00:32.3858410Z 2025-03-14T05:00:32.3858894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3859053Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:00:32.3859128Z 2025-03-14T05:00:32.3859458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3859608Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:00:32.3859674Z 2025-03-14T05:00:32.3860158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.3860336Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:00:32.3860411Z 2025-03-14T05:00:32.3860838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3861067Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:00:32.3861140Z 2025-03-14T05:00:32.3861556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.3861746Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:00:32.3861850Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:00:32.3861968Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:00:32.3862034Z 2025-03-14T05:00:32.3862363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.3862496Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:00:32.3862555Z 2025-03-14T05:00:32.3862893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.3863010Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:00:32.3863079Z 2025-03-14T05:00:32.3863463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.3863679Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:00:32.3863764Z 2025-03-14T05:00:32.3864181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.3864306Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:00:32.3864726Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:00:32.3864852Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:00:32.3864966Z x_120: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T05:00:32.3865033Z 2025-03-14T05:00:32.3865331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:32.3865471Z tensor: "f32[269952, 4][4, 1]cpu" = x_116.to(torch.float32); x_116 = None 2025-03-14T05:00:32.3865598Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_117.to(torch.float32); x_117 = None 2025-03-14T05:00:32.3865728Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_118.to(torch.float32); x_118 = None 2025-03-14T05:00:32.3865849Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_119.to(torch.float32); x_119 = None 2025-03-14T05:00:32.3865973Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_120.to(torch.float32); x_120 = None 2025-03-14T05:00:32.3866034Z 2025-03-14T05:00:32.3866298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3866832Z x_121: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_115, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_115 = None 2025-03-14T05:00:32.3866921Z 2025-03-14T05:00:32.3867212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.3867420Z x_122: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_121, inplace = False); x_121 = None 2025-03-14T05:00:32.3867482Z 2025-03-14T05:00:32.3867871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.3868390Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:32.3868461Z 2025-03-14T05:00:32.3868819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.3869342Z x_131: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_122 = None 2025-03-14T05:00:32.3869412Z 2025-03-14T05:00:32.3869663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3870152Z x_123: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_113, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_113 = None 2025-03-14T05:00:32.3870230Z 2025-03-14T05:00:32.3870510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.3870704Z x_124: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_123, inplace = False); x_123 = None 2025-03-14T05:00:32.3870772Z 2025-03-14T05:00:32.3871146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.3871663Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:32.3871726Z 2025-03-14T05:00:32.3872090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.3872603Z x_132: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_124 = None 2025-03-14T05:00:32.3872671Z 2025-03-14T05:00:32.3872942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3873418Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_111, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_111 = None 2025-03-14T05:00:32.3873505Z 2025-03-14T05:00:32.3873807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.3874005Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_125, inplace = False); x_125 = None 2025-03-14T05:00:32.3874069Z 2025-03-14T05:00:32.3874463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.3874979Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:32.3875049Z 2025-03-14T05:00:32.3875402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.3875904Z x_133: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_126 = None 2025-03-14T05:00:32.3875965Z 2025-03-14T05:00:32.3876223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3876698Z x_127: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_109, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_109 = None 2025-03-14T05:00:32.3876784Z 2025-03-14T05:00:32.3877060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.3877249Z x_128: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_127, inplace = False); x_127 = None 2025-03-14T05:00:32.3877320Z 2025-03-14T05:00:32.3877705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.3878231Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:32.3878297Z 2025-03-14T05:00:32.3878670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.3879159Z x_134: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_128 = None 2025-03-14T05:00:32.3879229Z 2025-03-14T05:00:32.3879491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.3880271Z x_129: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:00:32.3880356Z 2025-03-14T05:00:32.3880626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.3880802Z x_130: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_129, inplace = False); x_129 = None 2025-03-14T05:00:32.3880861Z 2025-03-14T05:00:32.3881236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.3882083Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:00:32.3882150Z 2025-03-14T05:00:32.3882500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.3883318Z x_135: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_130 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:00:32.3883411Z 2025-03-14T05:00:32.3883749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:00:32.3883919Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:00:32.3884059Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:00:32.3884226Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:00:32.3884368Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:00:32.3884528Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:00:32.3884664Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:00:32.3884816Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:00:32.3884946Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:00:32.3885096Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:00:32.3885225Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:00:32.3885293Z 2025-03-14T05:00:32.3885730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:00:32.3885930Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_131.view(4, -1, 4, 296, 304); x_131 = None 2025-03-14T05:00:32.3886130Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:00:32.3886317Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:00:32.3886478Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_132.view(4, -1, 4, 148, 152); x_132 = None 2025-03-14T05:00:32.3886658Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:00:32.3886828Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:00:32.3886983Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_133.view(4, -1, 4, 74, 76); x_133 = None 2025-03-14T05:00:32.3887150Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:00:32.3887324Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:00:32.3887469Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_134.view(4, -1, 4, 37, 38); x_134 = None 2025-03-14T05:00:32.3887627Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:00:32.3887798Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:00:32.3887936Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_135.view(4, -1, 4, 19, 19); x_135 = None 2025-03-14T05:00:32.3888101Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:00:32.3888280Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:00:32.3888348Z 2025-03-14T05:00:32.3888750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.3888957Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:00:32.3889017Z 2025-03-14T05:00:32.3889463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.3889625Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:00:32.3889790Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:00:32.3889933Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:00:32.3890006Z 2025-03-14T05:00:32.3890402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.3890587Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:00:32.3890649Z 2025-03-14T05:00:32.3891000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.3891149Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:00:32.3891222Z 2025-03-14T05:00:32.3891632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.3891802Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:32.3891934Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3892101Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:00:32.3892169Z 2025-03-14T05:00:32.3892531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.3892670Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:32.3892814Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:32.3892984Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:00:32.3893064Z 2025-03-14T05:00:32.3893410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.3893551Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3893654Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:00:32.3893794Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:00:32.3893857Z 2025-03-14T05:00:32.3894192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.3894350Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:32.3894460Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:00:32.3894605Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:00:32.3894670Z 2025-03-14T05:00:32.3895019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.3895179Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.3895304Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:00:32.3895369Z 2025-03-14T05:00:32.3895689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.3895847Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.3895969Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:00:32.3896033Z 2025-03-14T05:00:32.3896353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.3896505Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.3896627Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:00:32.3896692Z 2025-03-14T05:00:32.3897017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.3897223Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:32.3897345Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:00:32.3897409Z 2025-03-14T05:00:32.3897783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.3897946Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:32.3898019Z 2025-03-14T05:00:32.3898368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.3898518Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:32.3898580Z 2025-03-14T05:00:32.3898952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.3899095Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:32.3899234Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:00:32.3899393Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:32.3899542Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:00:32.3899604Z 2025-03-14T05:00:32.3899969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.3900124Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:32.3900253Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:00:32.3900415Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:32.3900575Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:00:32.3900646Z 2025-03-14T05:00:32.3900992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.3901121Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:32.3901287Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:32.3901431Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:00:32.3901494Z 2025-03-14T05:00:32.3901849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.3901971Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:32.3902153Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:32.3902294Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:00:32.3902364Z 2025-03-14T05:00:32.3902688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.3902796Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:32.3902920Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:32.3903001Z 2025-03-14T05:00:32.3903325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.3903425Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:32.3903557Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:32.3903625Z 2025-03-14T05:00:32.3903949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.3904070Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:32.3904196Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:32.3904264Z 2025-03-14T05:00:32.3904562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.3904680Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:32.3904805Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:32.3904874Z 2025-03-14T05:00:32.3905222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.3905409Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:32.3905470Z 2025-03-14T05:00:32.3905810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.3905971Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:00:32.3906040Z 2025-03-14T05:00:32.3906428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.3906629Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:00:32.3906690Z 2025-03-14T05:00:32.3907095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.3907304Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:00:32.3907374Z 2025-03-14T05:00:32.3907816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.3907974Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:00:32.3908131Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:00:32.3908269Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:00:32.3908339Z 2025-03-14T05:00:32.3908711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.3908884Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:00:32.3908943Z 2025-03-14T05:00:32.3909271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.3909416Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:00:32.3909485Z 2025-03-14T05:00:32.3909808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.3909991Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:00:32.3910116Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3910271Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:00:32.3910333Z 2025-03-14T05:00:32.3910659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.3910784Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:00:32.3910912Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:00:32.3911065Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:00:32.3911133Z 2025-03-14T05:00:32.3911444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.3911573Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3911663Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:00:32.3911803Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:00:32.3911863Z 2025-03-14T05:00:32.3912186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.3912332Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:00:32.3912447Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:00:32.3912577Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:00:32.3912647Z 2025-03-14T05:00:32.3912946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.3913109Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.3913219Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:00:32.3913285Z 2025-03-14T05:00:32.3913579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.3913735Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.3913847Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:00:32.3913918Z 2025-03-14T05:00:32.3914212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.3914366Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.3914473Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:00:32.3914539Z 2025-03-14T05:00:32.3914846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.3915043Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:00:32.3915159Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:00:32.3915239Z 2025-03-14T05:00:32.3915595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.3915736Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:00:32.3915801Z 2025-03-14T05:00:32.3916135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.3916277Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:00:32.3916337Z 2025-03-14T05:00:32.3916694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.3916830Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:00:32.3916965Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:00:32.3917120Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:00:32.3917266Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:00:32.3917326Z 2025-03-14T05:00:32.3917686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.3917821Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:00:32.3917950Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:00:32.3918120Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:00:32.3918266Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:00:32.3918327Z 2025-03-14T05:00:32.3918663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.3918776Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:00:32.3918945Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:00:32.3919076Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:00:32.3919147Z 2025-03-14T05:00:32.3919472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.3919595Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:00:32.3919764Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:00:32.3919904Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:00:32.3919977Z 2025-03-14T05:00:32.3920290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.3920385Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:00:32.3920507Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:00:32.3920595Z 2025-03-14T05:00:32.3920914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.3921025Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:00:32.3921146Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:00:32.3921221Z 2025-03-14T05:00:32.3921527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.3921641Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:00:32.3921781Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:00:32.3921842Z 2025-03-14T05:00:32.3922180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.3922301Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:00:32.3922431Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:00:32.3922502Z 2025-03-14T05:00:32.3922845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.3923044Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:00:32.3923104Z 2025-03-14T05:00:32.3923436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.3923601Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:00:32.3923669Z 2025-03-14T05:00:32.3924044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.3924244Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:00:32.3924305Z 2025-03-14T05:00:32.3924710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.3924911Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:00:32.3924977Z 2025-03-14T05:00:32.3925403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.3925558Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:00:32.3925705Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:00:32.3925846Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:00:32.3925905Z 2025-03-14T05:00:32.3926276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.3926440Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:00:32.3926507Z 2025-03-14T05:00:32.3926832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.3926983Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:00:32.3927070Z 2025-03-14T05:00:32.3927404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.3927530Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:00:32.3927657Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3927802Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:00:32.3927871Z 2025-03-14T05:00:32.3928189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.3928317Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:00:32.3928441Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:00:32.3928602Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:00:32.3928669Z 2025-03-14T05:00:32.3929000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.3929128Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3929219Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:00:32.3929363Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:00:32.3929426Z 2025-03-14T05:00:32.3929756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.3929924Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:00:32.3930027Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:00:32.3930160Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:00:32.3930231Z 2025-03-14T05:00:32.3930545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.3930709Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.3930825Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:00:32.3930896Z 2025-03-14T05:00:32.3931210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.3931435Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.3931566Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:00:32.3931640Z 2025-03-14T05:00:32.3931954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.3932114Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.3932227Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:00:32.3932301Z 2025-03-14T05:00:32.3932636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.3932836Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:00:32.3932968Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:00:32.3933040Z 2025-03-14T05:00:32.3933404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.3933560Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:00:32.3933625Z 2025-03-14T05:00:32.3933986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.3934130Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:00:32.3934201Z 2025-03-14T05:00:32.3934567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.3934715Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:00:32.3934843Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:00:32.3935012Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:00:32.3935163Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:00:32.3935226Z 2025-03-14T05:00:32.3935606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.3935746Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:00:32.3935881Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:00:32.3936055Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:00:32.3936206Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:00:32.3936269Z 2025-03-14T05:00:32.3936622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.3936741Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:00:32.3936914Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:00:32.3937053Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:00:32.3937123Z 2025-03-14T05:00:32.3937470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.3937594Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:00:32.3937763Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:00:32.3937907Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:00:32.3937970Z 2025-03-14T05:00:32.3938301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.3938399Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:00:32.3938544Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:00:32.3938609Z 2025-03-14T05:00:32.3938942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.3939056Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:00:32.3939202Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:00:32.3939266Z 2025-03-14T05:00:32.3939590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.3939707Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:00:32.3939852Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:00:32.3939915Z 2025-03-14T05:00:32.3940240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.3940357Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:00:32.3940497Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:00:32.3940559Z 2025-03-14T05:00:32.3940932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.3941128Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:00:32.3941199Z 2025-03-14T05:00:32.3941544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.3941710Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:00:32.3941785Z 2025-03-14T05:00:32.3942168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.3942339Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:00:32.3942407Z 2025-03-14T05:00:32.3942800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.3943004Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:00:32.3943063Z 2025-03-14T05:00:32.3943498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.3943651Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:00:32.3943798Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:00:32.3943937Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:00:32.3944000Z 2025-03-14T05:00:32.3944375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.3944541Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:00:32.3944634Z 2025-03-14T05:00:32.3944946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.3945114Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:00:32.3945173Z 2025-03-14T05:00:32.3945504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.3945631Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:00:32.3945758Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3945902Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:00:32.3945970Z 2025-03-14T05:00:32.3946286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.3946413Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:00:32.3946530Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:00:32.3946682Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:00:32.3946743Z 2025-03-14T05:00:32.3947058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.3947179Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3947272Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:00:32.3947400Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:00:32.3947470Z 2025-03-14T05:00:32.3947778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.3947947Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:00:32.3948039Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:00:32.3948173Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:00:32.3948232Z 2025-03-14T05:00:32.3948539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.3948688Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.3948806Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:00:32.3948866Z 2025-03-14T05:00:32.3949171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.3949319Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.3949435Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:00:32.3949495Z 2025-03-14T05:00:32.3949798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.3949947Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.3950054Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:00:32.3950121Z 2025-03-14T05:00:32.3950447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.3950635Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:00:32.3950757Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:00:32.3950824Z 2025-03-14T05:00:32.3951165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.3951311Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:00:32.3951371Z 2025-03-14T05:00:32.3951711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.3951844Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:00:32.3951911Z 2025-03-14T05:00:32.3952255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.3952397Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:00:32.3952517Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:00:32.3952673Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:00:32.3952809Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:00:32.3952877Z 2025-03-14T05:00:32.3953228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.3953369Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:00:32.3953504Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:00:32.3953658Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:00:32.3953790Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:00:32.3953858Z 2025-03-14T05:00:32.3954184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.3954301Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:00:32.3954459Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:00:32.3954596Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:00:32.3954656Z 2025-03-14T05:00:32.3954989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.3955099Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:00:32.3955267Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:00:32.3955394Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:00:32.3955462Z 2025-03-14T05:00:32.3955767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.3955884Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:00:32.3955997Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:00:32.3956063Z 2025-03-14T05:00:32.3956365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.3956493Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:00:32.3956616Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:00:32.3956676Z 2025-03-14T05:00:32.3956983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.3957096Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:00:32.3957233Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:00:32.3957294Z 2025-03-14T05:00:32.3957599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.3957712Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:00:32.3957847Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:00:32.3957908Z 2025-03-14T05:00:32.3958259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.3958445Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:00:32.3958511Z 2025-03-14T05:00:32.3958841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.3959005Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:00:32.3959086Z 2025-03-14T05:00:32.3959478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.3959650Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:00:32.3959718Z 2025-03-14T05:00:32.3960117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.3960326Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:00:32.3960387Z 2025-03-14T05:00:32.3960935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.3961090Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:00:32.3961248Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:00:32.3961380Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:00:32.3961452Z 2025-03-14T05:00:32.3961817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.3962029Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:00:32.3962090Z 2025-03-14T05:00:32.3962412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.3962585Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:00:32.3962673Z 2025-03-14T05:00:32.3962990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.3963130Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:00:32.3963256Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3963413Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:00:32.3963478Z 2025-03-14T05:00:32.3963806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.3963932Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:00:32.3964046Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:00:32.3964198Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:00:32.3964257Z 2025-03-14T05:00:32.3964570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.3964686Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:00:32.3964778Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:00:32.3964905Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:00:32.3964973Z 2025-03-14T05:00:32.3965281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.3965454Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:00:32.3965541Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:00:32.3965671Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:00:32.3965732Z 2025-03-14T05:00:32.3966037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.3966186Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.3966303Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:00:32.3966363Z 2025-03-14T05:00:32.3966662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.3966811Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.3966928Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:00:32.3966988Z 2025-03-14T05:00:32.3967287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.3967432Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.3967546Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:00:32.3967605Z 2025-03-14T05:00:32.3967924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.3968105Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:00:32.3968234Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:00:32.3968346Z 2025-03-14T05:00:32.3968686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.3968818Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:00:32.3968884Z 2025-03-14T05:00:32.3969211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.3969348Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:00:32.3969409Z 2025-03-14T05:00:32.3969759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.3969891Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:00:32.3970017Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:00:32.3970171Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:00:32.3970303Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:00:32.3970367Z 2025-03-14T05:00:32.3970711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.3970848Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:00:32.3970995Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:00:32.3971156Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:00:32.3971294Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:00:32.3971362Z 2025-03-14T05:00:32.3971761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.3971884Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:00:32.3972053Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:00:32.3972196Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:00:32.3972268Z 2025-03-14T05:00:32.3972643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.3972769Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:00:32.3972957Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:00:32.3973098Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:00:32.3973176Z 2025-03-14T05:00:32.3973518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.3973663Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:00:32.3973783Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:00:32.3973854Z 2025-03-14T05:00:32.3974192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.3974313Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:00:32.3974431Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:00:32.3974499Z 2025-03-14T05:00:32.3974816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.3974940Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:00:32.3975075Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:00:32.3975146Z 2025-03-14T05:00:32.3975457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.3975583Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:00:32.3975719Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:00:32.3975789Z 2025-03-14T05:00:32.3976147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.3976347Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:00:32.3976412Z 2025-03-14T05:00:32.3976764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.3976927Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:00:32.3977019Z 2025-03-14T05:00:32.3977418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.3977604Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:00:32.3977669Z 2025-03-14T05:00:32.3978182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:00:32.3978329Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:00:32.3978402Z 2025-03-14T05:00:32.3978722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3978874Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:00:32.3978947Z 2025-03-14T05:00:32.3979410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.3979537Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:00:32.3979646Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:00:32.3979774Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:00:32.3979841Z 2025-03-14T05:00:32.3980352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.3980508Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:32.3980765Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:00:32.3980831Z 2025-03-14T05:00:32.3981324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.3981496Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.3981568Z 2025-03-14T05:00:32.3981879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3982013Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:00:32.3982077Z 2025-03-14T05:00:32.3982554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.3982669Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:00:32.3982782Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:00:32.3982897Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:00:32.3982967Z 2025-03-14T05:00:32.3983428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.3983587Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:32.3983818Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:00:32.3983889Z 2025-03-14T05:00:32.3984338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.3984508Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.3984568Z 2025-03-14T05:00:32.3984866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3984995Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:00:32.3985058Z 2025-03-14T05:00:32.3985491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.3985605Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:00:32.3985714Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:00:32.3985827Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:00:32.3985894Z 2025-03-14T05:00:32.3986360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.3986502Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:32.3986734Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:00:32.3986820Z 2025-03-14T05:00:32.3987279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.3987446Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.3987507Z 2025-03-14T05:00:32.3987801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3987923Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:00:32.3987988Z 2025-03-14T05:00:32.3988411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.3988531Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:00:32.3988632Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:00:32.3988753Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:00:32.3988815Z 2025-03-14T05:00:32.3989279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.3989413Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:32.3989653Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:00:32.3989731Z 2025-03-14T05:00:32.3990192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.3990349Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.3990417Z 2025-03-14T05:00:32.3990707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3990837Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:00:32.3990898Z 2025-03-14T05:00:32.3991334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.3991453Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:00:32.3991553Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:00:32.3991675Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:00:32.3991736Z 2025-03-14T05:00:32.3992198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.3992377Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:00:32.3992616Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:00:32.3992693Z 2025-03-14T05:00:32.3993178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.3993338Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.3993406Z 2025-03-14T05:00:32.3993694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.3993818Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:00:32.3993878Z 2025-03-14T05:00:32.3994162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:32.3994535Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:00:32.3994605Z 2025-03-14T05:00:32.3994883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:32.3995348Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:00:32.3995409Z 2025-03-14T05:00:32.3995692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:32.3995907Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:00:32.3995975Z 2025-03-14T05:00:32.3996368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:00:32.3996505Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:00:32.3996574Z 2025-03-14T05:00:32.3996871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:32.3997029Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:00:32.3997093Z 2025-03-14T05:00:32.3997495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:00:32.3997634Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:00:32.3997714Z 2025-03-14T05:00:32.3998197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:00:32.3998339Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:00:32.3998458Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:32.3998635Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:00:32.3998763Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:00:32.3998835Z 2025-03-14T05:00:32.3999214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:00:32.3999350Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:00:32.3999410Z 2025-03-14T05:00:32.3999417Z 2025-03-14T05:00:32.3999520Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:32.4066956Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:00:32.4067518Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:00:32.4067948Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4068421Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4068871Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4069319Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4069759Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4070199Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4070692Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4071154Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4071630Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4072061Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4072485Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4072959Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4073402Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4073843Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4074267Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4074687Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4075193Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4075677Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4076115Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4076557Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4077006Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:32.4077513Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4077987Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4078442Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4078931Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4079316Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4079764Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4080216Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4080645Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4081078Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4081471Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4081963Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4082418Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4082872Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4083300Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4083681Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4084137Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4084581Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4085012Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4085428Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4085819Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4086308Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4086760Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4087197Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4087648Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4088095Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4088613Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4089107Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4089597Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4090120Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4090573Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4091089Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4091676Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4092182Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4092659Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4093089Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4093554Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4093998Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4094443Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4094858Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4095254Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4095711Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4096168Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4096596Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4097043Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4097444Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4097945Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4098402Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4098836Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4099260Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4099671Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:32.4100146Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4100608Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4101062Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4101525Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4101914Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4102377Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4102822Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4103266Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4103682Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4104074Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4104556Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4105008Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4105484Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4105902Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4106300Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4106749Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4107214Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4107647Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4108062Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4108455Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4108929Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4109384Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4109817Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4110230Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4110625Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4111076Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4111544Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4111976Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4112440Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4112837Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4113293Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4113750Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4114179Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4114599Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4114983Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4115445Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4115926Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4116353Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4116801Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4117204Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4117665Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4118100Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4118522Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4118957Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4119333Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4119809Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4120246Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4120673Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4121075Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4121462Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4121910Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4122346Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4122765Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4123191Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4123578Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4124021Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4124468Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4124898Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4125304Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4125689Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4126189Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4126665Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4127084Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4127497Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4127907Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:32.4128373Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4128847Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4129290Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4129736Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4130152Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4130683Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4131197Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4131781Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4132276Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4132720Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4133476Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4134095Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4134538Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4135015Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4135404Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4135865Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4136312Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4136752Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4137169Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4137562Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4138024Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4138490Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4138926Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4139343Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4139748Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4140157Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4140564Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4140952Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4141339Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4141711Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4142126Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4142533Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4142920Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4143292Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4143649Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4144053Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4144468Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4144848Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4145256Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4145612Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4146020Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4146435Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4146823Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4147206Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4147577Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4147984Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4148415Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4148789Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4149159Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4149495Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4149907Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4150315Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4150710Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4151095Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4151462Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4151872Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4152271Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4152660Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4153029Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4153388Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4153794Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4154208Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4154606Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4155030Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4155406Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4155839Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4156267Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4156684Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4157078Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4157448Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4157877Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4158332Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4158746Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4159152Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4159498Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4159916Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4160319Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4160789Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4161230Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4161627Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4162044Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4162443Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4162839Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4163222Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4163571Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4163985Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4164387Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4164807Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4165186Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4165551Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4165970Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4166372Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4166769Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4167145Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4167540Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:32.4167963Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4168423Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4168842Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4169266Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4169652Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4170095Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4170538Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4170950Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4171418Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4171867Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4172350Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4172806Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4173211Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4173596Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4173942Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4174353Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4174794Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4175241Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4175641Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4176011Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:32.4176446Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4176870Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4177284Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4177684Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4178049Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:32.4178481Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4178924Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4179332Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4179732Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4180093Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:32.4180527Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:32.4180951Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:32.4181374Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:32.4181770Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:32.4182054Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T05:00:32.4182290Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T05:00:32.4182527Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T05:00:32.4182757Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T05:00:32.4182992Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T05:00:32.4183224Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T05:00:32.4183454Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T05:00:32.4183682Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T05:00:32.4183911Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T05:00:32.4184152Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T05:00:32.4184392Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T05:00:32.4184618Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T05:00:32.4184858Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T05:00:32.4185127Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T05:00:32.4185376Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T05:00:32.4185609Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T05:00:32.4186007Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:00:32.4186411Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:00:32.4186800Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:00:32.4187176Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:00:32.4187556Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:00:32.4187905Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:00:32.4188265Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:00:32.4188658Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:00:32.4189086Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:00:32.4189476Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:00:32.4189842Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:00:32.4189907Z 2025-03-14T05:00:32.4190215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4190813Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4190879Z 2025-03-14T05:00:32.4191178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4193046Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4193134Z 2025-03-14T05:00:32.4193454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:00:32.4193603Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:00:32.4193677Z 2025-03-14T05:00:32.4194062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:00:32.4194324Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:00:32.4194388Z 2025-03-14T05:00:32.4194667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4195208Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4195282Z 2025-03-14T05:00:32.4195562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4197483Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4197556Z 2025-03-14T05:00:32.4197865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4198018Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:00:32.4198083Z 2025-03-14T05:00:32.4198357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4198893Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4198987Z 2025-03-14T05:00:32.4199276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4201080Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4201151Z 2025-03-14T05:00:32.4201436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4201580Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:00:32.4201639Z 2025-03-14T05:00:32.4201894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4202413Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4202499Z 2025-03-14T05:00:32.4202785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4204663Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4204737Z 2025-03-14T05:00:32.4205000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4205544Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:32.4205616Z 2025-03-14T05:00:32.4205890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4207883Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4207960Z 2025-03-14T05:00:32.4208272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4208438Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:00:32.4208503Z 2025-03-14T05:00:32.4208826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4208989Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:00:32.4209064Z 2025-03-14T05:00:32.4209360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4209932Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4210027Z 2025-03-14T05:00:32.4210338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4212409Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4212488Z 2025-03-14T05:00:32.4212824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4212987Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:00:32.4213067Z 2025-03-14T05:00:32.4213353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4213956Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4214024Z 2025-03-14T05:00:32.4214326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4216343Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4216416Z 2025-03-14T05:00:32.4216742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4216918Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:00:32.4216994Z 2025-03-14T05:00:32.4217272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4217876Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4217944Z 2025-03-14T05:00:32.4218247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4220307Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4220377Z 2025-03-14T05:00:32.4220703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4220869Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:00:32.4220961Z 2025-03-14T05:00:32.4221261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4221410Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:00:32.4221477Z 2025-03-14T05:00:32.4221717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4222193Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4222251Z 2025-03-14T05:00:32.4222515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4224289Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4224375Z 2025-03-14T05:00:32.4224677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4224818Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:00:32.4224885Z 2025-03-14T05:00:32.4225131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4225626Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4225690Z 2025-03-14T05:00:32.4225960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4227753Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4227837Z 2025-03-14T05:00:32.4228127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4228261Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:00:32.4228330Z 2025-03-14T05:00:32.4228574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4229083Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4229144Z 2025-03-14T05:00:32.4229408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4231257Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4231333Z 2025-03-14T05:00:32.4231614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4231764Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:00:32.4231834Z 2025-03-14T05:00:32.4232118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4232276Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:00:32.4232339Z 2025-03-14T05:00:32.4232594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4233081Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4233149Z 2025-03-14T05:00:32.4233419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4235238Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4235368Z 2025-03-14T05:00:32.4235649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4235795Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:00:32.4235865Z 2025-03-14T05:00:32.4236116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4236616Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4236676Z 2025-03-14T05:00:32.4236961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4238779Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4238862Z 2025-03-14T05:00:32.4239155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4239299Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:00:32.4239368Z 2025-03-14T05:00:32.4239617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4240122Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4240183Z 2025-03-14T05:00:32.4240453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4242289Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4242354Z 2025-03-14T05:00:32.4242611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4243106Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:32.4243175Z 2025-03-14T05:00:32.4243439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4245340Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4245427Z 2025-03-14T05:00:32.4245703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4245861Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:00:32.4245923Z 2025-03-14T05:00:32.4246212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4246359Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:00:32.4246429Z 2025-03-14T05:00:32.4246674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4247171Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4247255Z 2025-03-14T05:00:32.4247517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4249345Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4249409Z 2025-03-14T05:00:32.4249702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4249855Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:00:32.4249919Z 2025-03-14T05:00:32.4250183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4250736Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4250822Z 2025-03-14T05:00:32.4251122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4253120Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4253197Z 2025-03-14T05:00:32.4253483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4253628Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:00:32.4253688Z 2025-03-14T05:00:32.4253944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4254434Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4254526Z 2025-03-14T05:00:32.4254791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4256698Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4256774Z 2025-03-14T05:00:32.4257066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4257237Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:00:32.4257300Z 2025-03-14T05:00:32.4257619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4257777Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:00:32.4257862Z 2025-03-14T05:00:32.4258138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4258662Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4258722Z 2025-03-14T05:00:32.4258994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4261002Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4261076Z 2025-03-14T05:00:32.4261383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4261569Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:00:32.4261641Z 2025-03-14T05:00:32.4261904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4262433Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4262504Z 2025-03-14T05:00:32.4262781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4264727Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4264795Z 2025-03-14T05:00:32.4265107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4265307Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:00:32.4265372Z 2025-03-14T05:00:32.4265637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4266168Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4266242Z 2025-03-14T05:00:32.4266519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4268465Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4268558Z 2025-03-14T05:00:32.4268865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4269024Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:00:32.4269084Z 2025-03-14T05:00:32.4269372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4269516Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:00:32.4269582Z 2025-03-14T05:00:32.4269833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4270323Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4270385Z 2025-03-14T05:00:32.4270655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4272500Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4272585Z 2025-03-14T05:00:32.4272879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4273017Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:00:32.4273083Z 2025-03-14T05:00:32.4273332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4273834Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4273895Z 2025-03-14T05:00:32.4274162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4276020Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4276100Z 2025-03-14T05:00:32.4276391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4276530Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:00:32.4276598Z 2025-03-14T05:00:32.4276846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4277355Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4277424Z 2025-03-14T05:00:32.4277685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4279515Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4279599Z 2025-03-14T05:00:32.4279876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4280034Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:00:32.4280097Z 2025-03-14T05:00:32.4280384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4280530Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:00:32.4280599Z 2025-03-14T05:00:32.4280843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4281332Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4281395Z 2025-03-14T05:00:32.4281683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4283462Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4283532Z 2025-03-14T05:00:32.4283823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4283969Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:00:32.4284041Z 2025-03-14T05:00:32.4284300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4284835Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4284916Z 2025-03-14T05:00:32.4285199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4287158Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4287227Z 2025-03-14T05:00:32.4287541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4287686Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:00:32.4287760Z 2025-03-14T05:00:32.4288037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4288594Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4288688Z 2025-03-14T05:00:32.4288993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4290985Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4291057Z 2025-03-14T05:00:32.4291347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4291974Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:32.4292056Z 2025-03-14T05:00:32.4292360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4294406Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4294484Z 2025-03-14T05:00:32.4294781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4294940Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:00:32.4295012Z 2025-03-14T05:00:32.4295308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4295463Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:00:32.4295527Z 2025-03-14T05:00:32.4295795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4296315Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4296386Z 2025-03-14T05:00:32.4296661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4298563Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4298639Z 2025-03-14T05:00:32.4298935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4299093Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:00:32.4299157Z 2025-03-14T05:00:32.4299424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4299977Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4300049Z 2025-03-14T05:00:32.4300331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4302148Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4302227Z 2025-03-14T05:00:32.4302501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4302633Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:00:32.4302705Z 2025-03-14T05:00:32.4302954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4303432Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4303496Z 2025-03-14T05:00:32.4303757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4305549Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4305621Z 2025-03-14T05:00:32.4305917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4306073Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:00:32.4306150Z 2025-03-14T05:00:32.4306457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4306598Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:00:32.4306669Z 2025-03-14T05:00:32.4306918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4307415Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4307488Z 2025-03-14T05:00:32.4307768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4309589Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4309671Z 2025-03-14T05:00:32.4309971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4310118Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:00:32.4310183Z 2025-03-14T05:00:32.4310454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4310974Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4311051Z 2025-03-14T05:00:32.4311315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4313164Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4313277Z 2025-03-14T05:00:32.4313576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4313720Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:00:32.4313783Z 2025-03-14T05:00:32.4314053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4314566Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4314642Z 2025-03-14T05:00:32.4314922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4316786Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4316876Z 2025-03-14T05:00:32.4317154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4317302Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:00:32.4317362Z 2025-03-14T05:00:32.4317649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4317787Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:00:32.4317858Z 2025-03-14T05:00:32.4318101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4318581Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4318642Z 2025-03-14T05:00:32.4318910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4320717Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4320797Z 2025-03-14T05:00:32.4321092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4321224Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:00:32.4321293Z 2025-03-14T05:00:32.4321543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4322032Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4322101Z 2025-03-14T05:00:32.4322366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4324158Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4324239Z 2025-03-14T05:00:32.4324528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4324670Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:00:32.4324730Z 2025-03-14T05:00:32.4324985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4325469Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4325537Z 2025-03-14T05:00:32.4325813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4327756Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4327844Z 2025-03-14T05:00:32.4328136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4328296Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:00:32.4328359Z 2025-03-14T05:00:32.4328658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4328801Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:00:32.4328870Z 2025-03-14T05:00:32.4329128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4329643Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4329725Z 2025-03-14T05:00:32.4330011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4332059Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4332135Z 2025-03-14T05:00:32.4332481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4332635Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:00:32.4332705Z 2025-03-14T05:00:32.4332993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4333522Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4333624Z 2025-03-14T05:00:32.4333918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4335829Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4335895Z 2025-03-14T05:00:32.4336220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4336353Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:00:32.4336429Z 2025-03-14T05:00:32.4336695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4337238Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4337302Z 2025-03-14T05:00:32.4337596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4339503Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4339569Z 2025-03-14T05:00:32.4339873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4340037Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:00:32.4340110Z 2025-03-14T05:00:32.4340407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4340586Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:00:32.4340711Z 2025-03-14T05:00:32.4340971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4341479Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4341542Z 2025-03-14T05:00:32.4341823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4343729Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4343818Z 2025-03-14T05:00:32.4344119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4344258Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:00:32.4344327Z 2025-03-14T05:00:32.4344587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4345257Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4345327Z 2025-03-14T05:00:32.4345615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4347559Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4347643Z 2025-03-14T05:00:32.4347974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4348113Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:00:32.4348185Z 2025-03-14T05:00:32.4348445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4348977Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4349041Z 2025-03-14T05:00:32.4349328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4351141Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4351221Z 2025-03-14T05:00:32.4351509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4351651Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:00:32.4351721Z 2025-03-14T05:00:32.4352003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4352147Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:00:32.4352208Z 2025-03-14T05:00:32.4352463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4352945Z x_88: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4353013Z 2025-03-14T05:00:32.4353284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4355100Z x_89: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4355187Z 2025-03-14T05:00:32.4355466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4355609Z out_52: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:00:32.4355670Z 2025-03-14T05:00:32.4355927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4356419Z x_90: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4356480Z 2025-03-14T05:00:32.4356748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4358605Z x_91: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4358693Z 2025-03-14T05:00:32.4358986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4359120Z out_53: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:00:32.4359187Z 2025-03-14T05:00:32.4359434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4359926Z x_92: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4359985Z 2025-03-14T05:00:32.4360253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4362192Z x_93: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4362292Z 2025-03-14T05:00:32.4362552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4363051Z x_94: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:32.4363123Z 2025-03-14T05:00:32.4363387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4365251Z x_95: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4365345Z 2025-03-14T05:00:32.4365620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4365768Z x_93 += x_95; out_54: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T05:00:32.4365828Z 2025-03-14T05:00:32.4366109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4366249Z out_55: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:00:32.4366321Z 2025-03-14T05:00:32.4366566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4367046Z x_96: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4367109Z 2025-03-14T05:00:32.4367420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4369351Z x_97: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4369434Z 2025-03-14T05:00:32.4369739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4369878Z out_56: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:00:32.4369949Z 2025-03-14T05:00:32.4370204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4370727Z x_98: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4370800Z 2025-03-14T05:00:32.4371087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4373148Z x_99: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4373233Z 2025-03-14T05:00:32.4373612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4373757Z out_57: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T05:00:32.4373822Z 2025-03-14T05:00:32.4374099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4374645Z x_100: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4374717Z 2025-03-14T05:00:32.4374999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4376933Z x_101: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4377010Z 2025-03-14T05:00:32.4377316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4377487Z x_101 += out_55; out_58: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T05:00:32.4377551Z 2025-03-14T05:00:32.4377870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4378019Z out_59: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:00:32.4378089Z 2025-03-14T05:00:32.4378367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4378902Z x_102: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:32.4378964Z 2025-03-14T05:00:32.4379256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4381151Z x_103: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4381218Z 2025-03-14T05:00:32.4381530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4381686Z out_60: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:00:32.4381760Z 2025-03-14T05:00:32.4382021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4382572Z x_104: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:32.4382636Z 2025-03-14T05:00:32.4382923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4384822Z x_105: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4384888Z 2025-03-14T05:00:32.4385197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4385333Z out_61: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T05:00:32.4385416Z 2025-03-14T05:00:32.4385665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4386162Z x_106: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:32.4386227Z 2025-03-14T05:00:32.4386489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:32.4388314Z x_107: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:32.4388385Z 2025-03-14T05:00:32.4388675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:32.4388834Z x_107 += out_59; out_62: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T05:00:32.4388911Z 2025-03-14T05:00:32.4389216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:32.4389353Z out_63: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:00:32.4389421Z 2025-03-14T05:00:32.4389669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4390250Z x_108: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_63 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T05:00:32.4390314Z 2025-03-14T05:00:32.4390572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4391129Z x_109: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_108, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T05:00:32.4391198Z 2025-03-14T05:00:32.4391606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:00:32.4391882Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_108, scale_factor = 2.0, mode = 'nearest'); x_108 = None 2025-03-14T05:00:32.4391969Z 2025-03-14T05:00:32.4392233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4392811Z x_110: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T05:00:32.4392878Z 2025-03-14T05:00:32.4393238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:00:32.4393432Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_110 + top_down_features; x_110 = top_down_features = None 2025-03-14T05:00:32.4393505Z 2025-03-14T05:00:32.4393754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4394484Z x_111: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T05:00:32.4394564Z 2025-03-14T05:00:32.4395076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:00:32.4395399Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T05:00:32.4395488Z 2025-03-14T05:00:32.4395750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4396337Z x_112: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T05:00:32.4396406Z 2025-03-14T05:00:32.4396754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:00:32.4396967Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_112 + top_down_features_1; x_112 = top_down_features_1 = None 2025-03-14T05:00:32.4397032Z 2025-03-14T05:00:32.4397287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4397860Z x_113: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T05:00:32.4397931Z 2025-03-14T05:00:32.4398329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:00:32.4398674Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T05:00:32.4398737Z 2025-03-14T05:00:32.4398995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4399568Z x_114: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T05:00:32.4399637Z 2025-03-14T05:00:32.4399992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:00:32.4400203Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_114 + top_down_features_2; x_114 = top_down_features_2 = None 2025-03-14T05:00:32.4400273Z 2025-03-14T05:00:32.4400524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4401143Z x_115: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T05:00:32.4401205Z 2025-03-14T05:00:32.4401592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T05:00:32.4401819Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_109, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T05:00:32.4401888Z 2025-03-14T05:00:32.4402349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.4402511Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:00:32.4402571Z 2025-03-14T05:00:32.4402874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4403015Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:00:32.4403085Z 2025-03-14T05:00:32.4403519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.4403696Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:00:32.4403758Z 2025-03-14T05:00:32.4404055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4404202Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:00:32.4404263Z 2025-03-14T05:00:32.4404645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.4404825Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:00:32.4404949Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:00:32.4405068Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:00:32.4405137Z 2025-03-14T05:00:32.4405468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.4405597Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:00:32.4405658Z 2025-03-14T05:00:32.4405995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.4406114Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:00:32.4406184Z 2025-03-14T05:00:32.4406582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.4406815Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:00:32.4406879Z 2025-03-14T05:00:32.4407333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.4407466Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:00:32.4407955Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:00:32.4408089Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:00:32.4408252Z x_116: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:00:32.4408317Z 2025-03-14T05:00:32.4408795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.4408951Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:00:32.4409024Z 2025-03-14T05:00:32.4409337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4409483Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:00:32.4409542Z 2025-03-14T05:00:32.4409986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.4410140Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:00:32.4410210Z 2025-03-14T05:00:32.4410514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4410660Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:00:32.4410722Z 2025-03-14T05:00:32.4411124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.4411333Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:00:32.4411510Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:00:32.4411653Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:00:32.4411718Z 2025-03-14T05:00:32.4412093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.4412233Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:00:32.4412303Z 2025-03-14T05:00:32.4412665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.4412807Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:00:32.4412882Z 2025-03-14T05:00:32.4413306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.4413533Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:00:32.4413602Z 2025-03-14T05:00:32.4414049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.4414191Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:00:32.4414657Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:00:32.4414814Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:00:32.4414962Z x_117: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:00:32.4415037Z 2025-03-14T05:00:32.4415496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.4415653Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:00:32.4415717Z 2025-03-14T05:00:32.4416040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4416181Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:00:32.4416255Z 2025-03-14T05:00:32.4416700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.4416856Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:00:32.4416918Z 2025-03-14T05:00:32.4417236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4417374Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:00:32.4417444Z 2025-03-14T05:00:32.4417841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.4418072Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:00:32.4418184Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:00:32.4418309Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:00:32.4418381Z 2025-03-14T05:00:32.4418732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.4418867Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:00:32.4418932Z 2025-03-14T05:00:32.4419293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.4419419Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:00:32.4419493Z 2025-03-14T05:00:32.4419913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.4420141Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:00:32.4420205Z 2025-03-14T05:00:32.4420652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.4420795Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:00:32.4421265Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:00:32.4421407Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:00:32.4421548Z x_118: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T05:00:32.4421613Z 2025-03-14T05:00:32.4422090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.4422239Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:00:32.4422311Z 2025-03-14T05:00:32.4422628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4422772Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:00:32.4422833Z 2025-03-14T05:00:32.4423279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.4423419Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:00:32.4423486Z 2025-03-14T05:00:32.4423774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4423914Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:00:32.4423976Z 2025-03-14T05:00:32.4424359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.4424575Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:00:32.4424673Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:00:32.4424793Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:00:32.4424854Z 2025-03-14T05:00:32.4425179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.4425299Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:00:32.4425367Z 2025-03-14T05:00:32.4425685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.4425810Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:00:32.4425872Z 2025-03-14T05:00:32.4426254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.4426462Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:00:32.4426528Z 2025-03-14T05:00:32.4426930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.4427079Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:00:32.4427492Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:00:32.4427649Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:00:32.4427766Z x_119: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T05:00:32.4427833Z 2025-03-14T05:00:32.4428253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.4428402Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:00:32.4428464Z 2025-03-14T05:00:32.4428757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4428891Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:00:32.4428958Z 2025-03-14T05:00:32.4429378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:32.4429523Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:00:32.4429582Z 2025-03-14T05:00:32.4429873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4430004Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:00:32.4430074Z 2025-03-14T05:00:32.4430435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:32.4430652Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:00:32.4430754Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:00:32.4430868Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:00:32.4430935Z 2025-03-14T05:00:32.4431255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:32.4431380Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:00:32.4431440Z 2025-03-14T05:00:32.4431772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:32.4431892Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:00:32.4431960Z 2025-03-14T05:00:32.4432333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:32.4432546Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:00:32.4432606Z 2025-03-14T05:00:32.4433027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:32.4433164Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:00:32.4433582Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:00:32.4433741Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:00:32.4433867Z x_120: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T05:00:32.4433931Z 2025-03-14T05:00:32.4434253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:32.4434390Z tensor: "f32[269952, 4][4, 1]cpu" = x_116.to(torch.float32); x_116 = None 2025-03-14T05:00:32.4434536Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_117.to(torch.float32); x_117 = None 2025-03-14T05:00:32.4434662Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_118.to(torch.float32); x_118 = None 2025-03-14T05:00:32.4434797Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_119.to(torch.float32); x_119 = None 2025-03-14T05:00:32.4434923Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_120.to(torch.float32); x_120 = None 2025-03-14T05:00:32.4434995Z 2025-03-14T05:00:32.4435269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4435781Z x_121: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_115, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_115 = None 2025-03-14T05:00:32.4435843Z 2025-03-14T05:00:32.4436128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.4436330Z x_122: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_121, inplace = False); x_121 = None 2025-03-14T05:00:32.4436412Z 2025-03-14T05:00:32.4436802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.4437345Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:32.4437417Z 2025-03-14T05:00:32.4437797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.4438350Z x_131: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_122 = None 2025-03-14T05:00:32.4438418Z 2025-03-14T05:00:32.4438701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4439182Z x_123: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_113, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_113 = None 2025-03-14T05:00:32.4439251Z 2025-03-14T05:00:32.4439539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.4439740Z x_124: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_123, inplace = False); x_123 = None 2025-03-14T05:00:32.4439825Z 2025-03-14T05:00:32.4440225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.4440745Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:32.4440806Z 2025-03-14T05:00:32.4441180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.4441726Z x_132: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_124 = None 2025-03-14T05:00:32.4441802Z 2025-03-14T05:00:32.4442071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4442579Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_111, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_111 = None 2025-03-14T05:00:32.4442643Z 2025-03-14T05:00:32.4442943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.4459867Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_125, inplace = False); x_125 = None 2025-03-14T05:00:32.4460088Z 2025-03-14T05:00:32.4461047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.4461616Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:32.4461684Z 2025-03-14T05:00:32.4462080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.4462604Z x_133: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_126 = None 2025-03-14T05:00:32.4462670Z 2025-03-14T05:00:32.4462941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4463420Z x_127: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_109, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_109 = None 2025-03-14T05:00:32.4463620Z 2025-03-14T05:00:32.4463905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.4464192Z x_128: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_127, inplace = False); x_127 = None 2025-03-14T05:00:32.4464253Z 2025-03-14T05:00:32.4464679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.4465182Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:32.4465250Z 2025-03-14T05:00:32.4465613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.4466143Z x_134: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_128 = None 2025-03-14T05:00:32.4466205Z 2025-03-14T05:00:32.4466474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:32.4467280Z x_129: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:00:32.4467376Z 2025-03-14T05:00:32.4467668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:32.4467852Z x_130: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_129, inplace = False); x_129 = None 2025-03-14T05:00:32.4467922Z 2025-03-14T05:00:32.4468302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:32.4469201Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:00:32.4469265Z 2025-03-14T05:00:32.4469639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:32.4470515Z x_135: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_130 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:00:32.4470579Z 2025-03-14T05:00:32.4470931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:00:32.4471119Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:00:32.4471285Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:00:32.4471452Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:00:32.4471605Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:00:32.4471761Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:00:32.4471909Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:00:32.4472057Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:00:32.4472201Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:00:32.4472349Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:00:32.4472491Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:00:32.4472551Z 2025-03-14T05:00:32.4472999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:00:32.4473178Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_131.view(4, -1, 4, 296, 304); x_131 = None 2025-03-14T05:00:32.4473378Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:00:32.4473556Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:00:32.4473744Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_132.view(4, -1, 4, 148, 152); x_132 = None 2025-03-14T05:00:32.4473927Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:00:32.4474098Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:00:32.4474254Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_133.view(4, -1, 4, 74, 76); x_133 = None 2025-03-14T05:00:32.4474421Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:00:32.4474597Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:00:32.4474740Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_134.view(4, -1, 4, 37, 38); x_134 = None 2025-03-14T05:00:32.4474911Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:00:32.4475078Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:00:32.4475226Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_135.view(4, -1, 4, 19, 19); x_135 = None 2025-03-14T05:00:32.4475385Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:00:32.4475558Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:00:32.4475620Z 2025-03-14T05:00:32.4476068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.4476288Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:00:32.4476356Z 2025-03-14T05:00:32.4476802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.4476966Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:00:32.4477113Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:00:32.4477263Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:00:32.4477326Z 2025-03-14T05:00:32.4477706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.4477877Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:00:32.4477949Z 2025-03-14T05:00:32.4478258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.4478404Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:00:32.4478466Z 2025-03-14T05:00:32.4478787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.4478924Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:32.4479051Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:32.4479285Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:00:32.4479347Z 2025-03-14T05:00:32.4479672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.4479795Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:32.4479924Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:32.4480074Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:00:32.4480142Z 2025-03-14T05:00:32.4480452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.4480579Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:32.4480666Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:00:32.4480802Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:00:32.4480866Z 2025-03-14T05:00:32.4481184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.4481331Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:32.4481425Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:00:32.4481552Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:00:32.4481620Z 2025-03-14T05:00:32.4481979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.4482144Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.4482280Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:00:32.4482346Z 2025-03-14T05:00:32.4482659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.4482818Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.4482929Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:00:32.4482998Z 2025-03-14T05:00:32.4483293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.4483450Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.4483561Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:00:32.4483632Z 2025-03-14T05:00:32.4483931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.4484117Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:32.4484223Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:00:32.4484291Z 2025-03-14T05:00:32.4484624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.4484771Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:32.4484829Z 2025-03-14T05:00:32.4485185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.4485326Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:32.4485387Z 2025-03-14T05:00:32.4485734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.4485870Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:32.4486002Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:00:32.4486168Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:32.4486310Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:00:32.4486374Z 2025-03-14T05:00:32.4486724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.4486860Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:32.4486988Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:00:32.4487137Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:32.4487277Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:00:32.4487338Z 2025-03-14T05:00:32.4487687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.4487805Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:32.4487986Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:32.4488559Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:00:32.4488631Z 2025-03-14T05:00:32.4488963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.4489083Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:32.4489255Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:32.4489403Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:00:32.4489467Z 2025-03-14T05:00:32.4489803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.4489908Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:32.4490040Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:32.4490103Z 2025-03-14T05:00:32.4490445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.4490544Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:32.4490672Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:32.4490736Z 2025-03-14T05:00:32.4491071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.4491208Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:32.4491350Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:32.4491502Z 2025-03-14T05:00:32.4491829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.4491956Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:32.4492088Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:32.4492162Z 2025-03-14T05:00:32.4492526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.4492724Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:32.4492789Z 2025-03-14T05:00:32.4493152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.4493313Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:00:32.4493381Z 2025-03-14T05:00:32.4493769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.4493963Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:00:32.4494027Z 2025-03-14T05:00:32.4494475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.4494715Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:00:32.4494788Z 2025-03-14T05:00:32.4495259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.4495429Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:00:32.4495586Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:00:32.4495738Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:00:32.4495810Z 2025-03-14T05:00:32.4496203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.4496391Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:00:32.4496454Z 2025-03-14T05:00:32.4496792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.4496943Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:00:32.4497014Z 2025-03-14T05:00:32.4497347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.4497492Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:00:32.4497623Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:00:32.4497805Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:00:32.4497871Z 2025-03-14T05:00:32.4498210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.4498338Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:00:32.4498471Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:00:32.4498630Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:00:32.4498699Z 2025-03-14T05:00:32.4499025Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.4499159Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:00:32.4499257Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:00:32.4499402Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:00:32.4499467Z 2025-03-14T05:00:32.4499799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.4499953Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:00:32.4500056Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:00:32.4500190Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:00:32.4500261Z 2025-03-14T05:00:32.4500595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.4500767Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.4500909Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:00:32.4500996Z 2025-03-14T05:00:32.4501315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.4501479Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.4501594Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:00:32.4501665Z 2025-03-14T05:00:32.4501979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.4502143Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.4502259Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:00:32.4502329Z 2025-03-14T05:00:32.4502657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.4502851Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:00:32.4502972Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:00:32.4503036Z 2025-03-14T05:00:32.4503398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.4503543Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:00:32.4503652Z 2025-03-14T05:00:32.4503982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.4504131Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:00:32.4504191Z 2025-03-14T05:00:32.4504540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.4504676Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:00:32.4504809Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:00:32.4504963Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:00:32.4505110Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:00:32.4505172Z 2025-03-14T05:00:32.4505523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.4505661Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:00:32.4505789Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:00:32.4505938Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:00:32.4506081Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:00:32.4506154Z 2025-03-14T05:00:32.4506488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.4506619Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:00:32.4506801Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:00:32.4506936Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:00:32.4507005Z 2025-03-14T05:00:32.4507330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.4507448Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:00:32.4507614Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:00:32.4507753Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:00:32.4507815Z 2025-03-14T05:00:32.4508132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.4508227Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:00:32.4508352Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:00:32.4508413Z 2025-03-14T05:00:32.4508722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.4508813Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:00:32.4508937Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:00:32.4508999Z 2025-03-14T05:00:32.4509304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.4509438Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:00:32.4509578Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:00:32.4509638Z 2025-03-14T05:00:32.4509944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.4510056Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:00:32.4510191Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:00:32.4510251Z 2025-03-14T05:00:32.4510604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.4510802Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:00:32.4510863Z 2025-03-14T05:00:32.4511194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.4511357Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:00:32.4511424Z 2025-03-14T05:00:32.4511802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.4511999Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:00:32.4512060Z 2025-03-14T05:00:32.4512462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.4512704Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:00:32.4512775Z 2025-03-14T05:00:32.4513215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.4513373Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:00:32.4513523Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:00:32.4513661Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:00:32.4513720Z 2025-03-14T05:00:32.4514101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.4514269Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:00:32.4514336Z 2025-03-14T05:00:32.4514647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.4514794Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:00:32.4514853Z 2025-03-14T05:00:32.4515175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.4515300Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:00:32.4515446Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:00:32.4515592Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:00:32.4515661Z 2025-03-14T05:00:32.4515975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.4516102Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:00:32.4516219Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:00:32.4516371Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:00:32.4516433Z 2025-03-14T05:00:32.4516749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.4516871Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:00:32.4516967Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:00:32.4517100Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:00:32.4517170Z 2025-03-14T05:00:32.4517479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.4517629Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:00:32.4517727Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:00:32.4517870Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:00:32.4517941Z 2025-03-14T05:00:32.4518245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.4518419Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.4518546Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:00:32.4518616Z 2025-03-14T05:00:32.4518919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.4519075Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.4519182Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:00:32.4519250Z 2025-03-14T05:00:32.4519560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.4519712Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.4519819Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:00:32.4519886Z 2025-03-14T05:00:32.4520183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.4520367Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:00:32.4520471Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:00:32.4520536Z 2025-03-14T05:00:32.4520866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.4521003Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:00:32.4521080Z 2025-03-14T05:00:32.4521406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.4521534Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:00:32.4521600Z 2025-03-14T05:00:32.4521932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.4522066Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:00:32.4522184Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:00:32.4522338Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:00:32.4522473Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:00:32.4522539Z 2025-03-14T05:00:32.4522871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.4523008Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:00:32.4523129Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:00:32.4523274Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:00:32.4523421Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:00:32.4523480Z 2025-03-14T05:00:32.4523810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.4523935Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:00:32.4524116Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:00:32.4524247Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:00:32.4524313Z 2025-03-14T05:00:32.4524632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.4524748Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:00:32.4524910Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:00:32.4525046Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:00:32.4525110Z 2025-03-14T05:00:32.4525426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.4525519Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:00:32.4525637Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:00:32.4525697Z 2025-03-14T05:00:32.4526007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.4526111Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:00:32.4526225Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:00:32.4526283Z 2025-03-14T05:00:32.4526581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.4526709Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:00:32.4526841Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:00:32.4526899Z 2025-03-14T05:00:32.4527204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.4527315Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:00:32.4527447Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:00:32.4527508Z 2025-03-14T05:00:32.4527861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.4528050Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:00:32.4528117Z 2025-03-14T05:00:32.4528446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.4528610Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:00:32.4528670Z 2025-03-14T05:00:32.4529053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.4529237Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:00:32.4529308Z 2025-03-14T05:00:32.4529700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.4529943Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:00:32.4530004Z 2025-03-14T05:00:32.4530449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.4530601Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:00:32.4530747Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:00:32.4530886Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:00:32.4530950Z 2025-03-14T05:00:32.4531334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.4531572Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:00:32.4531648Z 2025-03-14T05:00:32.4531964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.4532116Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:00:32.4532179Z 2025-03-14T05:00:32.4532507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.4532661Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:00:32.4532805Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:00:32.4532950Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:00:32.4533018Z 2025-03-14T05:00:32.4533332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.4533458Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:00:32.4533575Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:00:32.4533728Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:00:32.4533787Z 2025-03-14T05:00:32.4534096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.4534216Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:00:32.4534314Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:00:32.4534441Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:00:32.4534507Z 2025-03-14T05:00:32.4534809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.4534957Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:00:32.4535062Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:00:32.4535196Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:00:32.4535256Z 2025-03-14T05:00:32.4535570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.4535747Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.4535862Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:00:32.4535922Z 2025-03-14T05:00:32.4536224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.4536370Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.4536487Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:00:32.4536547Z 2025-03-14T05:00:32.4536846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.4536998Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.4537105Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:00:32.4537172Z 2025-03-14T05:00:32.4537468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.4537653Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:00:32.4537758Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:00:32.4537824Z 2025-03-14T05:00:32.4538156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.4538318Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:00:32.4538377Z 2025-03-14T05:00:32.4538712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.4538845Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:00:32.4538912Z 2025-03-14T05:00:32.4539248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.4539385Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:00:32.4539504Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:00:32.4539658Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:00:32.4539795Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:00:32.4539863Z 2025-03-14T05:00:32.4540202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.4540340Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:00:32.4540457Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:00:32.4540626Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:00:32.4540762Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:00:32.4540832Z 2025-03-14T05:00:32.4541156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.4541304Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:00:32.4541461Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:00:32.4541598Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:00:32.4541657Z 2025-03-14T05:00:32.4541986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.4542095Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:00:32.4542262Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:00:32.4542392Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:00:32.4542459Z 2025-03-14T05:00:32.4542762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.4542862Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:00:32.4542975Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:00:32.4543040Z 2025-03-14T05:00:32.4543341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.4543438Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:00:32.4543547Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:00:32.4543635Z 2025-03-14T05:00:32.4543941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.4544062Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:00:32.4544198Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:00:32.4544259Z 2025-03-14T05:00:32.4544568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.4544681Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:00:32.4544818Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:00:32.4544878Z 2025-03-14T05:00:32.4545229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.4545422Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:00:32.4545489Z 2025-03-14T05:00:32.4545817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.4545987Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:00:32.4546046Z 2025-03-14T05:00:32.4546443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.4546615Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:00:32.4546710Z 2025-03-14T05:00:32.4547122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:32.4547333Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:00:32.4547394Z 2025-03-14T05:00:32.4547824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:32.4547969Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:00:32.4548121Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:00:32.4548254Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:00:32.4548322Z 2025-03-14T05:00:32.4548686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:32.4548856Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:00:32.4548916Z 2025-03-14T05:00:32.4549227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:32.4549362Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:00:32.4549438Z 2025-03-14T05:00:32.4549742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:32.4549891Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:00:32.4550012Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:00:32.4550163Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:00:32.4550234Z 2025-03-14T05:00:32.4550542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:32.4550663Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:00:32.4550775Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:00:32.4550923Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:00:32.4550983Z 2025-03-14T05:00:32.4551291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:32.4551409Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:00:32.4551502Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:00:32.4551625Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:00:32.4551691Z 2025-03-14T05:00:32.4551990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:32.4552133Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:00:32.4552229Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:00:32.4552359Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:00:32.4552433Z 2025-03-14T05:00:32.4552726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:32.4552890Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:32.4553005Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:00:32.4553065Z 2025-03-14T05:00:32.4553357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:32.4553498Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:32.4553610Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:00:32.4553667Z 2025-03-14T05:00:32.4553963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:32.4554108Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:32.4554220Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:00:32.4554279Z 2025-03-14T05:00:32.4554577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:32.4554751Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:00:32.4554864Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:00:32.4554923Z 2025-03-14T05:00:32.4555257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:32.4555404Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:00:32.4555469Z 2025-03-14T05:00:32.4555786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:32.4555916Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:00:32.4555975Z 2025-03-14T05:00:32.4556308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:32.4556435Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:00:32.4556554Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:00:32.4556708Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:00:32.4556837Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:00:32.4556901Z 2025-03-14T05:00:32.4557230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:32.4557363Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:00:32.4557474Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:00:32.4557675Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:00:32.4557805Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:00:32.4557873Z 2025-03-14T05:00:32.4558209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:32.4558346Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:00:32.4558501Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:00:32.4558633Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:00:32.4558694Z 2025-03-14T05:00:32.4559021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:32.4559128Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:00:32.4559294Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:00:32.4559421Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:00:32.4559488Z 2025-03-14T05:00:32.4559787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:32.4559887Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:00:32.4559999Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:00:32.4560065Z 2025-03-14T05:00:32.4560361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:32.4560456Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:00:32.4560691Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:00:32.4560806Z 2025-03-14T05:00:32.4561103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:32.4561223Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:00:32.4561351Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:00:32.4561418Z 2025-03-14T05:00:32.4561712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:32.4561827Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:00:32.4561952Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:00:32.4562021Z 2025-03-14T05:00:32.4562356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:32.4562550Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:00:32.4562612Z 2025-03-14T05:00:32.4562936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:32.4563088Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:00:32.4563156Z 2025-03-14T05:00:32.4563541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:32.4563714Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:00:32.4563797Z 2025-03-14T05:00:32.4564295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:00:32.4564435Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:00:32.4564494Z 2025-03-14T05:00:32.4564794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4564935Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:00:32.4565000Z 2025-03-14T05:00:32.4565434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.4565555Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:00:32.4565657Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:00:32.4565777Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:00:32.4565837Z 2025-03-14T05:00:32.4566302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.4566431Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:32.4566666Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:00:32.4566728Z 2025-03-14T05:00:32.4567208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.4567376Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.4567443Z 2025-03-14T05:00:32.4567736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4567861Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:00:32.4567922Z 2025-03-14T05:00:32.4568355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.4568471Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:00:32.4568584Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:00:32.4568699Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:00:32.4568766Z 2025-03-14T05:00:32.4569222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.4569357Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:32.4569609Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:00:32.4569679Z 2025-03-14T05:00:32.4570137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.4570337Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.4570397Z 2025-03-14T05:00:32.4570697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4570818Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:00:32.4570885Z 2025-03-14T05:00:32.4571327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.4571493Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:00:32.4571614Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:00:32.4571732Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:00:32.4571799Z 2025-03-14T05:00:32.4572267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.4572409Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:32.4572641Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:00:32.4572710Z 2025-03-14T05:00:32.4573165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.4573353Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.4573415Z 2025-03-14T05:00:32.4573717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4573836Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:00:32.4573903Z 2025-03-14T05:00:32.4574335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.4574453Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:00:32.4574552Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:00:32.4574674Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:00:32.4574736Z 2025-03-14T05:00:32.4575207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.4575335Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:32.4575575Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:00:32.4575635Z 2025-03-14T05:00:32.4576113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.4576277Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.4576362Z 2025-03-14T05:00:32.4576713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4576839Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:00:32.4576900Z 2025-03-14T05:00:32.4577336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:32.4577451Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:00:32.4577551Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:00:32.4577670Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:00:32.4577731Z 2025-03-14T05:00:32.4578191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:32.4578350Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:00:32.4578586Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:00:32.4578646Z 2025-03-14T05:00:32.4579096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:32.4579251Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:32.4579338Z 2025-03-14T05:00:32.4579626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:32.4579749Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:00:32.4579809Z 2025-03-14T05:00:32.4580088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:32.4580461Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:00:32.4580529Z 2025-03-14T05:00:32.4580811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:32.4581283Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:00:32.4581343Z 2025-03-14T05:00:32.4581621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:32.4581816Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:00:32.4581883Z 2025-03-14T05:00:32.4582276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:00:32.4582422Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:00:32.4582509Z 2025-03-14T05:00:32.4582824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:32.4582971Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:00:32.4583030Z 2025-03-14T05:00:32.4583402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:00:32.4583530Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:00:32.4583597Z 2025-03-14T05:00:32.4584068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:00:32.4584206Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:00:32.4584321Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:32.4584476Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:00:32.4584599Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:00:32.4584665Z 2025-03-14T05:00:32.4585019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:00:32.4585140Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:00:32.4585199Z 2025-03-14T05:00:43.9173793Z 2025-03-14T05:00:43.9174821Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:43.9177930Z def forward(self, L_features_p2_: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu", L_features_p3_: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu", L_features_p4_: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu", L_features_p5_: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu", L_features_p6_: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:00:43.9180345Z l_features_p2_ = L_features_p2_ 2025-03-14T05:00:43.9180609Z l_features_p3_ = L_features_p3_ 2025-03-14T05:00:43.9180859Z l_features_p4_ = L_features_p4_ 2025-03-14T05:00:43.9181091Z l_features_p5_ = L_features_p5_ 2025-03-14T05:00:43.9181348Z l_features_p6_ = L_features_p6_ 2025-03-14T05:00:43.9181877Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:00:43.9182533Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:00:43.9183210Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:00:43.9183912Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:00:43.9184458Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:00:43.9184971Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:00:43.9185460Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:00:43.9185983Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:00:43.9186567Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:00:43.9187111Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:00:43.9187637Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:00:43.9187983Z 2025-03-14T05:00:43.9188557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9189217Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:00:43.9189483Z 2025-03-14T05:00:43.9189865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9190385Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:00:43.9190641Z 2025-03-14T05:00:43.9191170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9191809Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:00:43.9192073Z 2025-03-14T05:00:43.9192452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9192940Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:00:43.9193199Z 2025-03-14T05:00:43.9193662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:43.9194274Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:00:43.9194608Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:00:43.9194881Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:00:43.9195118Z 2025-03-14T05:00:43.9195534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:43.9196067Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:00:43.9196318Z 2025-03-14T05:00:43.9196725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:43.9197245Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:00:43.9197485Z 2025-03-14T05:00:43.9197968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:43.9198613Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:00:43.9198933Z 2025-03-14T05:00:43.9199429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:43.9200020Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:00:43.9200518Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:00:43.9201001Z add: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:00:43.9201291Z x: "f32[269952, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:00:43.9201517Z 2025-03-14T05:00:43.9202036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9202666Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:00:43.9202931Z 2025-03-14T05:00:43.9203311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9203814Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:00:43.9204073Z 2025-03-14T05:00:43.9204585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9205205Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:00:43.9205462Z 2025-03-14T05:00:43.9205831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9206307Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:00:43.9206558Z 2025-03-14T05:00:43.9207007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:43.9207617Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:00:43.9207966Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:00:43.9208232Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:00:43.9208468Z 2025-03-14T05:00:43.9208884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:43.9209431Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:00:43.9209685Z 2025-03-14T05:00:43.9210116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:43.9210663Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:00:43.9210916Z 2025-03-14T05:00:43.9211564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:43.9212267Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:00:43.9212618Z 2025-03-14T05:00:43.9213166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:43.9213842Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:00:43.9214403Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:00:43.9214916Z add_1: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:00:43.9215234Z x_1: "f32[67488, 4][4, 1]cpu" = add_1.reshape(-1, 4); add_1 = None 2025-03-14T05:00:43.9215481Z 2025-03-14T05:00:43.9216024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9216693Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:00:43.9216975Z 2025-03-14T05:00:43.9217373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9217899Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:00:43.9218168Z 2025-03-14T05:00:43.9218710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9219364Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:00:43.9219637Z 2025-03-14T05:00:43.9220028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9220532Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:00:43.9220798Z 2025-03-14T05:00:43.9221272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:43.9221914Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:00:43.9222274Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:00:43.9222556Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:00:43.9222803Z 2025-03-14T05:00:43.9223226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:43.9223777Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:00:43.9224033Z 2025-03-14T05:00:43.9224461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:43.9225024Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:00:43.9225273Z 2025-03-14T05:00:43.9225767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:43.9226428Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:00:43.9226747Z 2025-03-14T05:00:43.9227235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:43.9227816Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:00:43.9228301Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:00:43.9228773Z add_2: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:00:43.9229065Z x_2: "f32[16872, 4][4, 1]cpu" = add_2.reshape(-1, 4); add_2 = None 2025-03-14T05:00:43.9229290Z 2025-03-14T05:00:43.9229799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9230422Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:00:43.9230685Z 2025-03-14T05:00:43.9231058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9231566Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:00:43.9231819Z 2025-03-14T05:00:43.9232332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9232962Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:00:43.9233222Z 2025-03-14T05:00:43.9233595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9234075Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:00:43.9234329Z 2025-03-14T05:00:43.9234784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:43.9235394Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:00:43.9235739Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:00:43.9236009Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:00:43.9236235Z 2025-03-14T05:00:43.9236642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:43.9237169Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:00:43.9237411Z 2025-03-14T05:00:43.9237816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:43.9238333Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:00:43.9238570Z 2025-03-14T05:00:43.9239041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:43.9239675Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:00:43.9239999Z 2025-03-14T05:00:43.9240491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:43.9241085Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:00:43.9241574Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:00:43.9242050Z add_3: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:00:43.9242341Z x_3: "f32[4218, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:00:43.9242569Z 2025-03-14T05:00:43.9243082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9243702Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:00:43.9243965Z 2025-03-14T05:00:43.9244340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9244840Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:00:43.9245094Z 2025-03-14T05:00:43.9245607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9246228Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:00:43.9246486Z 2025-03-14T05:00:43.9246854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9247329Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:00:43.9247577Z 2025-03-14T05:00:43.9248042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:43.9248658Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:00:43.9249001Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:00:43.9249269Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:00:43.9249503Z 2025-03-14T05:00:43.9249910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:43.9250457Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:00:43.9250715Z 2025-03-14T05:00:43.9251146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:43.9251787Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:00:43.9252054Z 2025-03-14T05:00:43.9252590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:43.9253242Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:00:43.9253579Z 2025-03-14T05:00:43.9254100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:43.9254714Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:00:43.9255240Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:00:43.9255733Z add_4: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:00:43.9256032Z x_4: "f32[1083, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:00:43.9256271Z 2025-03-14T05:00:43.9256675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:43.9257171Z tensor: "f32[269952, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:00:43.9257485Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_1.to(torch.float32); x_1 = None 2025-03-14T05:00:43.9257791Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_2.to(torch.float32); x_2 = None 2025-03-14T05:00:43.9258113Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_3.to(torch.float32); x_3 = None 2025-03-14T05:00:43.9258413Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_4.to(torch.float32); x_4 = None 2025-03-14T05:00:43.9258656Z 2025-03-14T05:00:43.9259014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:43.9259795Z x_5: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(l_features_p2_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p2_ = None 2025-03-14T05:00:43.9260350Z 2025-03-14T05:00:43.9260958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:43.9261524Z x_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_5, inplace = False); x_5 = None 2025-03-14T05:00:43.9261827Z 2025-03-14T05:00:43.9262312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:43.9263151Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:43.9263671Z 2025-03-14T05:00:43.9264115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:43.9264985Z x_15: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_6 = None 2025-03-14T05:00:43.9265535Z 2025-03-14T05:00:43.9265904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:43.9266623Z x_7: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(l_features_p3_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p3_ = None 2025-03-14T05:00:43.9267140Z 2025-03-14T05:00:43.9267497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:43.9268091Z x_8: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_7, inplace = False); x_7 = None 2025-03-14T05:00:43.9268393Z 2025-03-14T05:00:43.9268855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:43.9269689Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:43.9270202Z 2025-03-14T05:00:43.9270641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:43.9271455Z x_16: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_8 = None 2025-03-14T05:00:43.9271992Z 2025-03-14T05:00:43.9272331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:43.9273035Z x_9: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(l_features_p4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p4_ = None 2025-03-14T05:00:43.9273539Z 2025-03-14T05:00:43.9273890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:43.9274389Z x_10: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_9, inplace = False); x_9 = None 2025-03-14T05:00:43.9274680Z 2025-03-14T05:00:43.9275132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:43.9275948Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:43.9276450Z 2025-03-14T05:00:43.9276886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:43.9277678Z x_17: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_10 = None 2025-03-14T05:00:43.9278216Z 2025-03-14T05:00:43.9278554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:43.9279285Z x_11: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(l_features_p5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p5_ = None 2025-03-14T05:00:43.9279788Z 2025-03-14T05:00:43.9280141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:43.9280638Z x_12: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_11, inplace = False); x_11 = None 2025-03-14T05:00:43.9280926Z 2025-03-14T05:00:43.9281383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:43.9282186Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:43.9282692Z 2025-03-14T05:00:43.9283113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:43.9283877Z x_18: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_12 = None 2025-03-14T05:00:43.9284355Z 2025-03-14T05:00:43.9284685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:43.9285549Z x_13: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(l_features_p6_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p6_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:00:43.9286296Z 2025-03-14T05:00:43.9286650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:43.9287145Z x_14: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_13, inplace = False); x_13 = None 2025-03-14T05:00:43.9287424Z 2025-03-14T05:00:43.9287879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:43.9288917Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:00:43.9289661Z 2025-03-14T05:00:43.9290095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:43.9291148Z x_19: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_14 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:00:43.9291927Z 2025-03-14T05:00:43.9292380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:00:43.9293012Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:00:43.9293370Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:00:43.9293732Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:00:43.9294092Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:00:43.9294437Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:00:43.9294777Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:00:43.9295115Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:00:43.9295452Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:00:43.9295787Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:00:43.9296123Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:00:43.9296389Z 2025-03-14T05:00:43.9296918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:00:43.9297548Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_15.view(4, -1, 4, 296, 304); x_15 = None 2025-03-14T05:00:43.9297953Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:00:43.9298447Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:00:43.9298841Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_16.view(4, -1, 4, 148, 152); x_16 = None 2025-03-14T05:00:43.9299226Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:00:43.9299623Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:00:43.9299992Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_17.view(4, -1, 4, 74, 76); x_17 = None 2025-03-14T05:00:43.9300352Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:00:43.9300728Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:00:43.9301091Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_18.view(4, -1, 4, 37, 38); x_18 = None 2025-03-14T05:00:43.9301446Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:00:43.9301818Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:00:43.9302171Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_19.view(4, -1, 4, 19, 19); x_19 = None 2025-03-14T05:00:43.9302521Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:00:43.9302909Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:00:43.9303190Z 2025-03-14T05:00:43.9303679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:43.9304368Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:00:43.9304690Z 2025-03-14T05:00:43.9305209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:43.9305852Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:00:43.9306206Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:00:43.9306554Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:00:43.9306813Z 2025-03-14T05:00:43.9307274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:43.9307882Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:00:43.9308172Z 2025-03-14T05:00:43.9308571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:43.9309084Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:00:43.9309343Z 2025-03-14T05:00:43.9309766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:43.9310299Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:43.9310644Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9310998Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:00:43.9311286Z 2025-03-14T05:00:43.9311709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:43.9312227Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:43.9312545Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:43.9312894Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:00:43.9313184Z 2025-03-14T05:00:43.9313579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:43.9314092Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9314370Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:00:43.9314653Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:00:43.9314909Z 2025-03-14T05:00:43.9315316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:43.9315837Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:43.9316129Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:00:43.9316401Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:00:43.9316671Z 2025-03-14T05:00:43.9317116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:43.9317674Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:43.9318042Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:00:43.9318292Z 2025-03-14T05:00:43.9318697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:43.9319234Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:43.9319590Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:00:43.9319847Z 2025-03-14T05:00:43.9320257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:43.9320797Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:43.9321146Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:00:43.9321395Z 2025-03-14T05:00:43.9321809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:43.9322383Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:43.9322760Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:00:43.9323014Z 2025-03-14T05:00:43.9323466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:43.9324038Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:43.9324338Z 2025-03-14T05:00:43.9324768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:43.9325306Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:43.9325574Z 2025-03-14T05:00:43.9326020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:43.9326587Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:43.9326925Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:00:43.9327276Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:43.9327646Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:00:43.9327919Z 2025-03-14T05:00:43.9328373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:43.9328939Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:43.9329275Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:00:43.9329646Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:43.9330032Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:00:43.9330336Z 2025-03-14T05:00:43.9330805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:43.9331443Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:43.9331840Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:43.9332216Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:00:43.9332489Z 2025-03-14T05:00:43.9332937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:43.9333442Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:43.9333780Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:43.9334137Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:00:43.9334394Z 2025-03-14T05:00:43.9334792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:43.9335260Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:43.9335522Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:43.9335753Z 2025-03-14T05:00:43.9336148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:43.9336603Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:43.9336863Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:43.9337097Z 2025-03-14T05:00:43.9337485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:43.9337975Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:43.9338271Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:43.9338523Z 2025-03-14T05:00:43.9338905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:43.9339374Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:43.9339663Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:43.9339911Z 2025-03-14T05:00:43.9340342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:43.9340920Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:43.9341232Z 2025-03-14T05:00:43.9341639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:43.9342175Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:00:43.9342447Z 2025-03-14T05:00:43.9342900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:43.9343498Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:00:43.9343811Z 2025-03-14T05:00:43.9344285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:43.9344955Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:00:43.9345301Z 2025-03-14T05:00:43.9345816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:43.9346466Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:00:43.9346819Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:00:43.9347162Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:00:43.9347416Z 2025-03-14T05:00:43.9347862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:43.9348564Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:00:43.9348844Z 2025-03-14T05:00:43.9349226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:43.9349731Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:00:43.9350000Z 2025-03-14T05:00:43.9350397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:43.9350897Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:00:43.9351234Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9351572Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:00:43.9351834Z 2025-03-14T05:00:43.9352229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:43.9352724Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:00:43.9353027Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:00:43.9353364Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:00:43.9353629Z 2025-03-14T05:00:43.9354011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:43.9354488Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9354757Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:00:43.9355031Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:00:43.9355274Z 2025-03-14T05:00:43.9356737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:43.9358766Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:00:43.9359263Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:00:43.9360078Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:00:43.9360344Z 2025-03-14T05:00:43.9360859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:43.9361448Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:43.9361822Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:00:43.9362066Z 2025-03-14T05:00:43.9362476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:43.9363294Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:43.9363623Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:00:43.9363857Z 2025-03-14T05:00:43.9364243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:43.9364744Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:43.9365067Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:00:43.9365298Z 2025-03-14T05:00:43.9365683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:43.9366215Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:00:43.9366564Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:00:43.9366795Z 2025-03-14T05:00:43.9367214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:43.9367738Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:00:43.9368036Z 2025-03-14T05:00:43.9368456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:43.9368976Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:00:43.9369230Z 2025-03-14T05:00:43.9369656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:43.9370198Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:00:43.9370528Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:00:43.9370875Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:00:43.9371238Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:00:43.9371561Z 2025-03-14T05:00:43.9372020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:43.9372589Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:00:43.9372909Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:00:43.9373243Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:00:43.9373632Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:00:43.9373900Z 2025-03-14T05:00:43.9374363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:43.9375738Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:00:43.9376113Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:00:43.9376475Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:00:43.9376732Z 2025-03-14T05:00:43.9377152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:43.9377654Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:00:43.9377995Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:00:43.9378357Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:00:43.9378612Z 2025-03-14T05:00:43.9379014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:43.9379478Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:00:43.9379749Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:00:43.9379988Z 2025-03-14T05:00:43.9380378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:43.9380840Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:00:43.9381095Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:00:43.9381329Z 2025-03-14T05:00:43.9381714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:43.9382225Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:00:43.9382536Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:00:43.9382790Z 2025-03-14T05:00:43.9383179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:43.9383651Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:00:43.9383954Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:00:43.9384205Z 2025-03-14T05:00:43.9384634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:43.9385229Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:00:43.9385533Z 2025-03-14T05:00:43.9385946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:43.9386496Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:00:43.9386777Z 2025-03-14T05:00:43.9387238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:43.9387865Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:00:43.9388156Z 2025-03-14T05:00:43.9388633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:43.9389335Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:00:43.9389655Z 2025-03-14T05:00:43.9390164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:43.9390794Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:00:43.9391150Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:00:43.9391501Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:00:43.9391762Z 2025-03-14T05:00:43.9392213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:43.9392803Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:00:43.9393091Z 2025-03-14T05:00:43.9393483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:43.9393990Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:00:43.9394256Z 2025-03-14T05:00:43.9394652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:43.9395170Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:00:43.9395480Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9395808Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:00:43.9396075Z 2025-03-14T05:00:43.9396469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:43.9396955Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:00:43.9397256Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:00:43.9397583Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:00:43.9397847Z 2025-03-14T05:00:43.9398247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:43.9398730Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9398998Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:00:43.9399274Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:00:43.9399520Z 2025-03-14T05:00:43.9399907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:43.9400415Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:00:43.9400725Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:00:43.9400994Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:00:43.9401245Z 2025-03-14T05:00:43.9401636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:43.9402178Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:43.9402509Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:00:43.9402745Z 2025-03-14T05:00:43.9403131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:43.9403641Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:43.9403966Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:00:43.9404201Z 2025-03-14T05:00:43.9404587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:43.9405109Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:43.9405441Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:00:43.9405677Z 2025-03-14T05:00:43.9406078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:43.9406637Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:00:43.9406995Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:00:43.9407235Z 2025-03-14T05:00:43.9407678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:43.9408241Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:00:43.9408505Z 2025-03-14T05:00:43.9408933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:43.9409478Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:00:43.9409745Z 2025-03-14T05:00:43.9410192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:43.9410755Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:00:43.9411088Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:00:43.9411523Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:00:43.9411906Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:00:43.9412182Z 2025-03-14T05:00:43.9412638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:43.9413216Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:00:43.9413547Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:00:43.9413914Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:00:43.9414271Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:00:43.9414538Z 2025-03-14T05:00:43.9414959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:43.9415506Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:00:43.9415846Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:00:43.9416208Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:00:43.9416471Z 2025-03-14T05:00:43.9416898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:43.9417411Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:00:43.9417751Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:00:43.9418120Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:00:43.9418375Z 2025-03-14T05:00:43.9418777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:43.9419258Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:00:43.9419533Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:00:43.9419775Z 2025-03-14T05:00:43.9420165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:43.9420636Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:00:43.9420903Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:00:43.9421161Z 2025-03-14T05:00:43.9421559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:43.9422052Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:00:43.9422363Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:00:43.9422620Z 2025-03-14T05:00:43.9423014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:43.9423497Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:00:43.9423803Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:00:43.9424058Z 2025-03-14T05:00:43.9424498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:43.9425106Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:00:43.9425423Z 2025-03-14T05:00:43.9425836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:43.9426383Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:00:43.9426665Z 2025-03-14T05:00:43.9427143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:43.9427750Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:00:43.9428075Z 2025-03-14T05:00:43.9428571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:43.9429228Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:00:43.9429546Z 2025-03-14T05:00:43.9430060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:43.9430696Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:00:43.9431051Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:00:43.9431395Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:00:43.9431653Z 2025-03-14T05:00:43.9432106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:43.9432691Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:00:43.9432978Z 2025-03-14T05:00:43.9433372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:43.9433880Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:00:43.9434144Z 2025-03-14T05:00:43.9434538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:43.9435052Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:00:43.9435358Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9435684Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:00:43.9435952Z 2025-03-14T05:00:43.9436353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:43.9436846Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:00:43.9437141Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:00:43.9437468Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:00:43.9437731Z 2025-03-14T05:00:43.9438123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:43.9438606Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9438875Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:00:43.9439147Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:00:43.9439398Z 2025-03-14T05:00:43.9439785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:43.9440292Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:00:43.9440598Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:00:43.9440874Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:00:43.9441145Z 2025-03-14T05:00:43.9441539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:43.9442070Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:43.9442400Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:00:43.9442642Z 2025-03-14T05:00:43.9443038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:43.9443540Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:43.9443864Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:00:43.9444100Z 2025-03-14T05:00:43.9444486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:43.9444986Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:43.9445305Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:00:43.9445538Z 2025-03-14T05:00:43.9445920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:43.9446459Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:00:43.9446804Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:00:43.9447038Z 2025-03-14T05:00:43.9447452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:43.9448005Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:00:43.9448267Z 2025-03-14T05:00:43.9448694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:43.9449225Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:00:43.9449485Z 2025-03-14T05:00:43.9449919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:43.9450461Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:00:43.9450780Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:00:43.9451125Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:00:43.9451575Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:00:43.9451873Z 2025-03-14T05:00:43.9452362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:43.9452939Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:00:43.9453263Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:00:43.9453630Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:00:43.9453988Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:00:43.9454274Z 2025-03-14T05:00:43.9454802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:43.9455330Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:00:43.9455667Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:00:43.9456028Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:00:43.9456289Z 2025-03-14T05:00:43.9456717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:43.9457231Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:00:43.9457567Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:00:43.9457927Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:00:43.9458186Z 2025-03-14T05:00:43.9458590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:43.9459067Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:00:43.9459338Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:00:43.9459582Z 2025-03-14T05:00:43.9459977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:43.9460449Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:00:43.9460898Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:00:43.9461198Z 2025-03-14T05:00:43.9461603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:43.9462095Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:00:43.9462406Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:00:43.9462672Z 2025-03-14T05:00:43.9463058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:43.9463535Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:00:43.9463843Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:00:43.9464091Z 2025-03-14T05:00:43.9464516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:43.9465109Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:00:43.9465403Z 2025-03-14T05:00:43.9465811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:43.9466355Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:00:43.9466630Z 2025-03-14T05:00:43.9467113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:43.9467718Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:00:43.9468034Z 2025-03-14T05:00:43.9468546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:43.9469212Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:00:43.9469531Z 2025-03-14T05:00:43.9470048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:43.9470685Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:00:43.9471037Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:00:43.9471376Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:00:43.9471627Z 2025-03-14T05:00:43.9472083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:43.9472670Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:00:43.9472949Z 2025-03-14T05:00:43.9473344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:43.9473866Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:00:43.9474128Z 2025-03-14T05:00:43.9474541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:43.9475056Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:00:43.9475365Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9475688Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:00:43.9475953Z 2025-03-14T05:00:43.9476350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:43.9476840Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:00:43.9477138Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:00:43.9477458Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:00:43.9477729Z 2025-03-14T05:00:43.9478125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:43.9478606Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9478874Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:00:43.9479142Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:00:43.9479380Z 2025-03-14T05:00:43.9479771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:43.9480313Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:00:43.9480610Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:00:43.9480880Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:00:43.9481142Z 2025-03-14T05:00:43.9481542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:43.9482041Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:43.9482357Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:00:43.9482586Z 2025-03-14T05:00:43.9482966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:43.9483460Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:43.9483772Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:00:43.9483999Z 2025-03-14T05:00:43.9484378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:43.9484877Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:43.9485195Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:00:43.9485436Z 2025-03-14T05:00:43.9485816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:43.9486340Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:00:43.9486677Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:00:43.9486899Z 2025-03-14T05:00:43.9487313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:43.9487852Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:00:43.9488104Z 2025-03-14T05:00:43.9488513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:43.9489026Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:00:43.9489275Z 2025-03-14T05:00:43.9489699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:43.9490223Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:00:43.9490533Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:00:43.9490859Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:00:43.9491206Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:00:43.9491545Z 2025-03-14T05:00:43.9492046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:43.9492724Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:00:43.9493043Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:00:43.9493422Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:00:43.9493786Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:00:43.9494221Z 2025-03-14T05:00:43.9494687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:43.9495221Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:00:43.9495571Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:00:43.9495939Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:00:43.9496208Z 2025-03-14T05:00:43.9496656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:43.9497187Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:00:43.9497534Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:00:43.9497899Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:00:43.9498159Z 2025-03-14T05:00:43.9498574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:43.9499064Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:00:43.9499330Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:00:43.9499576Z 2025-03-14T05:00:43.9499987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:43.9500473Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:00:43.9500770Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:00:43.9501024Z 2025-03-14T05:00:43.9501441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:43.9501952Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:00:43.9502257Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:00:43.9502509Z 2025-03-14T05:00:43.9502897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:43.9503375Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:00:43.9503671Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:00:43.9503923Z 2025-03-14T05:00:43.9504358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:43.9504949Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:00:43.9505247Z 2025-03-14T05:00:43.9505666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:43.9506215Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:00:43.9506491Z 2025-03-14T05:00:43.9506991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:43.9507608Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:00:43.9507917Z 2025-03-14T05:00:43.9508522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:00:43.9509234Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:00:43.9509484Z 2025-03-14T05:00:43.9509864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9510354Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:00:43.9510610Z 2025-03-14T05:00:43.9511125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:43.9511727Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:00:43.9511994Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:00:43.9512259Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:00:43.9512483Z 2025-03-14T05:00:43.9513023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:43.9513662Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:43.9514075Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:00:43.9514436Z 2025-03-14T05:00:43.9514991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:43.9515676Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:43.9515964Z 2025-03-14T05:00:43.9516349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9516829Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:00:43.9517071Z 2025-03-14T05:00:43.9517603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:43.9518200Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:00:43.9518475Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:00:43.9518754Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:00:43.9518988Z 2025-03-14T05:00:43.9519525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:43.9520160Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:43.9520596Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:00:43.9520945Z 2025-03-14T05:00:43.9521492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:43.9522197Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:43.9522482Z 2025-03-14T05:00:43.9522863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9523337Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:00:43.9523571Z 2025-03-14T05:00:43.9524084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:43.9524682Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:00:43.9524963Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:00:43.9525243Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:00:43.9525476Z 2025-03-14T05:00:43.9526017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:43.9526660Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:43.9527087Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:00:43.9527442Z 2025-03-14T05:00:43.9527976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:43.9528697Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:43.9528990Z 2025-03-14T05:00:43.9529374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9529853Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:00:43.9530097Z 2025-03-14T05:00:43.9530619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:43.9531227Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:00:43.9531933Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:00:43.9532232Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:00:43.9532478Z 2025-03-14T05:00:43.9533060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:43.9533728Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:43.9534164Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:00:43.9534522Z 2025-03-14T05:00:43.9535098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:43.9535811Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:43.9536096Z 2025-03-14T05:00:43.9536501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9536987Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:00:43.9537233Z 2025-03-14T05:00:43.9537759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:43.9538366Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:00:43.9538643Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:00:43.9538922Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:00:43.9539161Z 2025-03-14T05:00:43.9539712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:43.9540395Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:00:43.9540855Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:00:43.9541205Z 2025-03-14T05:00:43.9541758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:43.9542466Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:43.9542750Z 2025-03-14T05:00:43.9543132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9543615Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:00:43.9543860Z 2025-03-14T05:00:43.9544230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:43.9544954Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:00:43.9545449Z 2025-03-14T05:00:43.9545815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:43.9546622Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:00:43.9547206Z 2025-03-14T05:00:43.9547560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:43.9548085Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:00:43.9548416Z 2025-03-14T05:00:43.9548887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:00:43.9549483Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:00:43.9549743Z 2025-03-14T05:00:43.9550139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:43.9550629Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:00:43.9550892Z 2025-03-14T05:00:43.9551347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:00:43.9551903Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:00:43.9552148Z 2025-03-14T05:00:43.9552706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:00:43.9553374Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:00:43.9553679Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:43.9553999Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:00:43.9554331Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:00:43.9554576Z 2025-03-14T05:00:43.9555023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:00:43.9555556Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:00:43.9555808Z 2025-03-14T05:00:43.9556054Z 2025-03-14T05:00:43.9556148Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:43.9558353Z def forward(self, L_features_p2_: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu", L_features_p3_: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu", L_features_p4_: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu", L_features_p5_: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu", L_features_p6_: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:00:43.9560843Z l_features_p2_ = L_features_p2_ 2025-03-14T05:00:43.9561069Z l_features_p3_ = L_features_p3_ 2025-03-14T05:00:43.9561285Z l_features_p4_ = L_features_p4_ 2025-03-14T05:00:43.9561496Z l_features_p5_ = L_features_p5_ 2025-03-14T05:00:43.9561704Z l_features_p6_ = L_features_p6_ 2025-03-14T05:00:43.9562149Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:00:43.9562702Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:00:43.9563310Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:00:43.9563840Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:00:43.9564376Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:00:43.9564885Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:00:43.9565358Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:00:43.9565882Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:00:43.9566452Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:00:43.9567003Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:00:43.9567540Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:00:43.9567891Z 2025-03-14T05:00:43.9568427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9569066Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:00:43.9569328Z 2025-03-14T05:00:43.9569736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9570227Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:00:43.9570476Z 2025-03-14T05:00:43.9570986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9571786Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:00:43.9572072Z 2025-03-14T05:00:43.9572475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9572952Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:00:43.9573211Z 2025-03-14T05:00:43.9573664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:43.9574259Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:00:43.9574584Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:00:43.9574850Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:00:43.9575082Z 2025-03-14T05:00:43.9575498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:43.9576012Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:00:43.9576246Z 2025-03-14T05:00:43.9576639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:43.9577145Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:00:43.9577405Z 2025-03-14T05:00:43.9577862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:43.9578500Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:00:43.9578815Z 2025-03-14T05:00:43.9579308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:43.9579897Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:00:43.9580397Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:00:43.9580896Z add: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:00:43.9581181Z x: "f32[269952, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:00:43.9581400Z 2025-03-14T05:00:43.9581906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9582539Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:00:43.9582805Z 2025-03-14T05:00:43.9583180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9583678Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:00:43.9583933Z 2025-03-14T05:00:43.9584434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9585050Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:00:43.9585309Z 2025-03-14T05:00:43.9585669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9586150Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:00:43.9586396Z 2025-03-14T05:00:43.9586845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:43.9587452Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:00:43.9587793Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:00:43.9588064Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:00:43.9588304Z 2025-03-14T05:00:43.9588712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:43.9589265Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:00:43.9589508Z 2025-03-14T05:00:43.9589911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:43.9590429Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:00:43.9590686Z 2025-03-14T05:00:43.9591154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:43.9591803Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:00:43.9592130Z 2025-03-14T05:00:43.9592629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:43.9593220Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:00:43.9593720Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:00:43.9594205Z add_1: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:00:43.9594504Z x_1: "f32[67488, 4][4, 1]cpu" = add_1.reshape(-1, 4); add_1 = None 2025-03-14T05:00:43.9594735Z 2025-03-14T05:00:43.9595255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9595892Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:00:43.9596156Z 2025-03-14T05:00:43.9596548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9597030Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:00:43.9597288Z 2025-03-14T05:00:43.9597813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9598446Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:00:43.9598717Z 2025-03-14T05:00:43.9599118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9599613Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:00:43.9599871Z 2025-03-14T05:00:43.9600355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:43.9600997Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:00:43.9601356Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:00:43.9601636Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:00:43.9601882Z 2025-03-14T05:00:43.9602318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:43.9602879Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:00:43.9603138Z 2025-03-14T05:00:43.9603565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:43.9604116Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:00:43.9604386Z 2025-03-14T05:00:43.9604883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:43.9605575Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:00:43.9605921Z 2025-03-14T05:00:43.9606448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:43.9607084Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:00:43.9607607Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:00:43.9608107Z add_2: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:00:43.9608415Z x_2: "f32[16872, 4][4, 1]cpu" = add_2.reshape(-1, 4); add_2 = None 2025-03-14T05:00:43.9608657Z 2025-03-14T05:00:43.9609213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9609878Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:00:43.9610157Z 2025-03-14T05:00:43.9610588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9611096Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:00:43.9611426Z 2025-03-14T05:00:43.9613481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9614243Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:00:43.9614523Z 2025-03-14T05:00:43.9614934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9615436Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:00:43.9615698Z 2025-03-14T05:00:43.9616099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:43.9616305Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:00:43.9616409Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:00:43.9616541Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:00:43.9616606Z 2025-03-14T05:00:43.9616954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:43.9617139Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:00:43.9617212Z 2025-03-14T05:00:43.9617572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:43.9617732Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:00:43.9617818Z 2025-03-14T05:00:43.9618227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:43.9618455Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:00:43.9618525Z 2025-03-14T05:00:43.9618951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:43.9619088Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:00:43.9619401Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:00:43.9619533Z add_3: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:00:43.9619648Z x_3: "f32[4218, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:00:43.9619718Z 2025-03-14T05:00:43.9620160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9620311Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:00:43.9620372Z 2025-03-14T05:00:43.9620703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9620844Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:00:43.9620913Z 2025-03-14T05:00:43.9621353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:43.9621502Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:00:43.9621564Z 2025-03-14T05:00:43.9621866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9622000Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:00:43.9622071Z 2025-03-14T05:00:43.9622450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:43.9622646Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:00:43.9622753Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:00:43.9622872Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:00:43.9622940Z 2025-03-14T05:00:43.9623273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:43.9623423Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:00:43.9623485Z 2025-03-14T05:00:43.9623823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:43.9623984Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:00:43.9624076Z 2025-03-14T05:00:43.9624466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:43.9624685Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:00:43.9624748Z 2025-03-14T05:00:43.9625174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:43.9625298Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:00:43.9625624Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:00:43.9625745Z add_4: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:00:43.9625864Z x_4: "f32[1083, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:00:43.9625926Z 2025-03-14T05:00:43.9626241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:43.9626363Z tensor: "f32[269952, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:00:43.9626496Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_1.to(torch.float32); x_1 = None 2025-03-14T05:00:43.9626617Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_2.to(torch.float32); x_2 = None 2025-03-14T05:00:43.9626763Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_3.to(torch.float32); x_3 = None 2025-03-14T05:00:43.9626879Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_4.to(torch.float32); x_4 = None 2025-03-14T05:00:43.9626949Z 2025-03-14T05:00:43.9627213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:43.9627659Z x_5: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(l_features_p2_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p2_ = None 2025-03-14T05:00:43.9627721Z 2025-03-14T05:00:43.9628010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:43.9628203Z x_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_5, inplace = False); x_5 = None 2025-03-14T05:00:43.9628277Z 2025-03-14T05:00:43.9628665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:43.9629088Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:43.9629156Z 2025-03-14T05:00:43.9629545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:43.9629971Z x_15: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_6 = None 2025-03-14T05:00:43.9630055Z 2025-03-14T05:00:43.9630351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:43.9630763Z x_7: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(l_features_p3_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p3_ = None 2025-03-14T05:00:43.9630833Z 2025-03-14T05:00:43.9631111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:43.9631305Z x_8: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_7, inplace = False); x_7 = None 2025-03-14T05:00:43.9631369Z 2025-03-14T05:00:43.9631757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:43.9632168Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:43.9632238Z 2025-03-14T05:00:43.9632599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:43.9633016Z x_16: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_8 = None 2025-03-14T05:00:43.9633105Z 2025-03-14T05:00:43.9633362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:43.9633770Z x_9: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(l_features_p4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p4_ = None 2025-03-14T05:00:43.9633832Z 2025-03-14T05:00:43.9634109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:43.9634290Z x_10: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_9, inplace = False); x_9 = None 2025-03-14T05:00:43.9634361Z 2025-03-14T05:00:43.9634739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:43.9635148Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:43.9635212Z 2025-03-14T05:00:43.9635587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:43.9636026Z x_17: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_10 = None 2025-03-14T05:00:43.9636098Z 2025-03-14T05:00:43.9636357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:43.9636816Z x_11: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(l_features_p5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p5_ = None 2025-03-14T05:00:43.9636877Z 2025-03-14T05:00:43.9637156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:43.9637338Z x_12: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_11, inplace = False); x_11 = None 2025-03-14T05:00:43.9637400Z 2025-03-14T05:00:43.9637785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:43.9638180Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:00:43.9638252Z 2025-03-14T05:00:43.9638611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:43.9638996Z x_18: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_12 = None 2025-03-14T05:00:43.9639056Z 2025-03-14T05:00:43.9639318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:43.9639894Z x_13: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(l_features_p6_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p6_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:00:43.9639984Z 2025-03-14T05:00:43.9640254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:43.9640434Z x_14: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_13, inplace = False); x_13 = None 2025-03-14T05:00:43.9640494Z 2025-03-14T05:00:43.9640870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:43.9641511Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:00:43.9641574Z 2025-03-14T05:00:43.9641929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:43.9642538Z x_19: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_14 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:00:43.9642612Z 2025-03-14T05:00:43.9642966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:00:43.9643162Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:00:43.9643303Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:00:43.9643473Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:00:43.9643614Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:00:43.9643772Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:00:43.9643911Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:00:43.9644068Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:00:43.9644201Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:00:43.9644352Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:00:43.9644481Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:00:43.9644550Z 2025-03-14T05:00:43.9644974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:00:43.9645156Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_15.view(4, -1, 4, 296, 304); x_15 = None 2025-03-14T05:00:43.9645348Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:00:43.9645548Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:00:43.9645717Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_16.view(4, -1, 4, 148, 152); x_16 = None 2025-03-14T05:00:43.9645892Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:00:43.9646073Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:00:43.9646218Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_17.view(4, -1, 4, 74, 76); x_17 = None 2025-03-14T05:00:43.9646389Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:00:43.9646556Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:00:43.9646703Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_18.view(4, -1, 4, 37, 38); x_18 = None 2025-03-14T05:00:43.9646863Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:00:43.9647038Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:00:43.9647177Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_19.view(4, -1, 4, 19, 19); x_19 = None 2025-03-14T05:00:43.9647343Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:00:43.9647532Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:00:43.9647609Z 2025-03-14T05:00:43.9648033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:43.9648306Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:00:43.9648371Z 2025-03-14T05:00:43.9648829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:43.9648992Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:00:43.9649144Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:00:43.9649292Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:00:43.9649355Z 2025-03-14T05:00:43.9649752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:43.9649930Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:00:43.9649998Z 2025-03-14T05:00:43.9650322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:43.9650473Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:00:43.9650536Z 2025-03-14T05:00:43.9650871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:43.9651002Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:43.9651158Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9651321Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:00:43.9651531Z 2025-03-14T05:00:43.9651898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:43.9652043Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:43.9652177Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:43.9652354Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:00:43.9652427Z 2025-03-14T05:00:43.9652785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:43.9652912Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9653008Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:00:43.9653141Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:00:43.9653212Z 2025-03-14T05:00:43.9653526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:43.9653684Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:43.9653773Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:00:43.9653941Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:00:43.9654004Z 2025-03-14T05:00:43.9654332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:43.9654513Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:43.9654662Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:00:43.9654724Z 2025-03-14T05:00:43.9655040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:43.9655196Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:43.9655318Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:00:43.9655381Z 2025-03-14T05:00:43.9655697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:43.9655852Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:43.9655973Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:00:43.9656035Z 2025-03-14T05:00:43.9656349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:43.9656542Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:43.9656653Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:00:43.9656721Z 2025-03-14T05:00:43.9657063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:43.9657213Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:43.9657294Z 2025-03-14T05:00:43.9657645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:43.9657783Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:43.9657851Z 2025-03-14T05:00:43.9658204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:43.9658351Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:43.9658483Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:00:43.9658649Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:43.9658791Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:00:43.9658865Z 2025-03-14T05:00:43.9659220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:43.9659369Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:43.9659494Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:00:43.9659654Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:43.9659936Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:00:43.9660010Z 2025-03-14T05:00:43.9660358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:43.9660506Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:43.9660859Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:43.9661011Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:00:43.9661076Z 2025-03-14T05:00:43.9661427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:43.9661546Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:43.9661724Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:43.9661862Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:00:43.9661939Z 2025-03-14T05:00:43.9662258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:43.9662366Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:43.9662486Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:43.9662557Z 2025-03-14T05:00:43.9662873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:43.9662978Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:43.9663095Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:43.9663165Z 2025-03-14T05:00:43.9663475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:43.9663624Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:43.9663754Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:43.9663823Z 2025-03-14T05:00:43.9664128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:43.9664250Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:43.9664376Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:43.9664445Z 2025-03-14T05:00:43.9664798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:43.9664984Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:43.9665055Z 2025-03-14T05:00:43.9665389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:43.9665557Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:00:43.9665617Z 2025-03-14T05:00:43.9666007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:43.9666206Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:00:43.9666275Z 2025-03-14T05:00:43.9666677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:43.9666958Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:00:43.9667020Z 2025-03-14T05:00:43.9667468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:43.9667624Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:00:43.9667785Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:00:43.9667924Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:00:43.9667993Z 2025-03-14T05:00:43.9668376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:43.9668556Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:00:43.9668615Z 2025-03-14T05:00:43.9668938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:43.9669081Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:00:43.9669152Z 2025-03-14T05:00:43.9669470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:43.9669607Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:00:43.9669762Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9669921Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:00:43.9669983Z 2025-03-14T05:00:43.9670307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:43.9670431Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:00:43.9670560Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:00:43.9670711Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:00:43.9670780Z 2025-03-14T05:00:43.9671087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:43.9671219Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9671308Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:00:43.9671447Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:00:43.9671507Z 2025-03-14T05:00:43.9671822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:43.9671969Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:00:43.9672066Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:00:43.9672209Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:00:43.9672277Z 2025-03-14T05:00:43.9672584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:43.9672754Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:43.9672890Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:00:43.9672951Z 2025-03-14T05:00:43.9673252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:43.9673400Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:43.9673519Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:00:43.9673580Z 2025-03-14T05:00:43.9673880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:43.9674031Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:43.9674146Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:00:43.9674207Z 2025-03-14T05:00:43.9674510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:43.9674694Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:00:43.9674811Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:00:43.9674871Z 2025-03-14T05:00:43.9675211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:43.9675370Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:00:43.9675439Z 2025-03-14T05:00:43.9675769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:43.9675914Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:00:43.9675975Z 2025-03-14T05:00:43.9676323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:43.9676460Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:00:43.9676594Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:00:43.9676747Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:00:43.9676900Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:00:43.9676961Z 2025-03-14T05:00:43.9677313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:43.9677449Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:00:43.9677578Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:00:43.9677734Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:00:43.9677889Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:00:43.9677961Z 2025-03-14T05:00:43.9678294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:43.9678476Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:00:43.9678635Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:00:43.9678773Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:00:43.9678831Z 2025-03-14T05:00:43.9679162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:43.9679271Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:00:43.9679440Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:00:43.9679568Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:00:43.9679637Z 2025-03-14T05:00:43.9679939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:43.9680037Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:00:43.9680150Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:00:43.9680215Z 2025-03-14T05:00:43.9680514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:43.9680611Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:00:43.9680721Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:00:43.9680787Z 2025-03-14T05:00:43.9681099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:43.9681222Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:00:43.9681351Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:00:43.9681416Z 2025-03-14T05:00:43.9681704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:43.9681821Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:00:43.9681949Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:00:43.9682015Z 2025-03-14T05:00:43.9682346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:43.9682544Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:00:43.9682603Z 2025-03-14T05:00:43.9682929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:43.9683087Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:00:43.9683155Z 2025-03-14T05:00:43.9683541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:43.9683720Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:00:43.9683799Z 2025-03-14T05:00:43.9684207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:43.9684406Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:00:43.9684476Z 2025-03-14T05:00:43.9684895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:43.9685048Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:00:43.9685199Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:00:43.9685331Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:00:43.9685395Z 2025-03-14T05:00:43.9685754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:43.9685924Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:00:43.9685984Z 2025-03-14T05:00:43.9686298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:43.9686437Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:00:43.9686505Z 2025-03-14T05:00:43.9686811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:43.9686964Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:00:43.9687089Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9687243Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:00:43.9687304Z 2025-03-14T05:00:43.9687626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:43.9687748Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:00:43.9687873Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:00:43.9688024Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:00:43.9688093Z 2025-03-14T05:00:43.9688401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:43.9688528Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9688617Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:00:43.9688753Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:00:43.9688816Z 2025-03-14T05:00:43.9689134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:43.9689280Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:00:43.9689397Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:00:43.9689527Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:00:43.9689613Z 2025-03-14T05:00:43.9689917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:43.9690103Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:43.9690216Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:00:43.9690289Z 2025-03-14T05:00:43.9690590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:43.9690744Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:43.9690852Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:00:43.9690919Z 2025-03-14T05:00:43.9691219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:43.9691438Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:43.9691564Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:00:43.9691625Z 2025-03-14T05:00:43.9691933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:43.9692122Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:00:43.9692244Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:00:43.9692309Z 2025-03-14T05:00:43.9692672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:43.9692843Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:00:43.9692914Z 2025-03-14T05:00:43.9693242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:43.9693386Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:00:43.9693447Z 2025-03-14T05:00:43.9693792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:43.9693924Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:00:43.9694053Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:00:43.9694207Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:00:43.9694350Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:00:43.9694410Z 2025-03-14T05:00:43.9694759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:43.9694893Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:00:43.9695019Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:00:43.9695186Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:00:43.9695329Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:00:43.9695408Z 2025-03-14T05:00:43.9695758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:43.9695874Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:00:43.9696041Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:00:43.9696173Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:00:43.9696241Z 2025-03-14T05:00:43.9696567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:43.9696686Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:00:43.9696850Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:00:43.9696988Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:00:43.9697047Z 2025-03-14T05:00:43.9697365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:43.9697458Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:00:43.9697578Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:00:43.9697637Z 2025-03-14T05:00:43.9697951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:43.9698042Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:00:43.9698160Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:00:43.9698252Z 2025-03-14T05:00:43.9698561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:43.9698674Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:00:43.9698811Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:00:43.9698870Z 2025-03-14T05:00:43.9699181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:43.9699301Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:00:43.9699431Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:00:43.9699499Z 2025-03-14T05:00:43.9699842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:43.9700039Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:00:43.9700101Z 2025-03-14T05:00:43.9700437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:43.9700594Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:00:43.9700659Z 2025-03-14T05:00:43.9701049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:43.9701229Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:00:43.9701308Z 2025-03-14T05:00:43.9701728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:43.9701932Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:00:43.9702001Z 2025-03-14T05:00:43.9702437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:43.9702591Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:00:43.9702739Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:00:43.9702883Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:00:43.9702944Z 2025-03-14T05:00:43.9703326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:43.9703491Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:00:43.9703562Z 2025-03-14T05:00:43.9703869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:43.9704018Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:00:43.9704078Z 2025-03-14T05:00:43.9704391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:43.9704538Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:00:43.9704668Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9704814Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:00:43.9704884Z 2025-03-14T05:00:43.9705195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:43.9705320Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:00:43.9705440Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:00:43.9705593Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:00:43.9705656Z 2025-03-14T05:00:43.9705970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:43.9706099Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9706187Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:00:43.9706322Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:00:43.9706381Z 2025-03-14T05:00:43.9706693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:43.9706854Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:00:43.9706953Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:00:43.9707078Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:00:43.9707164Z 2025-03-14T05:00:43.9707480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:43.9707636Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:43.9707747Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:00:43.9707813Z 2025-03-14T05:00:43.9708107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:43.9708263Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:43.9708371Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:00:43.9708438Z 2025-03-14T05:00:43.9708734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:43.9708888Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:43.9708994Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:00:43.9709062Z 2025-03-14T05:00:43.9709360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:43.9709546Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:00:43.9709654Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:00:43.9709723Z 2025-03-14T05:00:43.9710055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:43.9710221Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:00:43.9710281Z 2025-03-14T05:00:43.9710619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:43.9710749Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:00:43.9710817Z 2025-03-14T05:00:43.9711160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:43.9711299Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:00:43.9711419Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:00:43.9711577Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:00:43.9711719Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:00:43.9711780Z 2025-03-14T05:00:43.9712133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:43.9712263Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:00:43.9712408Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:00:43.9712556Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:00:43.9712696Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:00:43.9712782Z 2025-03-14T05:00:43.9713136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:43.9713248Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:00:43.9713412Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:00:43.9713543Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:00:43.9713609Z 2025-03-14T05:00:43.9713937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:43.9714052Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:00:43.9714219Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:00:43.9714357Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:00:43.9714420Z 2025-03-14T05:00:43.9714740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:43.9714835Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:00:43.9714958Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:00:43.9715019Z 2025-03-14T05:00:43.9715347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:43.9715440Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:00:43.9715575Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:00:43.9715636Z 2025-03-14T05:00:43.9715947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:43.9716063Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:00:43.9716202Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:00:43.9716264Z 2025-03-14T05:00:43.9716580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:43.9716691Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:00:43.9716823Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:00:43.9716884Z 2025-03-14T05:00:43.9717236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:43.9717420Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:00:43.9717490Z 2025-03-14T05:00:43.9717813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:43.9717978Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:00:43.9718038Z 2025-03-14T05:00:43.9718435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:43.9718626Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:00:43.9718695Z 2025-03-14T05:00:43.9719104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:43.9719312Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:00:43.9719381Z 2025-03-14T05:00:43.9719803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:43.9719955Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:00:43.9720099Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:00:43.9720238Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:00:43.9720300Z 2025-03-14T05:00:43.9720673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:43.9720833Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:00:43.9720899Z 2025-03-14T05:00:43.9721204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:43.9721345Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:00:43.9721425Z 2025-03-14T05:00:43.9721740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:43.9721867Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:00:43.9721992Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9722133Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:00:43.9722200Z 2025-03-14T05:00:43.9722510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:43.9722636Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:00:43.9722752Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:00:43.9722905Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:00:43.9722968Z 2025-03-14T05:00:43.9723279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:43.9723398Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:00:43.9723492Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:00:43.9723619Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:00:43.9723688Z 2025-03-14T05:00:43.9723997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:43.9724168Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:00:43.9724257Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:00:43.9724408Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:00:43.9724468Z 2025-03-14T05:00:43.9724789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:43.9724940Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:43.9725057Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:00:43.9725117Z 2025-03-14T05:00:43.9725419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:43.9725568Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:43.9725683Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:00:43.9725745Z 2025-03-14T05:00:43.9726048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:43.9726199Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:43.9726305Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:00:43.9726371Z 2025-03-14T05:00:43.9726670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:43.9726856Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:00:43.9726960Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:00:43.9727047Z 2025-03-14T05:00:43.9727380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:43.9727522Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:00:43.9727582Z 2025-03-14T05:00:43.9727918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:43.9728048Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:00:43.9728116Z 2025-03-14T05:00:43.9728458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:43.9728596Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:00:43.9728718Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:00:43.9728875Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:00:43.9729010Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:00:43.9729077Z 2025-03-14T05:00:43.9729422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:43.9729563Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:00:43.9729701Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:00:43.9729857Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:00:43.9730007Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:00:43.9730075Z 2025-03-14T05:00:43.9730421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:43.9730543Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:00:43.9730702Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:00:43.9730845Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:00:43.9730905Z 2025-03-14T05:00:43.9731250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:43.9731427Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:00:43.9731625Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:00:43.9731760Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:00:43.9731834Z 2025-03-14T05:00:43.9732162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:43.9732271Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:00:43.9732389Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:00:43.9732461Z 2025-03-14T05:00:43.9732784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:43.9732883Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:00:43.9733015Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:00:43.9733084Z 2025-03-14T05:00:43.9733386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:43.9733506Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:00:43.9733640Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:00:43.9733701Z 2025-03-14T05:00:43.9734009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:43.9734120Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:00:43.9734252Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:00:43.9734314Z 2025-03-14T05:00:43.9734665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:43.9734847Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:00:43.9734915Z 2025-03-14T05:00:43.9735246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:43.9735409Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:00:43.9735468Z 2025-03-14T05:00:43.9735871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:43.9736059Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:00:43.9736124Z 2025-03-14T05:00:43.9736620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:00:43.9736760Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:00:43.9736819Z 2025-03-14T05:00:43.9737118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9737256Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:00:43.9737324Z 2025-03-14T05:00:43.9737758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:43.9737880Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:00:43.9737980Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:00:43.9738099Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:00:43.9738158Z 2025-03-14T05:00:43.9738624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:43.9738755Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:43.9738994Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:00:43.9739073Z 2025-03-14T05:00:43.9739535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:43.9739696Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:43.9739763Z 2025-03-14T05:00:43.9740059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9740186Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:00:43.9740247Z 2025-03-14T05:00:43.9740686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:43.9740808Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:00:43.9740914Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:00:43.9741036Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:00:43.9741096Z 2025-03-14T05:00:43.9741571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:43.9741698Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:43.9741970Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:00:43.9742035Z 2025-03-14T05:00:43.9742507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:43.9742683Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:43.9742752Z 2025-03-14T05:00:43.9743041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9743171Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:00:43.9743231Z 2025-03-14T05:00:43.9743664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:43.9743778Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:00:43.9743886Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:00:43.9744002Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:00:43.9744068Z 2025-03-14T05:00:43.9744520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:43.9744657Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:43.9744892Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:00:43.9744960Z 2025-03-14T05:00:43.9745409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:43.9745599Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:43.9745661Z 2025-03-14T05:00:43.9745960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9746080Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:00:43.9746145Z 2025-03-14T05:00:43.9746567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:43.9746683Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:00:43.9746792Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:00:43.9746905Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:00:43.9746975Z 2025-03-14T05:00:43.9747432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:43.9747573Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:43.9747806Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:00:43.9747894Z 2025-03-14T05:00:43.9748356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:43.9748555Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:43.9748635Z 2025-03-14T05:00:43.9748931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9749051Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:00:43.9749121Z 2025-03-14T05:00:43.9749553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:43.9749669Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:00:43.9749772Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:00:43.9749896Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:00:43.9749957Z 2025-03-14T05:00:43.9750428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:43.9750593Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:00:43.9750836Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:00:43.9750898Z 2025-03-14T05:00:43.9751367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:43.9751665Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:43.9751734Z 2025-03-14T05:00:43.9752028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:43.9752160Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:00:43.9752223Z 2025-03-14T05:00:43.9752513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:43.9752904Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:00:43.9752968Z 2025-03-14T05:00:43.9753259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:43.9753729Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:00:43.9753799Z 2025-03-14T05:00:43.9754078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:43.9754306Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:00:43.9754368Z 2025-03-14T05:00:43.9754761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:00:43.9754920Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:00:43.9755007Z 2025-03-14T05:00:43.9755307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:43.9755462Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:00:43.9755521Z 2025-03-14T05:00:43.9755912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:00:43.9756045Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:00:43.9756116Z 2025-03-14T05:00:43.9756609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:00:43.9756756Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:00:43.9756876Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:43.9757040Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:00:43.9757171Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:00:43.9757241Z 2025-03-14T05:00:43.9757611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:00:43.9757732Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:00:43.9757824Z 2025-03-14T05:00:44.9769178Z 2025-03-14T05:00:44.9769703Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:44.9771322Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 269952, 4][1079808, 4, 1]cpu", L_anchors_0_tensor: "f32[269952, 4][4, 1]cpu", L_pred_anchor_deltas_1_: "f32[4, 67488, 4][269952, 4, 1]cpu", L_anchors_1_tensor: "f32[67488, 4][4, 1]cpu", L_pred_anchor_deltas_2_: "f32[4, 16872, 4][67488, 4, 1]cpu", L_anchors_2_tensor: "f32[16872, 4][4, 1]cpu", L_pred_anchor_deltas_3_: "f32[4, 4218, 4][16872, 4, 1]cpu", L_anchors_3_tensor: "f32[4218, 4][4, 1]cpu", L_pred_anchor_deltas_4_: "f32[4, 1083, 4][4332, 4, 1]cpu", L_anchors_4_tensor: "f32[1083, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 269952][269952, 1]cpu", L_pred_objectness_logits_1_: "f32[4, 67488][67488, 1]cpu", L_pred_objectness_logits_2_: "f32[4, 16872][16872, 1]cpu", L_pred_objectness_logits_3_: "f32[4, 4218][4218, 1]cpu", L_pred_objectness_logits_4_: "f32[4, 1083][1083, 1]cpu"): 2025-03-14T05:00:44.9773104Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T05:00:44.9773372Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T05:00:44.9773641Z l_pred_anchor_deltas_1_ = L_pred_anchor_deltas_1_ 2025-03-14T05:00:44.9773902Z l_anchors_1_tensor = L_anchors_1_tensor 2025-03-14T05:00:44.9774160Z l_pred_anchor_deltas_2_ = L_pred_anchor_deltas_2_ 2025-03-14T05:00:44.9774407Z l_anchors_2_tensor = L_anchors_2_tensor 2025-03-14T05:00:44.9774662Z l_pred_anchor_deltas_3_ = L_pred_anchor_deltas_3_ 2025-03-14T05:00:44.9774976Z l_anchors_3_tensor = L_anchors_3_tensor 2025-03-14T05:00:44.9775215Z l_pred_anchor_deltas_4_ = L_pred_anchor_deltas_4_ 2025-03-14T05:00:44.9775446Z l_anchors_4_tensor = L_anchors_4_tensor 2025-03-14T05:00:44.9775997Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T05:00:44.9776302Z l_pred_objectness_logits_1_ = L_pred_objectness_logits_1_ 2025-03-14T05:00:44.9776668Z l_pred_objectness_logits_2_ = L_pred_objectness_logits_2_ 2025-03-14T05:00:44.9776973Z l_pred_objectness_logits_3_ = L_pred_objectness_logits_3_ 2025-03-14T05:00:44.9777445Z l_pred_objectness_logits_4_ = L_pred_objectness_logits_4_ 2025-03-14T05:00:44.9777688Z 2025-03-14T05:00:44.9778288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:44.9779002Z pred_anchor_deltas_i: "f32[1079808, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T05:00:44.9779344Z 2025-03-14T05:00:44.9779906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:44.9780611Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T05:00:44.9781023Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:00:44.9781382Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:00:44.9781650Z 2025-03-14T05:00:44.9782134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:44.9782747Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T05:00:44.9783037Z 2025-03-14T05:00:44.9783453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:44.9784009Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:00:44.9784275Z 2025-03-14T05:00:44.9784676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:44.9785177Z getitem: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:44.9785490Z getitem_1: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:44.9785817Z widths: "f32[1079808][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T05:00:44.9787411Z 2025-03-14T05:00:44.9787931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:44.9788462Z getitem_2: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:44.9788788Z getitem_3: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:44.9789140Z heights: "f32[1079808][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:00:44.9789442Z 2025-03-14T05:00:44.9789842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:44.9790331Z getitem_4: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:44.9790599Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:00:44.9791288Z ctr_x: "f32[1079808][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T05:00:44.9791556Z 2025-03-14T05:00:44.9792039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:44.9792582Z getitem_5: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:44.9792933Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:00:44.9793250Z ctr_y: "f32[1079808][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T05:00:44.9793507Z 2025-03-14T05:00:44.9793942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:44.9794453Z getitem_6: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:44.9794791Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T05:00:44.9795029Z 2025-03-14T05:00:44.9795425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:44.9795955Z getitem_7: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:44.9796301Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T05:00:44.9801199Z 2025-03-14T05:00:44.9801792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:44.9802334Z getitem_8: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:44.9802673Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:00:44.9802919Z 2025-03-14T05:00:44.9803330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:44.9803899Z getitem_9: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:44.9804361Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:00:44.9804614Z 2025-03-14T05:00:44.9805061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:44.9805622Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:44.9805895Z 2025-03-14T05:00:44.9806744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:44.9807376Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:44.9807658Z 2025-03-14T05:00:44.9808142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:44.9808747Z getitem_10: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:44.9809112Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T05:00:44.9809495Z getitem_11: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:44.9809886Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T05:00:44.9810178Z 2025-03-14T05:00:44.9810655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:44.9811291Z getitem_12: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:44.9811750Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T05:00:44.9812141Z getitem_13: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:44.9812577Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T05:00:44.9812909Z 2025-03-14T05:00:44.9813388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:44.9813953Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:44.9814324Z getitem_14: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:44.9814715Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T05:00:44.9815000Z 2025-03-14T05:00:44.9815470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:44.9816523Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:44.9816887Z getitem_15: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:44.9817269Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T05:00:44.9817535Z 2025-03-14T05:00:44.9817962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:44.9818464Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:44.9818748Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:44.9819004Z 2025-03-14T05:00:44.9819427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:44.9819957Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:44.9820240Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:44.9820495Z 2025-03-14T05:00:44.9820910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:44.9821426Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:44.9821749Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:44.9822021Z 2025-03-14T05:00:44.9822440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:44.9822953Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:44.9823925Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:44.9824205Z 2025-03-14T05:00:44.9824676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:44.9825309Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:44.9825620Z 2025-03-14T05:00:44.9826050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:44.9826640Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:00:44.9826923Z 2025-03-14T05:00:44.9827415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:44.9830844Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:00:44.9831177Z 2025-03-14T05:00:44.9831698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:44.9832390Z pred_anchor_deltas_i_1: "f32[269952, 4][4, 1]cpu" = l_pred_anchor_deltas_1_.reshape(-1, 4); l_pred_anchor_deltas_1_ = None 2025-03-14T05:00:44.9832729Z 2025-03-14T05:00:44.9833270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:44.9833963Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = l_anchors_1_tensor.unsqueeze(0); l_anchors_1_tensor = None 2025-03-14T05:00:44.9834366Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:00:44.9834727Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:00:44.9834995Z 2025-03-14T05:00:44.9835466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:44.9836201Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:00:44.9836499Z 2025-03-14T05:00:44.9836911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:44.9837464Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:00:44.9837743Z 2025-03-14T05:00:44.9838159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:44.9838675Z getitem_16: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:00:44.9839004Z getitem_17: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:00:44.9839356Z widths_1: "f32[269952][1]cpu" = getitem_16 - getitem_17; getitem_16 = getitem_17 = None 2025-03-14T05:00:44.9839642Z 2025-03-14T05:00:44.9840060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:44.9840582Z getitem_18: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:00:44.9840893Z getitem_19: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:00:44.9841236Z heights_1: "f32[269952][1]cpu" = getitem_18 - getitem_19; getitem_18 = getitem_19 = None 2025-03-14T05:00:44.9841517Z 2025-03-14T05:00:44.9841917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:44.9842422Z getitem_20: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:00:44.9842710Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:00:44.9843007Z ctr_x_1: "f32[269952][1]cpu" = getitem_20 + mul_10; getitem_20 = mul_10 = None 2025-03-14T05:00:44.9843279Z 2025-03-14T05:00:44.9843714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:44.9844245Z getitem_21: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:00:44.9844600Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:00:44.9844908Z ctr_y_1: "f32[269952][1]cpu" = getitem_21 + mul_11; getitem_21 = mul_11 = None 2025-03-14T05:00:44.9845176Z 2025-03-14T05:00:44.9845596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:44.9846128Z getitem_22: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:44.9846472Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_22 / 1.0; getitem_22 = None 2025-03-14T05:00:44.9846726Z 2025-03-14T05:00:44.9847117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:44.9847646Z getitem_23: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:44.9847988Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_23 / 1.0; getitem_23 = None 2025-03-14T05:00:44.9848233Z 2025-03-14T05:00:44.9848634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:44.9849161Z getitem_24: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:44.9849489Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_24 / 1.0; getitem_24 = None 2025-03-14T05:00:44.9849728Z 2025-03-14T05:00:44.9850125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:44.9850678Z getitem_25: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:00:44.9851061Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_25 / 1.0; getitem_25 = None 2025-03-14T05:00:44.9851301Z 2025-03-14T05:00:44.9851869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:44.9852431Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:00:44.9852708Z 2025-03-14T05:00:44.9853125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:44.9853651Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:00:44.9853898Z 2025-03-14T05:00:44.9854323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:44.9854858Z getitem_26: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:00:44.9855181Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_26; dx_1 = getitem_26 = None 2025-03-14T05:00:44.9855521Z getitem_27: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:00:44.9855874Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_27; mul_12 = getitem_27 = None 2025-03-14T05:00:44.9856134Z 2025-03-14T05:00:44.9856562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:44.9857122Z getitem_28: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:00:44.9857449Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_28; dy_1 = getitem_28 = None 2025-03-14T05:00:44.9857808Z getitem_29: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:00:44.9858175Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_29; mul_13 = getitem_29 = None 2025-03-14T05:00:44.9859644Z 2025-03-14T05:00:44.9860125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:44.9860877Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:00:44.9861221Z getitem_30: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:00:44.9861588Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_30; exp_2 = getitem_30 = None 2025-03-14T05:00:44.9861849Z 2025-03-14T05:00:44.9862274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:44.9862979Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:00:44.9863477Z getitem_31: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:00:44.9864009Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_31; exp_3 = getitem_31 = None 2025-03-14T05:00:44.9864270Z 2025-03-14T05:00:44.9864669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:44.9865131Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:00:44.9865404Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:00:44.9866081Z 2025-03-14T05:00:44.9866828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:44.9867293Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:00:44.9867561Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:00:44.9867797Z 2025-03-14T05:00:44.9868183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:44.9868659Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:00:44.9868963Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:00:44.9869215Z 2025-03-14T05:00:44.9869606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:44.9870068Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:00:44.9870361Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:00:44.9870606Z 2025-03-14T05:00:44.9871023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:44.9871609Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:00:44.9871922Z 2025-03-14T05:00:44.9872365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:44.9872906Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:00:44.9873218Z 2025-03-14T05:00:44.9873700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:44.9874297Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:00:44.9874580Z 2025-03-14T05:00:44.9875040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:44.9875688Z pred_anchor_deltas_i_2: "f32[67488, 4][4, 1]cpu" = l_pred_anchor_deltas_2_.reshape(-1, 4); l_pred_anchor_deltas_2_ = None 2025-03-14T05:00:44.9876008Z 2025-03-14T05:00:44.9876499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:44.9877162Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = l_anchors_2_tensor.unsqueeze(0); l_anchors_2_tensor = None 2025-03-14T05:00:44.9877543Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:00:44.9877880Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:00:44.9878127Z 2025-03-14T05:00:44.9878619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:44.9879203Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_2.float(); pred_anchor_deltas_i_2 = None 2025-03-14T05:00:44.9879479Z 2025-03-14T05:00:44.9879859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:44.9880377Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:00:44.9880636Z 2025-03-14T05:00:44.9881021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:44.9881501Z getitem_32: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:00:44.9881799Z getitem_33: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:00:44.9882121Z widths_2: "f32[67488][1]cpu" = getitem_32 - getitem_33; getitem_32 = getitem_33 = None 2025-03-14T05:00:44.9882381Z 2025-03-14T05:00:44.9882797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:44.9883275Z getitem_34: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:00:44.9883561Z getitem_35: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:00:44.9883877Z heights_2: "f32[67488][1]cpu" = getitem_34 - getitem_35; getitem_34 = getitem_35 = None 2025-03-14T05:00:44.9884139Z 2025-03-14T05:00:44.9884522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:44.9884994Z getitem_36: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:00:44.9885260Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:00:44.9885554Z ctr_x_2: "f32[67488][1]cpu" = getitem_36 + mul_20; getitem_36 = mul_20 = None 2025-03-14T05:00:44.9885810Z 2025-03-14T05:00:44.9886202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:44.9886735Z getitem_37: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:00:44.9887049Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:00:44.9887329Z ctr_y_2: "f32[67488][1]cpu" = getitem_37 + mul_21; getitem_37 = mul_21 = None 2025-03-14T05:00:44.9887582Z 2025-03-14T05:00:44.9887983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:44.9888490Z getitem_38: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:44.9888814Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_38 / 1.0; getitem_38 = None 2025-03-14T05:00:44.9889047Z 2025-03-14T05:00:44.9889429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:44.9889935Z getitem_39: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:44.9890255Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_39 / 1.0; getitem_39 = None 2025-03-14T05:00:44.9890487Z 2025-03-14T05:00:44.9891718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:44.9892312Z getitem_40: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:44.9892653Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_40 / 1.0; getitem_40 = None 2025-03-14T05:00:44.9892892Z 2025-03-14T05:00:44.9893305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:44.9893905Z getitem_41: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:00:44.9894252Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_41 / 1.0; getitem_41 = None 2025-03-14T05:00:44.9894484Z 2025-03-14T05:00:44.9894903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:44.9895437Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:00:44.9895707Z 2025-03-14T05:00:44.9896121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:44.9896634Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:00:44.9896889Z 2025-03-14T05:00:44.9897305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:44.9897836Z getitem_42: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:00:44.9898152Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_42; dx_2 = getitem_42 = None 2025-03-14T05:00:44.9898483Z getitem_43: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:00:44.9898834Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_43; mul_22 = getitem_43 = None 2025-03-14T05:00:44.9899090Z 2025-03-14T05:00:44.9899584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:44.9900118Z getitem_44: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:00:44.9900450Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_44; dy_2 = getitem_44 = None 2025-03-14T05:00:44.9900796Z getitem_45: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:00:44.9901140Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_45; mul_23 = getitem_45 = None 2025-03-14T05:00:44.9901396Z 2025-03-14T05:00:44.9901810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:44.9902311Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:00:44.9902640Z getitem_46: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:00:44.9902999Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_46; exp_4 = getitem_46 = None 2025-03-14T05:00:44.9903261Z 2025-03-14T05:00:44.9903713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:44.9904249Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:00:44.9904582Z getitem_47: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:00:44.9904948Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_47; exp_5 = getitem_47 = None 2025-03-14T05:00:44.9905203Z 2025-03-14T05:00:44.9905617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:44.9906136Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:00:44.9906405Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:00:44.9906665Z 2025-03-14T05:00:44.9907073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:44.9907542Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:00:44.9907802Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:00:44.9908038Z 2025-03-14T05:00:44.9908423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:44.9908902Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:00:44.9909204Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:00:44.9909457Z 2025-03-14T05:00:44.9909842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:44.9910320Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:00:44.9910614Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:00:44.9910861Z 2025-03-14T05:00:44.9911288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:44.9911872Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:00:44.9912167Z 2025-03-14T05:00:44.9912603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:44.9913152Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:00:44.9913450Z 2025-03-14T05:00:44.9913934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:44.9914565Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:00:44.9914853Z 2025-03-14T05:00:44.9915333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:44.9916044Z pred_anchor_deltas_i_3: "f32[16872, 4][4, 1]cpu" = l_pred_anchor_deltas_3_.reshape(-1, 4); l_pred_anchor_deltas_3_ = None 2025-03-14T05:00:44.9916406Z 2025-03-14T05:00:44.9916922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:44.9917615Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = l_anchors_3_tensor.unsqueeze(0); l_anchors_3_tensor = None 2025-03-14T05:00:44.9918002Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:00:44.9918340Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:00:44.9918593Z 2025-03-14T05:00:44.9919059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:44.9919660Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:00:44.9919967Z 2025-03-14T05:00:44.9920362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:44.9920867Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:00:44.9921135Z 2025-03-14T05:00:44.9921530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:44.9922022Z getitem_48: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:00:44.9922327Z getitem_49: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:00:44.9922654Z widths_3: "f32[16872][1]cpu" = getitem_48 - getitem_49; getitem_48 = getitem_49 = None 2025-03-14T05:00:44.9922922Z 2025-03-14T05:00:44.9923317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:44.9923811Z getitem_50: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:00:44.9924109Z getitem_51: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:00:44.9924433Z heights_3: "f32[16872][1]cpu" = getitem_50 - getitem_51; getitem_50 = getitem_51 = None 2025-03-14T05:00:44.9924802Z 2025-03-14T05:00:44.9925294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:44.9925865Z getitem_52: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:00:44.9926437Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:00:44.9926793Z ctr_x_3: "f32[16872][1]cpu" = getitem_52 + mul_30; getitem_52 = mul_30 = None 2025-03-14T05:00:44.9927135Z 2025-03-14T05:00:44.9927749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:44.9928339Z getitem_53: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:00:44.9928725Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:00:44.9929054Z ctr_y_3: "f32[16872][1]cpu" = getitem_53 + mul_31; getitem_53 = mul_31 = None 2025-03-14T05:00:44.9940341Z 2025-03-14T05:00:44.9940868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:44.9941439Z getitem_54: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:44.9941793Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_54 / 1.0; getitem_54 = None 2025-03-14T05:00:44.9942044Z 2025-03-14T05:00:44.9942515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:44.9943052Z getitem_55: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:44.9943393Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_55 / 1.0; getitem_55 = None 2025-03-14T05:00:44.9943632Z 2025-03-14T05:00:44.9944026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:44.9944552Z getitem_56: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:44.9944876Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_56 / 1.0; getitem_56 = None 2025-03-14T05:00:44.9945117Z 2025-03-14T05:00:44.9945519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:44.9946176Z getitem_57: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:00:44.9946541Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_57 / 1.0; getitem_57 = None 2025-03-14T05:00:44.9946783Z 2025-03-14T05:00:44.9947223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:44.9947771Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:00:44.9948046Z 2025-03-14T05:00:44.9948461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:44.9948998Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:00:44.9949262Z 2025-03-14T05:00:44.9949702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:44.9950257Z getitem_58: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:00:44.9950587Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_58; dx_3 = getitem_58 = None 2025-03-14T05:00:44.9950932Z getitem_59: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:00:44.9951294Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_59; mul_32 = getitem_59 = None 2025-03-14T05:00:44.9951594Z 2025-03-14T05:00:44.9952039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:44.9952622Z getitem_60: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:00:44.9952974Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_60; dy_3 = getitem_60 = None 2025-03-14T05:00:44.9953319Z getitem_61: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:00:44.9953676Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_61; mul_33 = getitem_61 = None 2025-03-14T05:00:44.9953947Z 2025-03-14T05:00:44.9954375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:44.9954890Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:00:44.9955231Z getitem_62: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:00:44.9955605Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_62; exp_6 = getitem_62 = None 2025-03-14T05:00:44.9955884Z 2025-03-14T05:00:44.9956312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:44.9956827Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:00:44.9957171Z getitem_63: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:00:44.9957535Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_63; exp_7 = getitem_63 = None 2025-03-14T05:00:44.9957798Z 2025-03-14T05:00:44.9958212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:44.9958683Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:00:44.9958982Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:00:44.9959231Z 2025-03-14T05:00:44.9959633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:44.9960098Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:00:44.9960366Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:00:44.9960820Z 2025-03-14T05:00:44.9961226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:44.9961719Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:00:44.9962036Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:00:44.9962301Z 2025-03-14T05:00:44.9962704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:44.9963201Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:00:44.9963526Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:00:44.9963783Z 2025-03-14T05:00:44.9964228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:44.9964913Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:00:44.9965226Z 2025-03-14T05:00:44.9965659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:44.9966264Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:00:44.9966550Z 2025-03-14T05:00:44.9967057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:44.9967676Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:00:44.9967970Z 2025-03-14T05:00:44.9968459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:44.9969135Z pred_anchor_deltas_i_4: "f32[4332, 4][4, 1]cpu" = l_pred_anchor_deltas_4_.reshape(-1, 4); l_pred_anchor_deltas_4_ = None 2025-03-14T05:00:44.9969463Z 2025-03-14T05:00:44.9970003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:44.9970694Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = l_anchors_4_tensor.unsqueeze(0); l_anchors_4_tensor = None 2025-03-14T05:00:44.9971095Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:00:44.9971558Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:00:44.9971857Z 2025-03-14T05:00:44.9972367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:44.9973006Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_4.float(); pred_anchor_deltas_i_4 = None 2025-03-14T05:00:44.9973372Z 2025-03-14T05:00:44.9973774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:44.9974291Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:00:44.9974554Z 2025-03-14T05:00:44.9974957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:44.9975463Z getitem_64: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:00:44.9975775Z getitem_65: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:00:44.9976106Z widths_4: "f32[4332][1]cpu" = getitem_64 - getitem_65; getitem_64 = getitem_65 = None 2025-03-14T05:00:44.9976381Z 2025-03-14T05:00:44.9976785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:44.9977290Z getitem_66: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:00:44.9977590Z getitem_67: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:00:44.9977924Z heights_4: "f32[4332][1]cpu" = getitem_66 - getitem_67; getitem_66 = getitem_67 = None 2025-03-14T05:00:44.9978196Z 2025-03-14T05:00:44.9978598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:44.9979107Z getitem_68: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:00:44.9979380Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:00:44.9979662Z ctr_x_4: "f32[4332][1]cpu" = getitem_68 + mul_40; getitem_68 = mul_40 = None 2025-03-14T05:00:44.9979940Z 2025-03-14T05:00:44.9980365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:44.9980889Z getitem_69: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:00:44.9981184Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:00:44.9981456Z ctr_y_4: "f32[4332][1]cpu" = getitem_69 + mul_41; getitem_69 = mul_41 = None 2025-03-14T05:00:44.9981707Z 2025-03-14T05:00:44.9982105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:44.9982627Z getitem_70: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:44.9982955Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_70 / 1.0; getitem_70 = None 2025-03-14T05:00:44.9983196Z 2025-03-14T05:00:44.9983588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:44.9984106Z getitem_71: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:44.9984431Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_71 / 1.0; getitem_71 = None 2025-03-14T05:00:44.9984666Z 2025-03-14T05:00:44.9985054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:44.9985566Z getitem_72: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:44.9985887Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_72 / 1.0; getitem_72 = None 2025-03-14T05:00:44.9986120Z 2025-03-14T05:00:44.9986529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:44.9987084Z getitem_73: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:00:44.9987436Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_73 / 1.0; getitem_73 = None 2025-03-14T05:00:44.9987674Z 2025-03-14T05:00:44.9988111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:44.9988649Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:00:44.9988909Z 2025-03-14T05:00:44.9989327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:44.9989861Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:00:44.9990121Z 2025-03-14T05:00:44.9990556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:44.9991100Z getitem_74: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:00:44.9991423Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_74; dx_4 = getitem_74 = None 2025-03-14T05:00:44.9991763Z getitem_75: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:00:44.9992139Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_75; mul_42 = getitem_75 = None 2025-03-14T05:00:44.9992406Z 2025-03-14T05:00:44.9992859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:44.9993438Z getitem_76: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:00:44.9993779Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_76; dy_4 = getitem_76 = None 2025-03-14T05:00:44.9994118Z getitem_77: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:00:44.9994475Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_77; mul_43 = getitem_77 = None 2025-03-14T05:00:44.9994728Z 2025-03-14T05:00:44.9995146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:44.9995649Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:00:44.9995975Z getitem_78: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:00:44.9996332Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_78; exp_8 = getitem_78 = None 2025-03-14T05:00:44.9996589Z 2025-03-14T05:00:44.9997023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:44.9997542Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:00:44.9997884Z getitem_79: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:00:44.9998257Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_79; exp_9 = getitem_79 = None 2025-03-14T05:00:44.9998507Z 2025-03-14T05:00:44.9998899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:44.9999375Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:00:44.9999642Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:00:44.9999881Z 2025-03-14T05:00:45.0000282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:45.0000739Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:00:45.0000992Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:00:45.0001221Z 2025-03-14T05:00:45.0001605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:45.0002071Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:00:45.0002368Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:00:45.0002618Z 2025-03-14T05:00:45.0003001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:45.0003469Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:00:45.0003767Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:00:45.0004018Z 2025-03-14T05:00:45.0004459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:45.0005053Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:00:45.0005353Z 2025-03-14T05:00:45.0005788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:45.0006383Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:00:45.0006695Z 2025-03-14T05:00:45.0007187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:45.0007823Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:00:45.0008121Z 2025-03-14T05:00:45.0008735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:00:45.0009498Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:00:45.0009780Z 2025-03-14T05:00:45.0010178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:45.0010681Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:00:45.0010949Z 2025-03-14T05:00:45.0011630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:45.0012375Z topk = l_pred_objectness_logits_0_.topk(1000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T05:00:45.0012745Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:00:45.0013047Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:00:45.0013330Z 2025-03-14T05:00:45.0013980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:45.0014702Z getitem_82: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:45.0015164Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_82, topk_idx)]; proposals_i_5 = getitem_82 = topk_idx = None 2025-03-14T05:00:45.0015541Z 2025-03-14T05:00:45.0016148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:45.0016903Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:45.0017218Z 2025-03-14T05:00:45.0017642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:45.0018160Z to_6: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:00:45.0018423Z 2025-03-14T05:00:45.0018997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:45.0019727Z topk_1 = l_pred_objectness_logits_1_.topk(1000, dim = 1); l_pred_objectness_logits_1_ = None 2025-03-14T05:00:45.0020065Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:00:45.0020372Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:00:45.0020611Z 2025-03-14T05:00:45.0021160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:45.0021865Z getitem_86: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:45.0022292Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_86, topk_idx_1)]; proposals_i_6 = getitem_86 = topk_idx_1 = None 2025-03-14T05:00:45.0022646Z 2025-03-14T05:00:45.0023206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:45.0023901Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:45.0024194Z 2025-03-14T05:00:45.0024588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:45.0025087Z to_7: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:00:45.0025342Z 2025-03-14T05:00:45.0025881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:45.0026567Z topk_2 = l_pred_objectness_logits_2_.topk(1000, dim = 1); l_pred_objectness_logits_2_ = None 2025-03-14T05:00:45.0026912Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:00:45.0027205Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:00:45.0027456Z 2025-03-14T05:00:45.0028041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:45.0028746Z getitem_90: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:45.0029175Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_90, topk_idx_2)]; proposals_i_7 = getitem_90 = topk_idx_2 = None 2025-03-14T05:00:45.0029527Z 2025-03-14T05:00:45.0030078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:45.0030764Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:45.0031050Z 2025-03-14T05:00:45.0031438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:45.0031928Z to_8: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:00:45.0032172Z 2025-03-14T05:00:45.0032700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:45.0033372Z topk_3 = l_pred_objectness_logits_3_.topk(1000, dim = 1); l_pred_objectness_logits_3_ = None 2025-03-14T05:00:45.0033708Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:00:45.0033988Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:00:45.0034234Z 2025-03-14T05:00:45.0034805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:45.0035474Z getitem_94: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:00:45.0035919Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_94, topk_idx_3)]; proposals_i_8 = getitem_94 = topk_idx_3 = None 2025-03-14T05:00:45.0036271Z 2025-03-14T05:00:45.0036818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:45.0037496Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:45.0037782Z 2025-03-14T05:00:45.0038165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:45.0038654Z to_9: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:00:45.0038890Z 2025-03-14T05:00:45.0039401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:45.0040059Z topk_4 = l_pred_objectness_logits_4_.topk(1000, dim = 1); l_pred_objectness_logits_4_ = None 2025-03-14T05:00:45.0040401Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:00:45.0040672Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:00:45.0040903Z 2025-03-14T05:00:45.0041442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:45.0042132Z getitem_98: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:00:45.0042569Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_98, topk_idx_4)]; proposals_i_9 = getitem_98 = topk_idx_4 = None 2025-03-14T05:00:45.0042907Z 2025-03-14T05:00:45.0043438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:45.0044117Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:45.0044414Z 2025-03-14T05:00:45.0044810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:45.0045295Z to_10: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:00:45.0045546Z 2025-03-14T05:00:45.0045920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:45.0046643Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:00:45.0047134Z 2025-03-14T05:00:45.0047507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:45.0048330Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:00:45.0048935Z 2025-03-14T05:00:45.0049321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:45.0049858Z level_ids: "i64[5000][1]cpu" = torch.cat([to_6, to_7, to_8, to_9, to_10], 0); to_6 = to_7 = to_8 = to_9 = to_10 = level_ids = None 2025-03-14T05:00:45.0050163Z 2025-03-14T05:00:45.0050654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:00:45.0051263Z getitem_100: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:00:45.0051663Z 2025-03-14T05:00:45.0052096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:45.0052665Z tensor: "f32[5000, 4][4, 1]cpu" = getitem_100.to(torch.float32); getitem_100 = None 2025-03-14T05:00:45.0052940Z 2025-03-14T05:00:45.0053419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:00:45.0053994Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:00:45.0054250Z 2025-03-14T05:00:45.0054834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:00:45.0055527Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T05:00:45.0055842Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:45.0056209Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:00:45.0056558Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:00:45.0056813Z 2025-03-14T05:00:45.0057273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:00:45.0057818Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:00:45.0058051Z 2025-03-14T05:00:51.1797159Z 2025-03-14T05:00:51.1797918Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:51.1800444Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:00:51.1802578Z l_stack0_ = L_stack0_ 2025-03-14T05:00:51.1802934Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:00:51.1803498Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:00:51.1804035Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:00:51.1804592Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:00:51.1805123Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:00:51.1805693Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:00:51.1806264Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:00:51.1806832Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:00:51.1807324Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:51.1807739Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:51.1808151Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:51.1808537Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:51.1808824Z 2025-03-14T05:00:51.1809238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:00:51.1809746Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:00:51.1810447Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:00:51.1811208Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:00:51.1812021Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:00:51.1812741Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:00:51.1813011Z 2025-03-14T05:00:51.1813442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:00:51.1814453Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:00:51.1815158Z 2025-03-14T05:00:51.1815570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:00:51.1816716Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:00:51.1817600Z 2025-03-14T05:00:51.1817998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.1818467Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.1818729Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:51.1818967Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:51.1819249Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.1819501Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:00:51.1819746Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:51.1820027Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.1820281Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:00:51.1820520Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:00:51.1820792Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.1821045Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:00:51.1821276Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:00:51.1821499Z 2025-03-14T05:00:51.1821873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:51.1822647Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:00:51.1823193Z 2025-03-14T05:00:51.1823656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:51.1824258Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:00:51.1824531Z 2025-03-14T05:00:51.1824927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:51.1825461Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:51.1825747Z 2025-03-14T05:00:51.1826132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:51.1826622Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:51.1826930Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.1827247Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:00:51.1827507Z 2025-03-14T05:00:51.1827900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:51.1828397Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:51.1828709Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:51.1829039Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:00:51.1829308Z 2025-03-14T05:00:51.1829719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:51.1830218Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.1830496Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:00:51.1830786Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:00:51.1831033Z 2025-03-14T05:00:51.1831451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:51.1831962Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:51.1832271Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:00:51.1832555Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:00:51.1832804Z 2025-03-14T05:00:51.1833226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:51.1833747Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:51.1834062Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:00:51.1834281Z 2025-03-14T05:00:51.1834653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:51.1835150Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:51.1835457Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:00:51.1835680Z 2025-03-14T05:00:51.1836051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:51.1836555Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:51.1836898Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:00:51.1837129Z 2025-03-14T05:00:51.1837514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:51.1838045Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:51.1838401Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:00:51.1838621Z 2025-03-14T05:00:51.1839027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:51.1839537Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:51.1839781Z 2025-03-14T05:00:51.1840181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:51.1840683Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:51.1840926Z 2025-03-14T05:00:51.1841343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:51.1841870Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:51.1842180Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:00:51.1842517Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:51.1842853Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:00:51.1843125Z 2025-03-14T05:00:51.1843582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:51.1844102Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:51.1844406Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:00:51.1844730Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:51.1845060Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:00:51.1845309Z 2025-03-14T05:00:51.1845720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:51.1846217Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:51.1846540Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:51.1846879Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:00:51.1847125Z 2025-03-14T05:00:51.1847537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:51.1848029Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:51.1848363Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:51.1848711Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:00:51.1848981Z 2025-03-14T05:00:51.1849383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:51.1849843Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:51.1850102Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:51.1850337Z 2025-03-14T05:00:51.1850727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:51.1851185Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:51.1851563Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:51.1851815Z 2025-03-14T05:00:51.1852220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:51.1852730Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:51.1853022Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:51.1853275Z 2025-03-14T05:00:51.1853675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:51.1854158Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:51.1854450Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:51.1854705Z 2025-03-14T05:00:51.1855160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:51.1855742Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:51.1856053Z 2025-03-14T05:00:51.1856489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:51.1857048Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:00:51.1857336Z 2025-03-14T05:00:51.1857791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:51.1858470Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:00:51.1858900Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:51.1859188Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:00:51.1859491Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:00:51.1859794Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:00:51.1860044Z 2025-03-14T05:00:51.1860422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.1861163Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.1861514Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:00:51.1861755Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:00:51.1862124Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.1862462Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:00:51.1862757Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:00:51.1863116Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.1863474Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:00:51.1863708Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:00:51.1864061Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.1864393Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:00:51.1864619Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:00:51.1864834Z 2025-03-14T05:00:51.1865260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:51.1865812Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:00:51.1866099Z 2025-03-14T05:00:51.1866537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:51.1867198Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:00:51.1867608Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:51.1867888Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:00:51.1868178Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:00:51.1868500Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:00:51.1868748Z 2025-03-14T05:00:51.1869301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:51.1870039Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:51.1870376Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:51.1870704Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:51.1871035Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:51.1871320Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:51.1871553Z 2025-03-14T05:00:51.1871987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:51.1872504Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:51.1872736Z 2025-03-14T05:00:51.1903615Z 2025-03-14T05:00:51.1904189Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:51.1906578Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:00:51.1908841Z l_stack0_ = L_stack0_ 2025-03-14T05:00:51.1909202Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:00:51.1909695Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:00:51.1910183Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:00:51.1910663Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:00:51.1911193Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:00:51.1911788Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:00:51.1912366Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:00:51.1912939Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:00:51.1913430Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:51.1913847Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:51.1914290Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:51.1914704Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:51.1915042Z 2025-03-14T05:00:51.1915479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:00:51.1915997Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:00:51.1916752Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:00:51.1917474Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:00:51.1918194Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:00:51.1918906Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:00:51.1919185Z 2025-03-14T05:00:51.1919595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:00:51.1920566Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:00:51.1921277Z 2025-03-14T05:00:51.1921687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:00:51.1922672Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:00:51.1923374Z 2025-03-14T05:00:51.1923734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.1924178Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.1924421Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:51.1924645Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:51.1924909Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.1925151Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:00:51.1925384Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:51.1925646Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.1925882Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:00:51.1926104Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:00:51.1926359Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.1926594Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:00:51.1926815Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:00:51.1927028Z 2025-03-14T05:00:51.1927410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:51.1928178Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:00:51.1928766Z 2025-03-14T05:00:51.1929241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:51.1929816Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:00:51.1930109Z 2025-03-14T05:00:51.1930544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:51.1931077Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:51.1931359Z 2025-03-14T05:00:51.1931885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:51.1932448Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:51.1932801Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.1933162Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:00:51.1933446Z 2025-03-14T05:00:51.1933898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:51.1934398Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:51.1934710Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:51.1935062Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:00:51.1935375Z 2025-03-14T05:00:51.1935794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:51.1936306Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.1936603Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:00:51.1936893Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:00:51.1937152Z 2025-03-14T05:00:51.1937570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:51.1938114Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:51.1939484Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:00:51.1939859Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:00:51.1940135Z 2025-03-14T05:00:51.1940594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:51.1941146Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:51.1941490Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:00:51.1941733Z 2025-03-14T05:00:51.1942188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:51.1942730Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:51.1943065Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:00:51.1943331Z 2025-03-14T05:00:51.1943763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:51.1944277Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:51.1944587Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:00:51.1944811Z 2025-03-14T05:00:51.1945193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:51.1945719Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:51.1946054Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:00:51.1946279Z 2025-03-14T05:00:51.1946697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:51.1947228Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:51.1947476Z 2025-03-14T05:00:51.1947896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:51.1948395Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:51.1948636Z 2025-03-14T05:00:51.1949060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:51.1949628Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:51.1949942Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:00:51.1950270Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:51.1950605Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:00:51.1950854Z 2025-03-14T05:00:51.1951274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:51.1951797Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:51.1952111Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:00:51.1952432Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:51.1952768Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:00:51.1953012Z 2025-03-14T05:00:51.1953416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:51.1953905Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:51.1954227Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:51.1954562Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:00:51.1954828Z 2025-03-14T05:00:51.1955231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:51.1955740Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:51.1956084Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:51.1956424Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:00:51.1956671Z 2025-03-14T05:00:51.1957063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:51.1957519Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:51.1957769Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:51.1957996Z 2025-03-14T05:00:51.1958374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:51.1958819Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:51.1959071Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:51.1959294Z 2025-03-14T05:00:51.1959664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:51.1960122Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:51.1960405Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:51.1960842Z 2025-03-14T05:00:51.1961232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:51.1961692Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:51.1962040Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:51.1962277Z 2025-03-14T05:00:51.1962707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:51.1963273Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:51.1963554Z 2025-03-14T05:00:51.1963963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:51.1964508Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:00:51.1964783Z 2025-03-14T05:00:51.1965231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:51.1965914Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:00:51.1966337Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:51.1966620Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:00:51.1966914Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:00:51.1967215Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:00:51.1967464Z 2025-03-14T05:00:51.1967875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.1968432Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.1968806Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:00:51.1969048Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:00:51.1969445Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.1969794Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:00:51.1970029Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:00:51.1970397Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.1970735Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:00:51.1970969Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:00:51.1971333Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.1971813Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:00:51.1972093Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:00:51.1972388Z 2025-03-14T05:00:51.1972815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:51.1973376Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:00:51.1973721Z 2025-03-14T05:00:51.1974147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:51.1974794Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:00:51.1975193Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:51.1975494Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:00:51.1975774Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:00:51.1976070Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:00:51.1976310Z 2025-03-14T05:00:51.1976844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:51.1977542Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:51.1977987Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:51.1978444Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:51.1978922Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:51.1979231Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:51.1979483Z 2025-03-14T05:00:51.1980136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:51.1980685Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:51.1980910Z 2025-03-14T05:00:51.1985118Z 2025-03-14T05:00:51.1985480Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:51.1987654Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:00:51.1989690Z l_stack0_ = L_stack0_ 2025-03-14T05:00:51.1990038Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:00:51.1990517Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:00:51.1990987Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:00:51.1991447Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:00:51.1991949Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:00:51.1992501Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:00:51.1993053Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:00:51.1993603Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:00:51.1994111Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:51.1994501Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:51.1994884Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:51.1995261Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:51.1995546Z 2025-03-14T05:00:51.1995934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:00:51.1996406Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:00:51.1997098Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:00:51.1997800Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:00:51.1998501Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:00:51.1999202Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:00:51.1999476Z 2025-03-14T05:00:51.1999899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:00:51.2000893Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:00:51.2001599Z 2025-03-14T05:00:51.2001998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:00:51.2002958Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:00:51.2003665Z 2025-03-14T05:00:51.2004030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.2004484Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.2004730Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:51.2004955Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:51.2005264Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.2005510Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:00:51.2005743Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:51.2006003Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.2006246Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:00:51.2006480Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:00:51.2006739Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.2007007Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:00:51.2007231Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:00:51.2007440Z 2025-03-14T05:00:51.2007810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:51.2008577Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:00:51.2009142Z 2025-03-14T05:00:51.2009624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:51.2010224Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:00:51.2010508Z 2025-03-14T05:00:51.2010920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:51.2011636Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:51.2011967Z 2025-03-14T05:00:51.2012431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:51.2012993Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:51.2013340Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.2013714Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:00:51.2013998Z 2025-03-14T05:00:51.2014427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:51.2014996Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:51.2015325Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:51.2015679Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:00:51.2015963Z 2025-03-14T05:00:51.2016375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:51.2016891Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.2017185Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:00:51.2017469Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:00:51.2017730Z 2025-03-14T05:00:51.2018146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:51.2018683Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:51.2018998Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:00:51.2019294Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:00:51.2019548Z 2025-03-14T05:00:51.2019971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:51.2020508Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:51.2020872Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:00:51.2021116Z 2025-03-14T05:00:51.2021519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:51.2022044Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:51.2022383Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:00:51.2022628Z 2025-03-14T05:00:51.2022996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:51.2023480Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:51.2023787Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:00:51.2024004Z 2025-03-14T05:00:51.2024383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:51.2024903Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:51.2025238Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:00:51.2025460Z 2025-03-14T05:00:51.2025872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:51.2026382Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:51.2026648Z 2025-03-14T05:00:51.2027052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:51.2027579Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:51.2027831Z 2025-03-14T05:00:51.2028274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:51.2028816Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:51.2029143Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:00:51.2029465Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:51.2029802Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:00:51.2030046Z 2025-03-14T05:00:51.2030472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:51.2030998Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:51.2031303Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:00:51.2031621Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:51.2031949Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:00:51.2032189Z 2025-03-14T05:00:51.2032594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:51.2033078Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:51.2033435Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:51.2033776Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:00:51.2034027Z 2025-03-14T05:00:51.2034444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:51.2034937Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:51.2035269Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:51.2035616Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:00:51.2035869Z 2025-03-14T05:00:51.2036264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:51.2036718Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:51.2036981Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:51.2037218Z 2025-03-14T05:00:51.2037609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:51.2038059Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:51.2038318Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:51.2038546Z 2025-03-14T05:00:51.2039694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:51.2040207Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:51.2040497Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:51.2040772Z 2025-03-14T05:00:51.2041180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:51.2041654Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:51.2041925Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:51.2042157Z 2025-03-14T05:00:51.2042578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:51.2043137Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:51.2043413Z 2025-03-14T05:00:51.2043820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:51.2044359Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:00:51.2044634Z 2025-03-14T05:00:51.2045066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:51.2045717Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:00:51.2046129Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:51.2046405Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:00:51.2046690Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:00:51.2047703Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:00:51.2047958Z 2025-03-14T05:00:51.2048342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.2049015Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.2049502Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:00:51.2049820Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:00:51.2050288Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.2050796Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:00:51.2051032Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:00:51.2051484Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.2051990Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:00:51.2052238Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:00:51.2052618Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.2052966Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:00:51.2053195Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:00:51.2053410Z 2025-03-14T05:00:51.2053835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:51.2054419Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:00:51.2054700Z 2025-03-14T05:00:51.2055133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:51.2055824Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:00:51.2056234Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:51.2056515Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:00:51.2056810Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:00:51.2057114Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:00:51.2057366Z 2025-03-14T05:00:51.2057922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:51.2058612Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:51.2058948Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:51.2059282Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:51.2059616Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:51.2059899Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:51.2060139Z 2025-03-14T05:00:51.2060720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:51.2061252Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:51.2061486Z 2025-03-14T05:00:51.2061710Z 2025-03-14T05:00:51.2061808Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:51.2063690Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:00:51.2065691Z l_stack0_ = L_stack0_ 2025-03-14T05:00:51.2066039Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:00:51.2066518Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:00:51.2066991Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:00:51.2067458Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:00:51.2068079Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:00:51.2068660Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:00:51.2069278Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:00:51.2069862Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:00:51.2070331Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:51.2070720Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:51.2071100Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:51.2071479Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:51.2071760Z 2025-03-14T05:00:51.2072122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:00:51.2072580Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:00:51.2073264Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:00:51.2073961Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:00:51.2074663Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:00:51.2075381Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:00:51.2075651Z 2025-03-14T05:00:51.2076035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:00:51.2076991Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:00:51.2077713Z 2025-03-14T05:00:51.2078130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:00:51.2079108Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:00:51.2079834Z 2025-03-14T05:00:51.2080203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.2080652Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.2080902Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:51.2081133Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:51.2081421Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.2081663Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:00:51.2081888Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:51.2082165Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.2082401Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:00:51.2082654Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:00:51.2082913Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.2083150Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:00:51.2083369Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:00:51.2083577Z 2025-03-14T05:00:51.2083949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:51.2084716Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:00:51.2085256Z 2025-03-14T05:00:51.2085710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:51.2086280Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:00:51.2086547Z 2025-03-14T05:00:51.2086937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:51.2087451Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:51.2087722Z 2025-03-14T05:00:51.2088117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:51.2088651Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:51.2088985Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.2089331Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:00:51.2089606Z 2025-03-14T05:00:51.2090028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:51.2090581Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:51.2090921Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:51.2091294Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:00:51.2091760Z 2025-03-14T05:00:51.2092202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:51.2092756Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.2093068Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:00:51.2093363Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:00:51.2093609Z 2025-03-14T05:00:51.2094004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:51.2094564Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:51.2094868Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:00:51.2095158Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:00:51.2095442Z 2025-03-14T05:00:51.2095890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:51.2096405Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:51.2096730Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:00:51.2096960Z 2025-03-14T05:00:51.2097343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:51.2097848Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:51.2098165Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:00:51.2098391Z 2025-03-14T05:00:51.2098770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:51.2100317Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:51.2100665Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:00:51.2100914Z 2025-03-14T05:00:51.2101337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:51.2101917Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:51.2102265Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:00:51.2102507Z 2025-03-14T05:00:51.2102953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:51.2103546Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:51.2103812Z 2025-03-14T05:00:51.2104253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:51.2104801Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:51.2105065Z 2025-03-14T05:00:51.2105538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:51.2106094Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:51.2106420Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:00:51.2106756Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:51.2107107Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:00:51.2107367Z 2025-03-14T05:00:51.2107811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:51.2108363Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:51.2108684Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:00:51.2109038Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:51.2109387Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:00:51.2109665Z 2025-03-14T05:00:51.2110107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:51.2110621Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:51.2110952Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:51.2111299Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:00:51.2111553Z 2025-03-14T05:00:51.2111981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:51.2112487Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:51.2112827Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:51.2113182Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:00:51.2113440Z 2025-03-14T05:00:51.2113847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:51.2114315Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:51.2114583Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:51.2114825Z 2025-03-14T05:00:51.2115228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:51.2115697Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:51.2115970Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:51.2116202Z 2025-03-14T05:00:51.2116589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:51.2117060Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:51.2117349Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:51.2117583Z 2025-03-14T05:00:51.2117970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:51.2118435Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:51.2118719Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:51.2118960Z 2025-03-14T05:00:51.2119390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:51.2119967Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:51.2120251Z 2025-03-14T05:00:51.2120673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:51.2121222Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:00:51.2121504Z 2025-03-14T05:00:51.2121965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:51.2122647Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:00:51.2123088Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:51.2123391Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:00:51.2123692Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:00:51.2124009Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:00:51.2124263Z 2025-03-14T05:00:51.2124674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.2125297Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.2125666Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:00:51.2125912Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:00:51.2126299Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.2126702Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:00:51.2126946Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:00:51.2127330Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.2127690Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:00:51.2127922Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:00:51.2128274Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.2128610Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:00:51.2128836Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:00:51.2129071Z 2025-03-14T05:00:51.2129490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:51.2130053Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:00:51.2130338Z 2025-03-14T05:00:51.2130779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:51.2131529Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:00:51.2131972Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:51.2132271Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:00:51.2132579Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:00:51.2132902Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:00:51.2133151Z 2025-03-14T05:00:51.2133695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:51.2134391Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:51.2134720Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:51.2135037Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:51.2135388Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:51.2135670Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:51.2135941Z 2025-03-14T05:00:51.2136393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:51.2136920Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:51.2137158Z 2025-03-14T05:00:51.6508907Z 2025-03-14T05:00:51.6511354Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:51.6512440Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:00:51.6515701Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:00:51.6516155Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:00:51.6516540Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:51.6517030Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:51.6517447Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:51.6517845Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:51.6518158Z 2025-03-14T05:00:51.6518634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.6519180Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.6519443Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:51.6519685Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:51.6520252Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.6520519Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:00:51.6520770Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:51.6521053Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.6521314Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:00:51.6521556Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:00:51.6521829Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.6522083Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:00:51.6522328Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:00:51.6522620Z 2025-03-14T05:00:51.6523046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:51.6523961Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:00:51.6524693Z 2025-03-14T05:00:51.6525167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:51.6525754Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:00:51.6526031Z 2025-03-14T05:00:51.6526503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:51.6527039Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:51.6527323Z 2025-03-14T05:00:51.6527787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:51.6528330Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:51.6528654Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.6528995Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:00:51.6529267Z 2025-03-14T05:00:51.6529677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:51.6530188Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:51.6530503Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:51.6530847Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:00:51.6531130Z 2025-03-14T05:00:51.6531774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:51.6532289Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.6532576Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:00:51.6532866Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:00:51.6533110Z 2025-03-14T05:00:51.6533509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:51.6534026Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:51.6534358Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:00:51.6534637Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:00:51.6534885Z 2025-03-14T05:00:51.6535300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:51.6535804Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:51.6536130Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:00:51.6536363Z 2025-03-14T05:00:51.6536749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:51.6537248Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:51.6537567Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:00:51.6537799Z 2025-03-14T05:00:51.6538184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:51.6538682Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:51.6538999Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:00:51.6539228Z 2025-03-14T05:00:51.6539631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:51.6540163Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:51.6540531Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:00:51.6540763Z 2025-03-14T05:00:51.6541202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:51.6541727Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:51.6541981Z 2025-03-14T05:00:51.6542392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:51.6542904Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:51.6543160Z 2025-03-14T05:00:51.6543566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:51.6544102Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:51.6544409Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:00:51.6544732Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:51.6545068Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:00:51.6545313Z 2025-03-14T05:00:51.6545731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:51.6546262Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:51.6546571Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:00:51.6546914Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:51.6547250Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:00:51.6547506Z 2025-03-14T05:00:51.6547921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:51.6548419Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:51.6548748Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:51.6549095Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:00:51.6549335Z 2025-03-14T05:00:51.6549738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:51.6550226Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:51.6550547Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:51.6550884Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:00:51.6551126Z 2025-03-14T05:00:51.6551508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:51.6551945Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:51.6552211Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:51.6552439Z 2025-03-14T05:00:51.6552819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:51.6553276Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:51.6553542Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:51.6553768Z 2025-03-14T05:00:51.6554143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:51.6554603Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:51.6554886Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:51.6555124Z 2025-03-14T05:00:51.6555528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:51.6555998Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:51.6556282Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:51.6556519Z 2025-03-14T05:00:51.6556945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:51.6557513Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:51.6557799Z 2025-03-14T05:00:51.6558215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:51.6558768Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:00:51.6559050Z 2025-03-14T05:00:51.6559509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:51.6560174Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:00:51.6560757Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:51.6561048Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:00:51.6561337Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:00:51.6561633Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:00:51.6561877Z 2025-03-14T05:00:51.6562243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.6562780Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.6563113Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:00:51.6563349Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:00:51.6563697Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.6564023Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:00:51.6564249Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:00:51.6564595Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.6564915Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:00:51.6565207Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:00:51.6565553Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.6565946Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:00:51.6566177Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:00:51.6566398Z 2025-03-14T05:00:51.6566842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:51.6567449Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:00:51.6567779Z 2025-03-14T05:00:51.6568234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:51.6568927Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:00:51.6569359Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:51.6569656Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:00:51.6569960Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:00:51.6570286Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:00:51.6570554Z 2025-03-14T05:00:51.6571133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:51.6571914Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:51.6572262Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:51.6572607Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:51.6572987Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:51.6573285Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:51.6573517Z 2025-03-14T05:00:51.6573948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:51.6574462Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:51.6574705Z 2025-03-14T05:00:51.6583276Z 2025-03-14T05:00:51.6587861Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:51.6590262Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:00:51.6591801Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:00:51.6597474Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:00:51.6601927Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:51.6606555Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:51.6607046Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:51.6607650Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:51.6607966Z 2025-03-14T05:00:51.6608399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.6608953Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.6609210Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:51.6609498Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:51.6609783Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.6610043Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:00:51.6610286Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:51.6610568Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.6610824Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:00:51.6611062Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:00:51.6611334Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.6611718Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:00:51.6611955Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:00:51.6612193Z 2025-03-14T05:00:51.6612600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:51.6613422Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:00:51.6614088Z 2025-03-14T05:00:51.6614625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:51.6615252Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:00:51.6615542Z 2025-03-14T05:00:51.6615968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:51.6616559Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:51.6616860Z 2025-03-14T05:00:51.6617282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:51.6617831Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:51.6618165Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.6618508Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:00:51.6618789Z 2025-03-14T05:00:51.6619210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:51.6619732Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:51.6620060Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:51.6620410Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:00:51.6620695Z 2025-03-14T05:00:51.6621105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:51.6621615Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.6621942Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:00:51.6622254Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:00:51.6622501Z 2025-03-14T05:00:51.6622916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:51.6623458Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:51.6623764Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:00:51.6624050Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:00:51.6624301Z 2025-03-14T05:00:51.6624719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:51.6625238Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:51.6625563Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:00:51.6625801Z 2025-03-14T05:00:51.6626190Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:51.6626697Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:51.6627017Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:00:51.6627250Z 2025-03-14T05:00:51.6627630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:51.6628135Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:51.6628456Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:00:51.6628688Z 2025-03-14T05:00:51.6629074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:51.6629634Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:51.6629980Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:00:51.6630211Z 2025-03-14T05:00:51.6630637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:51.6631163Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:51.6631418Z 2025-03-14T05:00:51.6631834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:51.6632353Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:51.6632613Z 2025-03-14T05:00:51.6633048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:51.6633589Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:51.6633915Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:00:51.6634249Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:51.6634596Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:00:51.6634867Z 2025-03-14T05:00:51.6635307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:51.6635860Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:51.6636195Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:00:51.6636524Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:51.6636865Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:00:51.6637120Z 2025-03-14T05:00:51.6637540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:51.6638037Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:51.6638366Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:51.6638714Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:00:51.6638962Z 2025-03-14T05:00:51.6639383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:51.6639889Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:51.6640226Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:51.6640577Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:00:51.6640824Z 2025-03-14T05:00:51.6641226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:51.6641701Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:51.6641966Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:51.6642200Z 2025-03-14T05:00:51.6642585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:51.6643034Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:51.6643281Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:51.6643502Z 2025-03-14T05:00:51.6643879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:51.6644354Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:51.6644642Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:51.6644888Z 2025-03-14T05:00:51.6645277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:51.6645755Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:51.6646037Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:51.6646280Z 2025-03-14T05:00:51.6646713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:51.6647308Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:51.6647606Z 2025-03-14T05:00:51.6648037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:51.6648628Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:00:51.6648921Z 2025-03-14T05:00:51.6649420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:51.6650117Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:00:51.6650555Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:51.6650847Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:00:51.6651155Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:00:51.6651551Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:00:51.6651826Z 2025-03-14T05:00:51.6652228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.6652831Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.6653188Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:00:51.6653437Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:00:51.6653814Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.6654164Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:00:51.6654409Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:00:51.6654777Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.6655162Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:00:51.6655397Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:00:51.6655760Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.6656103Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:00:51.6656337Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:00:51.6656548Z 2025-03-14T05:00:51.6656975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:51.6657603Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:00:51.6657921Z 2025-03-14T05:00:51.6658370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:51.6659059Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:00:51.6659485Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:51.6659767Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:00:51.6660063Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:00:51.6660370Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:00:51.6660836Z 2025-03-14T05:00:51.6661505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:51.6662212Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:51.6662591Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:51.6662958Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:51.6663300Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:51.6663596Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:51.6663837Z 2025-03-14T05:00:51.6664281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:51.6664814Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:51.6665050Z 2025-03-14T05:00:51.6665180Z 2025-03-14T05:00:51.6665280Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:51.6666098Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:00:51.6666899Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:00:51.6667122Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:00:51.6667433Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:51.6667835Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:51.6668227Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:51.6668644Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:51.6668933Z 2025-03-14T05:00:51.6669315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.6669772Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.6670019Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:51.6670254Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:51.6670518Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.6670763Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:00:51.6670999Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:51.6671271Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.6671518Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:00:51.6671749Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:00:51.6672013Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.6672255Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:00:51.6672483Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:00:51.6672699Z 2025-03-14T05:00:51.6673066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:51.6673834Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:00:51.6674375Z 2025-03-14T05:00:51.6674844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:51.6675443Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:00:51.6675713Z 2025-03-14T05:00:51.6676119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:51.6676650Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:51.6676925Z 2025-03-14T05:00:51.6677324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:51.6677826Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:51.6678142Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.6678475Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:00:51.6678738Z 2025-03-14T05:00:51.6679136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:51.6679638Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:51.6679943Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:51.6680269Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:00:51.6680536Z 2025-03-14T05:00:51.6680920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:51.6681395Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.6681685Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:00:51.6681954Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:00:51.6682190Z 2025-03-14T05:00:51.6682571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:51.6683069Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:51.6683363Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:00:51.6683637Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:00:51.6683880Z 2025-03-14T05:00:51.6684259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:51.6684754Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:51.6685069Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:00:51.6685287Z 2025-03-14T05:00:51.6685667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:51.6686169Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:51.6686486Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:00:51.6686718Z 2025-03-14T05:00:51.6687111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:51.6687605Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:51.6687941Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:00:51.6688167Z 2025-03-14T05:00:51.6688565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:51.6689096Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:51.6689438Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:00:51.6689668Z 2025-03-14T05:00:51.6690087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:51.6690607Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:51.6690861Z 2025-03-14T05:00:51.6691288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:51.6691900Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:51.6692162Z 2025-03-14T05:00:51.6692609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:51.6693146Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:51.6693463Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:00:51.6693802Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:51.6695296Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:00:51.6695553Z 2025-03-14T05:00:51.6695991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:51.6696532Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:51.6696849Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:00:51.6697179Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:51.6697523Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:00:51.6697779Z 2025-03-14T05:00:51.6698195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:51.6698696Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:51.6699021Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:51.6699362Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:00:51.6699607Z 2025-03-14T05:00:51.6700016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:51.6700512Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:51.6700861Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:51.6701212Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:00:51.6701466Z 2025-03-14T05:00:51.6701882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:51.6702372Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:51.6702634Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:51.6702869Z 2025-03-14T05:00:51.6703266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:51.6703725Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:51.6703982Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:51.6704213Z 2025-03-14T05:00:51.6704598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:51.6705077Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:51.6705366Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:51.6705613Z 2025-03-14T05:00:51.6706004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:51.6706492Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:51.6706780Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:51.6707031Z 2025-03-14T05:00:51.6707481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:51.6708080Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:51.6708403Z 2025-03-14T05:00:51.6708832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:51.6709408Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:00:51.6709688Z 2025-03-14T05:00:51.6710131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:51.6710808Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:00:51.6711229Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:51.6711509Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:00:51.6711806Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:00:51.6712109Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:00:51.6712357Z 2025-03-14T05:00:51.6712733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.6713284Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.6713634Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:00:51.6713889Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:00:51.6714277Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.6714615Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:00:51.6714852Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:00:51.6715225Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.6715568Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:00:51.6715799Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:00:51.6716153Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.6716485Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:00:51.6716713Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:00:51.6716924Z 2025-03-14T05:00:51.6717346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:51.6717940Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:00:51.6718265Z 2025-03-14T05:00:51.6718702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:51.6719364Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:00:51.6719777Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:51.6720061Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:00:51.6720348Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:00:51.6720645Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:00:51.6720892Z 2025-03-14T05:00:51.6721458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:51.6722158Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:51.6722492Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:51.6722815Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:51.6723148Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:51.6723431Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:51.6723736Z 2025-03-14T05:00:51.6724174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:51.6724690Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:51.6724925Z 2025-03-14T05:00:52.0228585Z 2025-03-14T05:00:52.0229126Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:52.0229599Z def forward(self, s0: "Sym(s0)", L_scores_0_: "f32[s0, 81][81, 1]cpu", s1: "Sym(s0)", L_boxes_0_: "f32[s0, 320][320, 1]cpu"): 2025-03-14T05:00:52.0230201Z l_scores_0_ = L_scores_0_ 2025-03-14T05:00:52.0230429Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:00:52.0230930Z 2025-03-14T05:00:52.0231580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:52.0232673Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:00:52.0232999Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:52.0233392Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:00:52.0233757Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:52.0234048Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:52.0234289Z 2025-03-14T05:00:52.0234735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:52.0235255Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:52.0235493Z 2025-03-14T05:00:52.0235585Z 2025-03-14T05:00:52.0237160Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:52.0237638Z def forward(self, s0: "Sym(s0)", L_scores_0_: "f32[s0, 81][81, 1]cpu", s1: "Sym(s0)", L_boxes_0_: "f32[s0, 320][320, 1]cpu"): 2025-03-14T05:00:52.0237997Z l_scores_0_ = L_scores_0_ 2025-03-14T05:00:52.0238222Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:00:52.0238467Z 2025-03-14T05:00:52.0239137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:52.0239905Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:00:52.0240268Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:52.0240581Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:00:52.0240891Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:52.0242917Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:52.0243448Z 2025-03-14T05:00:52.0244153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:52.0248630Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:52.0250439Z 2025-03-14T05:01:03.8425064Z Compilation time (from dynamo_timed): 34.323805659 2025-03-14T05:01:03.8430395Z pass 2025-03-14T05:01:03.8435761Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:01:03.8440945Z TIMING: entire_frame_compile:34.32381 gc:0.0387 _recursive_pre_grad_passes:0.03303 async_compile.wait:3.55815 backend_compile:19.71346 _recursive_joint_graph_passes:0.17275 _recursive_post_grad_passes:0.08319 code_gen:7.13016 inductor_compile:8.49221 total_wall_time:34.32381 2025-03-14T05:01:03.8442381Z STATS: call_* op count: 990 | FakeTensorMode.__torch_dispatch__:22926 | FakeTensor.__torch_dispatch__:1797 | ProxyTorchDispatchMode.__torch_dispatch__:5692 | attempt fast:112 | slow no contiguity match:36 | fast is_contiguous:76 2025-03-14T05:01:03.8443017Z Dynamo produced 61 graphs covering 990 ops with 46 graph breaks (6 unique) 2025-03-14T05:01:09.1570349Z 2025-03-14T05:01:13.8968068Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:01:13.8972362Z loading model: 0it [00:04, ?it/s] 2025-03-14T05:01:13.8975274Z cpu eval detectron2_fcos_r_50_fpn 2025-03-14T05:01:29.4972384Z WARNING:common:fp64 golden ref were not generated for detectron2_fcos_r_50_fpn. Setting accuracy check to cosine 2025-03-14T05:01:29.5009616Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:01:35.6906520Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:01:41.3157987Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:02:35.2472662Z Compilation time (from dynamo_timed): 49.07104005 2025-03-14T05:02:35.2474917Z pass 2025-03-14T05:02:35.2476873Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:02:35.2478425Z TIMING: entire_frame_compile:49.07104 gc:0.02657 _recursive_pre_grad_passes:0.02439 async_compile.wait:14.98662 backend_compile:37.88347 _recursive_joint_graph_passes:0.27118 _recursive_post_grad_passes:0.17848 code_gen:22.71362 inductor_compile:25.89442 total_wall_time:49.07104 2025-03-14T05:02:35.2479913Z STATS: call_* op count: 944 | FakeTensorMode.__torch_dispatch__:29063 | FakeTensor.__torch_dispatch__:3334 | ProxyTorchDispatchMode.__torch_dispatch__:10972 2025-03-14T05:02:35.2480717Z Dynamo produced 29 graphs covering 944 ops with 22 graph breaks (4 unique) 2025-03-14T05:02:40.5713194Z 2025-03-14T05:02:53.9977072Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:02:53.9980968Z loading model: 0it [00:13, ?it/s] 2025-03-14T05:02:53.9981348Z Traceback (most recent call last): 2025-03-14T05:02:53.9981881Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 485, in 2025-03-14T05:02:53.9984773Z torchbench_main() 2025-03-14T05:02:53.9985248Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 481, in torchbench_main 2025-03-14T05:02:53.9985668Z main(TorchBenchmarkRunner(), original_dir) 2025-03-14T05:02:53.9986004Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3493, in main 2025-03-14T05:02:53.9987401Z process_entry(0, runner, original_dir, args) 2025-03-14T05:02:53.9987818Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3425, in process_entry 2025-03-14T05:02:53.9988183Z return run(runner, args, original_dir) 2025-03-14T05:02:53.9988516Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 4070, in run 2025-03-14T05:02:53.9988915Z assert marked, f"nothing in example_inputs had a dim with {batch_size}" 2025-03-14T05:02:53.9989244Z AssertionError: nothing in example_inputs had a dim with 4 2025-03-14T05:02:54.7857070Z Run failed with return code: 1 2025-03-14T05:02:54.7857381Z Output: None 2025-03-14T05:02:54.7857552Z Error: None 2025-03-14T05:02:57.1816894Z 2025-03-14T05:03:04.6494470Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:03:04.6495731Z loading model: 0it [00:07, ?it/s] 2025-03-14T05:03:04.6496089Z Traceback (most recent call last): 2025-03-14T05:03:04.6496638Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 485, in 2025-03-14T05:03:04.6497092Z torchbench_main() 2025-03-14T05:03:04.6502218Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 481, in torchbench_main 2025-03-14T05:03:04.6506771Z main(TorchBenchmarkRunner(), original_dir) 2025-03-14T05:03:04.6510885Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3493, in main 2025-03-14T05:03:04.6515437Z process_entry(0, runner, original_dir, args) 2025-03-14T05:03:04.6519827Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3425, in process_entry 2025-03-14T05:03:04.6524327Z return run(runner, args, original_dir) 2025-03-14T05:03:04.6526273Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 4070, in run 2025-03-14T05:03:04.6526688Z assert marked, f"nothing in example_inputs had a dim with {batch_size}" 2025-03-14T05:03:04.6527013Z AssertionError: nothing in example_inputs had a dim with 4 2025-03-14T05:03:05.3965871Z Run failed with return code: 1 2025-03-14T05:03:05.3970496Z Output: None 2025-03-14T05:03:05.3970722Z Error: None 2025-03-14T05:03:07.7611996Z 2025-03-14T05:03:21.0416358Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:03:21.0416856Z loading model: 0it [00:13, ?it/s] 2025-03-14T05:03:21.0417143Z Traceback (most recent call last): 2025-03-14T05:03:21.0417932Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 485, in 2025-03-14T05:03:21.0418338Z torchbench_main() 2025-03-14T05:03:21.0418703Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 481, in torchbench_main 2025-03-14T05:03:21.0419216Z main(TorchBenchmarkRunner(), original_dir) 2025-03-14T05:03:21.0419709Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3493, in main 2025-03-14T05:03:21.0423363Z process_entry(0, runner, original_dir, args) 2025-03-14T05:03:21.0423953Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3425, in process_entry 2025-03-14T05:03:21.0424446Z return run(runner, args, original_dir) 2025-03-14T05:03:21.0424883Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 4070, in run 2025-03-14T05:03:21.0425391Z assert marked, f"nothing in example_inputs had a dim with {batch_size}" 2025-03-14T05:03:21.0425778Z AssertionError: nothing in example_inputs had a dim with 4 2025-03-14T05:03:21.7057954Z Run failed with return code: 1 2025-03-14T05:03:21.7060807Z Output: None 2025-03-14T05:03:21.7061039Z Error: None 2025-03-14T05:03:24.0909630Z 2025-03-14T05:03:31.8452348Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:03:31.8456109Z loading model: 0it [00:07, ?it/s] 2025-03-14T05:03:31.8458091Z Traceback (most recent call last): 2025-03-14T05:03:31.8458663Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 485, in 2025-03-14T05:03:31.8464063Z torchbench_main() 2025-03-14T05:03:31.8466540Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 481, in torchbench_main 2025-03-14T05:03:31.8467091Z main(TorchBenchmarkRunner(), original_dir) 2025-03-14T05:03:31.8472792Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3493, in main 2025-03-14T05:03:31.8477477Z process_entry(0, runner, original_dir, args) 2025-03-14T05:03:31.8479649Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3425, in process_entry 2025-03-14T05:03:31.8480148Z return run(runner, args, original_dir) 2025-03-14T05:03:31.8484639Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 4070, in run 2025-03-14T05:03:31.8486630Z assert marked, f"nothing in example_inputs had a dim with {batch_size}" 2025-03-14T05:03:31.8487113Z AssertionError: nothing in example_inputs had a dim with 4 2025-03-14T05:03:32.6264994Z Run failed with return code: 1 2025-03-14T05:03:32.6265638Z Output: None 2025-03-14T05:03:32.6265934Z Error: None 2025-03-14T05:03:35.0138441Z 2025-03-14T05:03:40.7988623Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:03:40.7989027Z loading model: 0it [00:05, ?it/s] 2025-03-14T05:03:40.7989323Z cpu eval dlrm 2025-03-14T05:03:41.4732262Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:03:41.6617099Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:03:41.8800552Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:03:51.7228156Z Compilation time (from dynamo_timed): 8.504976846 2025-03-14T05:03:51.7232415Z pass 2025-03-14T05:03:51.7234827Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:03:51.7235951Z TIMING: _recursive_pre_grad_passes:0.00364 _recursive_joint_graph_passes:0.10035 _recursive_post_grad_passes:0.01511 async_compile.wait:1.172 code_gen:7.26063 inductor_compile:7.38869 backend_compile:8.16214 entire_frame_compile:8.50498 gc:0.00115 total_wall_time:8.50498 2025-03-14T05:03:51.7240531Z STATS: call_* op count: 36 | FakeTensorMode.__torch_dispatch__:1716 | ProxyTorchDispatchMode.__torch_dispatch__:504 | FakeTensor.__torch_dispatch__:81 2025-03-14T05:03:51.7241226Z Dynamo produced 1 graphs covering 36 ops with 0 graph breaks (0 unique) 2025-03-14T05:03:55.7747733Z 2025-03-14T05:03:56.8107920Z loading model: 0it [00:00, ?it/s]Downloading https://doctr-static.mindee.com/models?id=v0.7.0/db_resnet50-79bd7d70.pt&src=0 to /var/lib/jenkins/.cache/doctr/models/db_resnet50-79bd7d70.pt 2025-03-14T05:03:57.2411805Z 2025-03-14T05:03:57.2416573Z 2025-03-14T05:03:57.3448420Z 0% 0/102021912 [00:00=1.35.33 in /home/ec2-user/.local/lib/python3.9/site-packages (from boto3==1.35.33) (1.35.99) 2025-03-14T05:22:13.1022728Z Requirement already satisfied: s3transfer<0.11.0,>=0.10.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from boto3==1.35.33) (0.10.4) 2025-03-14T05:22:13.1024621Z Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /usr/lib/python3.9/site-packages (from boto3==1.35.33) (0.10.0) 2025-03-14T05:22:13.1069372Z Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/.local/lib/python3.9/site-packages (from botocore<1.36.0,>=1.35.33->boto3==1.35.33) (2.8.2) 2025-03-14T05:22:13.1078030Z Requirement already satisfied: urllib3<1.27,>=1.25.4 in /usr/lib/python3.9/site-packages (from botocore<1.36.0,>=1.35.33->boto3==1.35.33) (1.25.10) 2025-03-14T05:22:13.1107923Z Requirement already satisfied: six>=1.5 in /usr/lib/python3.9/site-packages (from python-dateutil<3.0.0,>=2.1->botocore<1.36.0,>=1.35.33->boto3==1.35.33) (1.15.0) 2025-03-14T05:22:13.2321628Z Installing collected packages: boto3 2025-03-14T05:22:13.2321930Z Attempting uninstall: boto3 2025-03-14T05:22:13.2322154Z Found existing installation: boto3 1.35.42 2025-03-14T05:22:13.2390011Z Uninstalling boto3-1.35.42: 2025-03-14T05:22:13.2399525Z Successfully uninstalled boto3-1.35.42 2025-03-14T05:22:13.2840804Z Successfully installed boto3-1.35.33 2025-03-14T05:22:13.3589577Z ##[group]Run set -eux 2025-03-14T05:22:13.3589796Z set -eux 2025-03-14T05:22:13.3589965Z  2025-03-14T05:22:13.3590160Z if [[ -z "${GITHUB_TOKEN}" ]]; then 2025-03-14T05:22:13.3590402Z  echo "Missing github-token input" 2025-03-14T05:22:13.3590618Z  exit 1 2025-03-14T05:22:13.3590777Z fi 2025-03-14T05:22:13.3595053Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:13.3595305Z env: 2025-03-14T05:22:13.3595475Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:13.3595780Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:13.3596619Z GITHUB_TOKEN: *** 2025-03-14T05:22:13.3596807Z ##[endgroup] 2025-03-14T05:22:13.3621555Z + [[ -z *** ]] 2025-03-14T05:22:13.3668707Z ##[group]Run pytorch/test-infra/.github/actions/get-workflow-job-id@main 2025-03-14T05:22:13.3669023Z with: 2025-03-14T05:22:13.3669327Z github-token: *** 2025-03-14T05:22:13.3669505Z env: 2025-03-14T05:22:13.3669673Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:13.3670148Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:13.3670485Z ##[endgroup] 2025-03-14T05:22:13.3693319Z ##[group]Run set -eux 2025-03-14T05:22:13.3693534Z set -eux 2025-03-14T05:22:13.3693707Z  2025-03-14T05:22:13.3694037Z python3 "${GITHUB_ACTION_PATH}/../../scripts/get_workflow_job_id.py" "${GITHUB_RUN_ID}" "${RUNNER_NAME}" 2025-03-14T05:22:13.3698658Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:13.3698937Z env: 2025-03-14T05:22:13.3699118Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:13.3699433Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:13.3700112Z GITHUB_TOKEN: *** 2025-03-14T05:22:13.3700307Z ##[endgroup] 2025-03-14T05:22:13.3722288Z + python3 /home/ec2-user/actions-runner/_work/_actions/pytorch/test-infra/main/.github/actions/get-workflow-job-id/../../scripts/get_workflow_job_id.py 13849515380 i-00f46405241e0bbc9 2025-03-14T05:22:14.0708816Z setting job-id=38754842362 2025-03-14T05:22:14.0710156Z setting job-name=linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T05:22:14.0820058Z ##[group]Run set -eux 2025-03-14T05:22:14.0820337Z set -eux 2025-03-14T05:22:14.0820510Z  2025-03-14T05:22:14.0820773Z python3 "${GITHUB_ACTION_PATH}/../../scripts/benchmarks/gather_metadata.py" \ 2025-03-14T05:22:14.0821097Z  --schema-version "${SCHEMA_VERSION}" \ 2025-03-14T05:22:14.0821354Z  --repo "${REPO}" \ 2025-03-14T05:22:14.0821567Z  --head-branch "${HEAD_BRANCH}" \ 2025-03-14T05:22:14.0821795Z  --head-sha "${HEAD_SHA}" \ 2025-03-14T05:22:14.0822022Z  --workflow-id "${WORKFLOW_RUN_ID}" \ 2025-03-14T05:22:14.0822255Z  --run-attempt "${RUN_ATTEMPT}" \ 2025-03-14T05:22:14.0822473Z  --job-id "${JOB_ID}" \ 2025-03-14T05:22:14.0822679Z  --job-name "${JOB_NAME}" 2025-03-14T05:22:14.0827150Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:14.0827396Z env: 2025-03-14T05:22:14.0827556Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:14.0827852Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:14.0828156Z SCHEMA_VERSION: v3 2025-03-14T05:22:14.0828333Z REPO: pytorch/pytorch 2025-03-14T05:22:14.0828554Z HEAD_BRANCH: refs/heads/main 2025-03-14T05:22:14.0828771Z HEAD_SHA: aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T05:22:14.0828997Z WORKFLOW_RUN_ID: 13849515380 2025-03-14T05:22:14.0829181Z RUN_ATTEMPT: 1 2025-03-14T05:22:14.0829344Z JOB_ID: 38754842362 2025-03-14T05:22:14.0829672Z JOB_NAME: linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T05:22:14.0830021Z ##[endgroup] 2025-03-14T05:22:14.0853600Z + python3 /home/ec2-user/actions-runner/_work/_actions/pytorch/test-infra/main/.github/actions/upload-benchmark-results/../../scripts/benchmarks/gather_metadata.py --schema-version v3 --repo pytorch/pytorch --head-branch refs/heads/main --head-sha aed0b7a742a2d7b7901790622829cbd2135049a4 --workflow-id 13849515380 --run-attempt 1 --job-id 38754842362 --job-name 'linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)' 2025-03-14T05:22:14.1125614Z ##[group]Run set -eux 2025-03-14T05:22:14.1125830Z set -eux 2025-03-14T05:22:14.1125998Z  2025-03-14T05:22:14.1126305Z # TODO (huydhn): Implement this part 2025-03-14T05:22:14.1126555Z echo "runners=[]" >> "${GITHUB_OUTPUT}" 2025-03-14T05:22:14.1130985Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:14.1131316Z env: 2025-03-14T05:22:14.1131490Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:14.1131788Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:14.1132096Z ##[endgroup] 2025-03-14T05:22:14.1150335Z + echo 'runners=[]' 2025-03-14T05:22:14.1176549Z ##[group]Run set -eux 2025-03-14T05:22:14.1176872Z set -eux 2025-03-14T05:22:14.1177044Z  2025-03-14T05:22:14.1177230Z # TODO (huydhn): Implement this part 2025-03-14T05:22:14.1177488Z echo "dependencies={}" >> "${GITHUB_OUTPUT}" 2025-03-14T05:22:14.1181312Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:14.1181560Z env: 2025-03-14T05:22:14.1181726Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:14.1182030Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:14.1182336Z ##[endgroup] 2025-03-14T05:22:14.1201112Z + echo 'dependencies={}' 2025-03-14T05:22:14.1230578Z ##[group]Run set -eux 2025-03-14T05:22:14.1230796Z set -eux 2025-03-14T05:22:14.1230962Z  2025-03-14T05:22:14.1231155Z if [[ ! -d "${BENCHMARK_RESULTS_DIR}" ]]; then 2025-03-14T05:22:14.1231469Z  echo "${BENCHMARK_RESULTS_DIR} does not exist, skipping" 2025-03-14T05:22:14.1231788Z  # We don't want the job to fail if the directory doesn't exist 2025-03-14T05:22:14.1232035Z  exit 0 2025-03-14T05:22:14.1232194Z fi 2025-03-14T05:22:14.1232348Z  2025-03-14T05:22:14.1232518Z if [[ "${DRY_RUN}" == "true" ]]; then 2025-03-14T05:22:14.1232821Z  python3 "${GITHUB_ACTION_PATH}/../../scripts/upload_benchmark_results.py" \ 2025-03-14T05:22:14.1233171Z  --benchmark-results-dir "${BENCHMARK_RESULTS_DIR}" \ 2025-03-14T05:22:14.1233455Z  --metadata "${BENCHMARK_METADATA}" \ 2025-03-14T05:22:14.1233686Z  --runners "${RUNNER_INFO}" \ 2025-03-14T05:22:14.1233917Z  --dependencies "${DEPENDENCIES}" \ 2025-03-14T05:22:14.1234137Z  --dry-run 2025-03-14T05:22:14.1234313Z else 2025-03-14T05:22:14.1234553Z  python3 "${GITHUB_ACTION_PATH}/../../scripts/upload_benchmark_results.py" \ 2025-03-14T05:22:14.1234886Z  --benchmark-results-dir "${BENCHMARK_RESULTS_DIR}" \ 2025-03-14T05:22:14.1235153Z  --metadata "${BENCHMARK_METADATA}" \ 2025-03-14T05:22:14.1235385Z  --runners "${RUNNER_INFO}" \ 2025-03-14T05:22:14.1235613Z  --dependencies "${DEPENDENCIES}" 2025-03-14T05:22:14.1235826Z fi 2025-03-14T05:22:14.1240095Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:14.1240351Z env: 2025-03-14T05:22:14.1240520Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:14.1240832Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:14.1241164Z BENCHMARK_RESULTS_DIR: test/test-reports 2025-03-14T05:22:14.1241377Z DRY_RUN: false 2025-03-14T05:22:14.1242187Z BENCHMARK_METADATA: {"timestamp": 1741929734, "schema_version": "v3", "name": "linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)", "repo": "pytorch/pytorch", "head_branch": "refs/heads/main", "head_sha": "aed0b7a742a2d7b7901790622829cbd2135049a4", "workflow_id": 13849515380, "run_attempt": 1, "job_id": 38754842362} 2025-03-14T05:22:14.1242999Z RUNNER_INFO: [] 2025-03-14T05:22:14.1243169Z DEPENDENCIES: {} 2025-03-14T05:22:14.1243337Z ##[endgroup] 2025-03-14T05:22:14.1263089Z + [[ ! -d test/test-reports ]] 2025-03-14T05:22:14.1265076Z + [[ false == \t\r\u\e ]] 2025-03-14T05:22:14.1266520Z + python3 /home/ec2-user/actions-runner/_work/_actions/pytorch/test-infra/main/.github/actions/upload-benchmark-results/../../scripts/upload_benchmark_results.py --benchmark-results-dir test/test-reports --metadata '{"timestamp": 1741929734, "schema_version": "v3", "name": "linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)", "repo": "pytorch/pytorch", "head_branch": "refs/heads/main", "head_sha": "aed0b7a742a2d7b7901790622829cbd2135049a4", "workflow_id": 13849515380, "run_attempt": 1, "job_id": 38754842362}' --runners '[]' --dependencies '{}' 2025-03-14T05:22:14.2453917Z INFO:root:Upload test/test-reports/inference_torchbench.json to s3://ossci-benchmarks/v3/pytorch/pytorch/13849515380/38754842362/inference_torchbench.json 2025-03-14T05:22:14.2704256Z INFO:botocore.credentials:Found credentials from IAM Role: gh-ci-github-action-runners-runner-role 2025-03-14T05:22:14.4498922Z INFO:root:Upload test/test-reports/inference_torchbench_graph_breaks.json to s3://ossci-benchmarks/v3/pytorch/pytorch/13849515380/38754842362/inference_torchbench_graph_breaks.json 2025-03-14T05:22:14.6692273Z ##[group]Run cat test/**/*_toprint.log || true 2025-03-14T05:22:14.6692585Z cat test/**/*_toprint.log || true 2025-03-14T05:22:14.6697204Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:14.6697461Z env: 2025-03-14T05:22:14.6697635Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:14.6697941Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:14.6698260Z ##[endgroup] 2025-03-14T05:22:14.6755305Z cat: 'test/**/*_toprint.log': No such file or directory 2025-03-14T05:22:14.6786283Z ##[group]Run kill "$MONITOR_SCRIPT_PID" 2025-03-14T05:22:14.6786546Z kill "$MONITOR_SCRIPT_PID" 2025-03-14T05:22:14.6790441Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:14.6790689Z env: 2025-03-14T05:22:14.6790859Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:14.6791149Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:14.6791484Z MONITOR_SCRIPT_PID: 225438 2025-03-14T05:22:14.6791675Z ##[endgroup] 2025-03-14T05:22:14.6883393Z Prepare all required actions 2025-03-14T05:22:14.6883756Z Getting action download info 2025-03-14T05:22:14.8238524Z Download action repository 'actions/upload-artifact@v4' (SHA:4cec3d8aa04e39d1a68397de0c4cd6fb9dce8ec1) 2025-03-14T05:22:15.3069011Z ##[group]Run ./.github/actions/upload-test-artifacts 2025-03-14T05:22:15.3069280Z with: 2025-03-14T05:22:15.3069568Z file-suffix: test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362 2025-03-14T05:22:15.3069895Z s3-bucket: gha-artifacts 2025-03-14T05:22:15.3070087Z env: 2025-03-14T05:22:15.3070252Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:15.3070553Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:15.3070868Z ##[endgroup] 2025-03-14T05:22:15.3097383Z ##[group]Run # Remove any previous test jsons if they exist 2025-03-14T05:22:15.3097717Z # Remove any previous test jsons if they exist 2025-03-14T05:22:15.3097999Z rm -f test-jsons-*.zip 2025-03-14T05:22:15.3098344Z zip -r "test-jsons-${FILE_SUFFIX}.zip" test/test-reports -i '*.json' 2025-03-14T05:22:15.3102830Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:15.3103091Z env: 2025-03-14T05:22:15.3103269Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:15.3103586Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:15.3104026Z FILE_SUFFIX: test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362 2025-03-14T05:22:15.3104348Z ##[endgroup] 2025-03-14T05:22:15.3197025Z adding: test/test-reports/inference_torchbench.json (deflated 99%) 2025-03-14T05:22:15.3348286Z adding: test/test-reports/inference_torchbench_graph_breaks.json (deflated 99%) 2025-03-14T05:22:15.3377213Z ##[group]Run # Remove any previous test reports if they exist 2025-03-14T05:22:15.3377531Z # Remove any previous test reports if they exist 2025-03-14T05:22:15.3377894Z rm -f test-reports-*.zip 2025-03-14T05:22:15.3378220Z zip -r "test-reports-${FILE_SUFFIX}.zip" test/test-reports -i '*.xml' -i '*.csv' 2025-03-14T05:22:15.3382380Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:15.3382636Z env: 2025-03-14T05:22:15.3382800Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:15.3383091Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:15.3383489Z FILE_SUFFIX: test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362 2025-03-14T05:22:15.3383776Z ##[endgroup] 2025-03-14T05:22:15.3421155Z adding: test/test-reports/inference_torchbench.csv (deflated 62%) 2025-03-14T05:22:15.3434194Z adding: test/test-reports/inference_torchbench_graph_breaks.csv (deflated 98%) 2025-03-14T05:22:15.3434941Z adding: test/test-reports/inference_torchbench_graph_break_deduped.csv (deflated 81%) 2025-03-14T05:22:15.3461134Z ##[group]Run # Remove any previous usage logs if they exist 2025-03-14T05:22:15.3461494Z # Remove any previous usage logs if they exist 2025-03-14T05:22:15.3461754Z rm -f logs-*.zip 2025-03-14T05:22:15.3462064Z # this workflow is also run in bazel build test, but we dont generate usage reports for it 2025-03-14T05:22:15.3462413Z # so check to see if the file exists first 2025-03-14T05:22:15.3462663Z if [ -f 'usage_log.txt' ]; then 2025-03-14T05:22:15.3462926Z  zip "logs-${FILE_SUFFIX}.zip" 'usage_log.txt' 2025-03-14T05:22:15.3463167Z fi 2025-03-14T05:22:15.3463428Z if find "test/test-reports" -name "*.log" 2>/dev/null | grep -q .; then 2025-03-14T05:22:15.3463786Z  zip -r "logs-${FILE_SUFFIX}.zip" test/test-reports -i '*.log' 2025-03-14T05:22:15.3464052Z fi 2025-03-14T05:22:15.3468120Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:15.3468358Z env: 2025-03-14T05:22:15.3468517Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:15.3468942Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:15.3469368Z FILE_SUFFIX: test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362 2025-03-14T05:22:15.3469660Z ##[endgroup] 2025-03-14T05:22:15.3524790Z adding: usage_log.txt (deflated 96%) 2025-03-14T05:22:15.3562958Z ##[group]Run # Remove any previous debugging artifacts if they exist 2025-03-14T05:22:15.3563295Z # Remove any previous debugging artifacts if they exist 2025-03-14T05:22:15.3563556Z rm -f debug-*.zip 2025-03-14T05:22:15.3563753Z if [ -d 'test/debug' ]; then 2025-03-14T05:22:15.3563992Z  zip -r "debug-${FILE_SUFFIX}.zip" test/debug 2025-03-14T05:22:15.3564214Z fi 2025-03-14T05:22:15.3568607Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:15.3568854Z env: 2025-03-14T05:22:15.3569023Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:15.3569346Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:15.3569785Z FILE_SUFFIX: test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362 2025-03-14T05:22:15.3570096Z ##[endgroup] 2025-03-14T05:22:15.3643273Z ##[group]Run seemethere/upload-artifact-s3@v5 2025-03-14T05:22:15.3643504Z with: 2025-03-14T05:22:15.3643674Z s3-bucket: gha-artifacts 2025-03-14T05:22:15.3643902Z s3-prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:22:15.3644134Z retention-days: 14 2025-03-14T05:22:15.3644326Z if-no-files-found: warn 2025-03-14T05:22:15.3644517Z path: test-jsons-*.zip 2025-03-14T05:22:15.3644694Z name: artifact 2025-03-14T05:22:15.3644861Z region: us-east-1 2025-03-14T05:22:15.3645027Z env: 2025-03-14T05:22:15.3645184Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:15.3645480Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:15.3645784Z ##[endgroup] 2025-03-14T05:22:15.6530356Z NOTE: s3-prefix specified, ignoring name parameter 2025-03-14T05:22:15.6530915Z With the provided path, there will be 1 file uploaded 2025-03-14T05:22:15.6531352Z Uploading to s3 prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:22:15.6557068Z Starting upload of test-jsons-test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362.zip 2025-03-14T05:22:15.7860050Z Finished upload of test-jsons-test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362.zip 2025-03-14T05:22:15.8018884Z ##[group]Run seemethere/upload-artifact-s3@v5 2025-03-14T05:22:15.8019135Z with: 2025-03-14T05:22:15.8019321Z s3-bucket: gha-artifacts 2025-03-14T05:22:15.8019563Z s3-prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:22:15.8019811Z retention-days: 14 2025-03-14T05:22:15.8020004Z if-no-files-found: error 2025-03-14T05:22:15.8020207Z path: test-reports-*.zip 2025-03-14T05:22:15.8020398Z name: artifact 2025-03-14T05:22:15.8020570Z region: us-east-1 2025-03-14T05:22:15.8020761Z env: 2025-03-14T05:22:15.8020919Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:15.8021261Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:15.8021597Z ##[endgroup] 2025-03-14T05:22:16.0520430Z NOTE: s3-prefix specified, ignoring name parameter 2025-03-14T05:22:16.0520943Z With the provided path, there will be 1 file uploaded 2025-03-14T05:22:16.0521369Z Uploading to s3 prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:22:16.0545413Z Starting upload of test-reports-test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362.zip 2025-03-14T05:22:16.1519711Z Finished upload of test-reports-test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362.zip 2025-03-14T05:22:16.1698780Z ##[group]Run seemethere/upload-artifact-s3@v5 2025-03-14T05:22:16.1699021Z with: 2025-03-14T05:22:16.1699197Z s3-bucket: gha-artifacts 2025-03-14T05:22:16.1699423Z s3-prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:22:16.1699669Z retention-days: 14 2025-03-14T05:22:16.1699846Z if-no-files-found: ignore 2025-03-14T05:22:16.1700168Z path: logs-*.zip 2025-03-14T05:22:16.1700340Z name: artifact 2025-03-14T05:22:16.1700501Z region: us-east-1 2025-03-14T05:22:16.1700667Z env: 2025-03-14T05:22:16.1700842Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:16.1701151Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:16.1701456Z ##[endgroup] 2025-03-14T05:22:16.4230690Z NOTE: s3-prefix specified, ignoring name parameter 2025-03-14T05:22:16.4236003Z With the provided path, there will be 1 file uploaded 2025-03-14T05:22:16.4238141Z Uploading to s3 prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:22:16.4253556Z Starting upload of logs-test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362.zip 2025-03-14T05:22:16.5511758Z Finished upload of logs-test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362.zip 2025-03-14T05:22:16.5698799Z ##[group]Run seemethere/upload-artifact-s3@v5 2025-03-14T05:22:16.5699067Z with: 2025-03-14T05:22:16.5699261Z s3-bucket: gha-artifacts 2025-03-14T05:22:16.5699504Z s3-prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:22:16.5699755Z retention-days: 14 2025-03-14T05:22:16.5699949Z if-no-files-found: ignore 2025-03-14T05:22:16.5700138Z path: debug-*.zip 2025-03-14T05:22:16.5700304Z name: artifact 2025-03-14T05:22:16.5700461Z region: us-east-1 2025-03-14T05:22:16.5700623Z env: 2025-03-14T05:22:16.5700780Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:16.5701077Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:16.5701382Z ##[endgroup] 2025-03-14T05:22:16.8138062Z No files were found with the provided path: debug-*.zip. No artifacts will be uploaded. 2025-03-14T05:22:16.8314925Z ##[group]Run # shellcheck disable=SC2156 2025-03-14T05:22:16.8315195Z # shellcheck disable=SC2156 2025-03-14T05:22:16.8315575Z find . -iname "core.[1-9]*" -exec docker exec "${DOCKER_CONTAINER_ID}" sh -c "gdb python {} -ex 'bt' -ex 'q'" \; 2025-03-14T05:22:16.8320238Z shell: /usr/bin/bash -e {0} 2025-03-14T05:22:16.8320482Z env: 2025-03-14T05:22:16.8320660Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:16.8320964Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:16.8321282Z ##[endgroup] 2025-03-14T05:22:16.9667300Z Prepare all required actions 2025-03-14T05:22:16.9667635Z Getting action download info 2025-03-14T05:22:17.0554168Z ##[group]Run ./.github/actions/upload-utilization-stats 2025-03-14T05:22:17.0554422Z with: 2025-03-14T05:22:17.0554591Z job_id: 38754842362 2025-03-14T05:22:17.0554938Z job_name: linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T05:22:17.0555291Z workflow_name: inductor 2025-03-14T05:22:17.0555475Z workflow_run_id: 13849515380 2025-03-14T05:22:17.0555665Z workflow_attempt: 1 2025-03-14T05:22:17.0555847Z env: 2025-03-14T05:22:17.0555998Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:17.0556285Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:17.0556581Z ##[endgroup] 2025-03-14T05:22:17.0575392Z ##[group]Run echo "workflow_id: 13849515380" 2025-03-14T05:22:17.0575654Z echo "workflow_id: 13849515380" 2025-03-14T05:22:17.0575902Z echo "workflow_attempt: 1" 2025-03-14T05:22:17.0576118Z echo "workflow_Name: inductor" 2025-03-14T05:22:17.0576324Z echo "job_id: 38754842362" 2025-03-14T05:22:17.0576702Z echo "job_name: linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)" 2025-03-14T05:22:17.0581864Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:17.0582121Z env: 2025-03-14T05:22:17.0582292Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:17.0582590Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:17.0582910Z ##[endgroup] 2025-03-14T05:22:17.0605340Z workflow_id: 13849515380 2025-03-14T05:22:17.0607224Z workflow_attempt: 1 2025-03-14T05:22:17.0607560Z workflow_Name: inductor 2025-03-14T05:22:17.0607833Z job_id: 38754842362 2025-03-14T05:22:17.0608251Z job_name: linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T05:22:17.0638915Z ##[group]Run nick-fields/retry@v3.0.0 2025-03-14T05:22:17.0639132Z with: 2025-03-14T05:22:17.0639289Z shell: bash 2025-03-14T05:22:17.0639448Z timeout_minutes: 5 2025-03-14T05:22:17.0639617Z max_attempts: 5 2025-03-14T05:22:17.0639785Z retry_wait_seconds: 30 2025-03-14T05:22:17.0640079Z command: set -eu python3 -m pip install python-dateutil==2.8.2 boto3==1.35.42 pandas==2.1.3 2025-03-14T05:22:17.0640387Z polling_interval_seconds: 1 2025-03-14T05:22:17.0640573Z warning_on_retry: true 2025-03-14T05:22:17.0640751Z continue_on_error: false 2025-03-14T05:22:17.0640924Z env: 2025-03-14T05:22:17.0641080Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:17.0641364Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:17.0641663Z ##[endgroup] 2025-03-14T05:22:17.3106135Z Defaulting to user installation because normal site-packages is not writeable 2025-03-14T05:22:17.3235680Z Requirement already satisfied: python-dateutil==2.8.2 in /home/ec2-user/.local/lib/python3.9/site-packages (2.8.2) 2025-03-14T05:22:17.9582662Z Collecting boto3==1.35.42 2025-03-14T05:22:17.9594489Z Using cached boto3-1.35.42-py3-none-any.whl (139 kB) 2025-03-14T05:22:17.9617153Z Requirement already satisfied: pandas==2.1.3 in /home/ec2-user/.local/lib/python3.9/site-packages (2.1.3) 2025-03-14T05:22:17.9628542Z Requirement already satisfied: six>=1.5 in /usr/lib/python3.9/site-packages (from python-dateutil==2.8.2) (1.15.0) 2025-03-14T05:22:17.9659571Z Requirement already satisfied: s3transfer<0.11.0,>=0.10.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from boto3==1.35.42) (0.10.4) 2025-03-14T05:22:17.9661012Z Requirement already satisfied: botocore<1.36.0,>=1.35.42 in /home/ec2-user/.local/lib/python3.9/site-packages (from boto3==1.35.42) (1.35.99) 2025-03-14T05:22:17.9668186Z Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /usr/lib/python3.9/site-packages (from boto3==1.35.42) (0.10.0) 2025-03-14T05:22:18.0320605Z Requirement already satisfied: tzdata>=2022.1 in /home/ec2-user/.local/lib/python3.9/site-packages (from pandas==2.1.3) (2025.1) 2025-03-14T05:22:18.0321261Z Requirement already satisfied: numpy<2,>=1.22.4 in /home/ec2-user/.local/lib/python3.9/site-packages (from pandas==2.1.3) (1.26.4) 2025-03-14T05:22:18.0321804Z Requirement already satisfied: pytz>=2020.1 in /usr/lib/python3.9/site-packages (from pandas==2.1.3) (2022.7.1) 2025-03-14T05:22:18.0364841Z Requirement already satisfied: urllib3<1.27,>=1.25.4 in /usr/lib/python3.9/site-packages (from botocore<1.36.0,>=1.35.42->boto3==1.35.42) (1.25.10) 2025-03-14T05:22:18.0921665Z Installing collected packages: boto3 2025-03-14T05:22:18.0922223Z Attempting uninstall: boto3 2025-03-14T05:22:18.0922523Z Found existing installation: boto3 1.35.33 2025-03-14T05:22:18.0984907Z Uninstalling boto3-1.35.33: 2025-03-14T05:22:18.0992444Z Successfully uninstalled boto3-1.35.33 2025-03-14T05:22:18.1399271Z Successfully installed boto3-1.35.42 2025-03-14T05:22:19.1259360Z Command completed after 1 attempt(s). 2025-03-14T05:22:19.1317073Z ##[group]Run python3 -m tools.stats.upload_utilization_stats.upload_utilization_stats \ 2025-03-14T05:22:19.1317525Z python3 -m tools.stats.upload_utilization_stats.upload_utilization_stats \ 2025-03-14T05:22:19.1317853Z  --workflow-run-id "13849515380" \ 2025-03-14T05:22:19.1318091Z  --workflow-name "inductor" \ 2025-03-14T05:22:19.1318320Z  --workflow-run-attempt "1" \ 2025-03-14T05:22:19.1318535Z  --job-id "38754842362" \ 2025-03-14T05:22:19.1318930Z  --job-name "linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)" 2025-03-14T05:22:19.1324283Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:19.1324543Z env: 2025-03-14T05:22:19.1324721Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:19.1325035Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:19.1325358Z ##[endgroup] 2025-03-14T05:22:20.0947901Z repo: pytorch/pytorch 2025-03-14T05:22:20.0949748Z Downloading logs-test-dynamic_cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754842362.zip 2025-03-14T05:22:20.0950130Z Converted Log Model: UtilizationMetadata: 2025-03-14T05:22:20.0955422Z UtilizationMetadata(level='metadata', workflow_id='13849515380', job_id='38754842362', workflow_name='inductor', job_name='linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)', usage_collect_interval=1.0, data_model_version=1.0, start_at=1741925871, gpu_count=0, cpu_count=32, gpu_type='', error=None) 2025-03-14T05:22:20.0957002Z [Db Segments] detected pytest cmd: 15, generated segments: 15 2025-03-14T05:22:20.0957312Z [db model] Peek db timeseries 2025-03-14T05:22:20.0957506Z :{ 2025-03-14T05:22:20.0957661Z "created_at": 1741929739, 2025-03-14T05:22:20.0957858Z "type": "utilization", 2025-03-14T05:22:20.0958040Z "tags": [ 2025-03-14T05:22:20.0958223Z "record" 2025-03-14T05:22:20.0958382Z ], 2025-03-14T05:22:20.0958541Z "time_stamp": 1741925871, 2025-03-14T05:22:20.0958732Z "repo": "pytorch/pytorch", 2025-03-14T05:22:20.0958923Z "workflow_id": 13849515380, 2025-03-14T05:22:20.0959112Z "run_attempt": 1, 2025-03-14T05:22:20.0959277Z "job_id": 38754842362, 2025-03-14T05:22:20.0959464Z "workflow_name": "inductor", 2025-03-14T05:22:20.0959833Z "job_name": "linux-jammy-cpu-py3.9-gcc11-inductor / test (dynamic_cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)", 2025-03-14T05:22:20.0960183Z "json_data": "{}" 2025-03-14T05:22:20.0960940Z } 2025-03-14T05:22:20.0961273Z Writing 1 documents to S3 ossci-utilization/util_metadata/v_1.0/pytorch/pytorch/13849515380/1/38754842362/metadata 2025-03-14T05:22:20.0961788Z Done! Finish writing document to S3 ossci-utilization/util_metadata/v_1.0/pytorch/pytorch/13849515380/1/38754842362/metadata 2025-03-14T05:22:20.0962439Z Writing 760 documents to S3 ossci-utilization/util_timeseries/v_1.0/pytorch/pytorch/13849515380/1/38754842362/time_series 2025-03-14T05:22:20.0962978Z Done! Finish writing document to S3 ossci-utilization/util_timeseries/v_1.0/pytorch/pytorch/13849515380/1/38754842362/time_series 2025-03-14T05:22:20.1943173Z ##[group]Run pytorch/test-infra/.github/actions/teardown-linux@main 2025-03-14T05:22:20.1943484Z with: 2025-03-14T05:22:20.1943654Z env: 2025-03-14T05:22:20.1943837Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:20.1944136Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:20.1944439Z ##[endgroup] 2025-03-14T05:22:20.1963010Z ##[group]Run set -eou pipefail 2025-03-14T05:22:20.1963285Z set -eou pipefail 2025-03-14T05:22:20.1963487Z  2025-03-14T05:22:20.1963749Z echo "Holding runner for 2 hours until all ssh sessions have logged out" 2025-03-14T05:22:20.1964060Z for _ in $(seq 1440); do 2025-03-14T05:22:20.1964299Z  # Break if no ssh session exists anymore 2025-03-14T05:22:20.1964544Z  if [ "$(who)" = "" ]; then 2025-03-14T05:22:20.1964814Z  break 2025-03-14T05:22:20.1964995Z  fi 2025-03-14T05:22:20.1965216Z  echo "." 2025-03-14T05:22:20.1965404Z  sleep 5 2025-03-14T05:22:20.1965588Z done 2025-03-14T05:22:20.1970167Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:20.1970427Z env: 2025-03-14T05:22:20.1970602Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:20.1970919Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:20.1971348Z ##[endgroup] 2025-03-14T05:22:20.1995875Z Holding runner for 2 hours until all ssh sessions have logged out 2025-03-14T05:22:20.2044289Z ##[group]Run # ignore expansion of "docker ps -q" since it could be empty 2025-03-14T05:22:20.2044651Z # ignore expansion of "docker ps -q" since it could be empty 2025-03-14T05:22:20.2044925Z # shellcheck disable=SC2046 2025-03-14T05:22:20.2045159Z docker stop $(docker ps -q) || true 2025-03-14T05:22:20.2045399Z # Prune all of the docker images 2025-03-14T05:22:20.2045624Z docker system prune -af 2025-03-14T05:22:20.2049541Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:20.2049804Z env: 2025-03-14T05:22:20.2049979Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:22:20.2050287Z DOCKER_CONTAINER_ID: f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:20.2050606Z ##[endgroup] 2025-03-14T05:22:30.8571881Z f121771cb12d 2025-03-14T05:22:31.9889538Z Deleted Containers: 2025-03-14T05:22:31.9889934Z f121771cb12d163c30755f1e5289de1efd56b3dd586381a77faf33b8cb14ca05 2025-03-14T05:22:31.9890163Z 2025-03-14T05:22:35.5138277Z Deleted Images: 2025-03-14T05:22:35.5138944Z untagged: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T05:22:35.5139870Z untagged: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks@sha256:2f16eb7d476b5dc359eb789543b0cfc9aa5c04fe105d51acd219f91259bad5ab 2025-03-14T05:22:35.5140594Z deleted: sha256:1bab961b3bd90ec6714167a095e5437a0239700971887d1c663377ef708f8526 2025-03-14T05:22:35.5141012Z deleted: sha256:f1c70fafa21653c183da3a27b152e3132edfcc8f536568e599a8a7475a898486 2025-03-14T05:22:35.5141412Z deleted: sha256:257be7015a258302c070c7e2128106874db3320b42c0be587cde8a5c4668eb59 2025-03-14T05:22:35.5141811Z deleted: sha256:948eebb525eda26cfb174529301ea9c21fa30d7c38274102a4e84e8c5fbe8384 2025-03-14T05:22:35.5142488Z deleted: sha256:b9ac7767cf0b17526969b4b0803e8c07d3e794c502cfc420582474375cd9a813 2025-03-14T05:22:35.5143418Z deleted: sha256:80c0b71da98feea65ea51c56635d7acb37ad1eefb862adffe484b0a6ec73d382 2025-03-14T05:22:35.5143829Z deleted: sha256:9211eaf972d93a6b3e1157ed0733c6ef570902faf25a90ffcca263c3ecfe6a71 2025-03-14T05:22:35.5144391Z deleted: sha256:770a3a228550db1ce19da1d84c8ab8f7422a2d6b2177a744f04869331fdc011f 2025-03-14T05:22:35.5144773Z deleted: sha256:ca765c3fb3c14963c38334372443d928ed9dd142026ae5d3163a46c734f59f17 2025-03-14T05:22:35.5145316Z deleted: sha256:c693226c9ece102dfdf509e7a30f3389f47d01eb5736741dd7e5fa024b375eb6 2025-03-14T05:22:35.5145698Z deleted: sha256:d1f6e2d14a7b04693929aea0e661fb71482e5aa1b532a7125191965991fda143 2025-03-14T05:22:35.5146073Z deleted: sha256:07993bec321dd3bb3b1494aaa59c9394f9fcc3410757bd99f69589239a44725f 2025-03-14T05:22:35.5146449Z deleted: sha256:055322257b5cf41cb1a718868e89f759cdd0ff049e292ac7ef1d2a53ca86becd 2025-03-14T05:22:35.5146818Z deleted: sha256:252ed6634b114d7f66233d28c6ad76465b3644f087d340899c7e951999871bdc 2025-03-14T05:22:35.5147194Z deleted: sha256:1f4bc6481e6b53fcffa3231415bb421a166650c5c85cc8815fc631940944134d 2025-03-14T05:22:35.5147573Z deleted: sha256:757e553e71a5e40e7d79542c8fba96d32a5d5d2cc83dabe0a0873d2ae30a6760 2025-03-14T05:22:35.5148371Z deleted: sha256:c73d008283448cd7f9af3b7e93fa7224c699fb8bf57ea48bfa9bfa70b7d0899c 2025-03-14T05:22:35.5151751Z deleted: sha256:8f1f72b72763b40f294d9a61548ab4361197ad009b424337cbbab4b686e31b5e 2025-03-14T05:22:35.5152130Z deleted: sha256:457542c336f851527a24474a65464edf810bb01fc59d14a134de0966f2da22b5 2025-03-14T05:22:35.5152500Z deleted: sha256:0b068011d230ca630e8e88da9706397abab719e1e0f01458c050ab3dc266fb69 2025-03-14T05:22:35.5152875Z deleted: sha256:6b7611c1a0fe36fb64f6f38852ab7dd7128544ebd5b79fd1dae59588d01f1999 2025-03-14T05:22:35.5153247Z deleted: sha256:58418894fc257c7e5594b550bb7984c65bc6d459312f9a9ea6455c2a1ff7913f 2025-03-14T05:22:35.5153609Z deleted: sha256:9b8936eac0cf72c19f68e982a4114c32058b6f70c748a778848403779f2656a7 2025-03-14T05:22:35.5153981Z deleted: sha256:4f5c047819041836387aae08ee2b5f13239a3994f0ea2320ef272b2478dc8ef4 2025-03-14T05:22:35.5154356Z deleted: sha256:ed9af6f191cd384d7fe4ba6ff77a2314ce8f02d6eb65f4c22af24979dcab65f9 2025-03-14T05:22:35.5154732Z deleted: sha256:147d2ba7ff1f79138609e78e537e545abf74b6d35f8ce6e7631cd947cc97e4eb 2025-03-14T05:22:35.5155102Z deleted: sha256:c0383887a64b287af7ffb85f9e90ca26024838dee5135f0daa0f521e3c9f4700 2025-03-14T05:22:35.5155466Z deleted: sha256:d458cfd4d3050444c825537087bc07c1959e7fb8a3e339e109479a808f9aa3d7 2025-03-14T05:22:35.5155841Z deleted: sha256:185e72f4c05edf1cfb429debc32253ec9d900149e814f8109a0487b439c6499d 2025-03-14T05:22:35.5156217Z deleted: sha256:35a932e808caf02132ebe5708af4779e3a3bbb0d0f0d9dd768e042700dd6f1ac 2025-03-14T05:22:35.5156593Z deleted: sha256:b7ab9bb1ef36a3632cc73431e5f66d93a8a6b8606ceaac43a6530aef41d043be 2025-03-14T05:22:35.5156970Z deleted: sha256:98446da4367bce4c693b76a2c0dfe3e5d92337c68c3628411ed5a9d3e75e3001 2025-03-14T05:22:35.5157348Z deleted: sha256:2fa7934e407325f3915810fc60f7264a0e37d1fc3025dfe317ad47dfa736a596 2025-03-14T05:22:35.5158453Z deleted: sha256:5826059d955a5b42eb58fac9d3b728ea9b86c24950e455b575d0d675595fdb83 2025-03-14T05:22:35.5158847Z deleted: sha256:d0c120734162460fdbec1bc231b58beb664f44f28eb4faa45148425510538786 2025-03-14T05:22:35.5159767Z deleted: sha256:694a490b82d77b3cd2d35e952e32c6faad294ddc6437f5a3177f77b1e3c7617d 2025-03-14T05:22:35.5160147Z deleted: sha256:8098d7ec4fc850921ae016dac5183c08eac3cfdd64e5c4fb59f8bd4edf7db18b 2025-03-14T05:22:35.5160706Z deleted: sha256:e3ba634c3ec74783be198d136bf23bb929a7fb93e62ab20a1bcefd82c944dae3 2025-03-14T05:22:35.5161099Z deleted: sha256:6c787593e1088a677c18a8428fb718af38a8730c671b85e4ed3a15ad64cc655d 2025-03-14T05:22:35.5161509Z deleted: sha256:e513913d353704462a90df83aac640c6c5d894dd4dc2651954be291287b8c22b 2025-03-14T05:22:35.5161888Z deleted: sha256:a191277f29357fe043dd2122c9a4b78cd3ed9bfb92e7963cca9a9d101f575ba6 2025-03-14T05:22:35.5162277Z deleted: sha256:59f43ce6f7edc380dcc444b56e00f2dc9ef23196590e453e73e68295498f25b5 2025-03-14T05:22:35.5162817Z deleted: sha256:9e059d039c42b907d3b772990000dd155e0a8e82727705db50bd91a3fee87f72 2025-03-14T05:22:35.5163198Z deleted: sha256:369472d11d5b1bd72071cb5c2e5098082c7d7fc672aa13bd89d7102ef120fb14 2025-03-14T05:22:35.5163583Z deleted: sha256:2d910764023ddf5d12701abdd2fee664955fc097db5f24da2c109f3fc9ae07e8 2025-03-14T05:22:35.5163975Z deleted: sha256:e9b8a74eae78cdde6378061a2db467b6576d02ad41f9be215b0d9caca6e38aff 2025-03-14T05:22:35.5164500Z deleted: sha256:2dba6a95777543f0c4d7f5438367153b3d413e3fe0a67c67f5c616a48b52513a 2025-03-14T05:22:35.5164887Z deleted: sha256:f6342f36954b412d64fa5fcfeed36153e1864fb91a07d355a86421f24025fb26 2025-03-14T05:22:35.5165270Z deleted: sha256:2f42c8962a9681df48e3f6db2b6aebc67070be224ce48397934c362230e7b25a 2025-03-14T05:22:35.5165659Z deleted: sha256:7b16cb1a08ae455e502b2cc5eb9797f88ae1065ac3ef10d58b07cbc92320abed 2025-03-14T05:22:35.5166039Z deleted: sha256:53f49fe06b7e72120214392e1d0b5e349602569da8dd320124014e47170b1443 2025-03-14T05:22:35.5166423Z deleted: sha256:ab72286eb578c1e0ebb7f93a5033a70fa2987820d475ac58b94b9cda1d97d1f8 2025-03-14T05:22:35.5166810Z deleted: sha256:0f2284231d71ecf5b661c70c76f59235283ebea2109eeb9c930f28de80c25db7 2025-03-14T05:22:35.5167187Z deleted: sha256:c17a9c11f5fa0dd2fb6aa76c4d226ca4920a4814da35d11a23132c8cddea56de 2025-03-14T05:22:35.5167572Z deleted: sha256:5e7b289a68c88c68aaae9f774d75ef2c3560726dcb0bb68c40b83476f5279fc3 2025-03-14T05:22:35.5167959Z deleted: sha256:54383c657e0814e9df4dfeb9e439b4e9d961ea5567b5a8dd1fb8dcd274e6a542 2025-03-14T05:22:35.5168347Z deleted: sha256:23c598cb49f1778286c6dd9d3ad8fd6a5dda3723759aff290c57b9b4b33a5254 2025-03-14T05:22:35.5168725Z deleted: sha256:151e4be891c683a58b369e2a381d56d890726f130c1034198bafa486874d5f3c 2025-03-14T05:22:35.5169101Z deleted: sha256:67d27664ba27792cc2a3be862a7785db4b2e94e90cd475f1b4c3583420af54b2 2025-03-14T05:22:35.5169484Z deleted: sha256:444db72c2c6410fa918f5239d9f40f8d60bacc2a930c1d2e88e55ba7e90dd190 2025-03-14T05:22:35.5169883Z deleted: sha256:e5956c73e6ed7735c73c96aedb3facef946e7d8e8c7d575586f3984e2a088cd3 2025-03-14T05:22:35.5170277Z deleted: sha256:1161ba2320dc98f34e89e2b2cb247532b5b751d06388cef74c3d223d91c8a54f 2025-03-14T05:22:35.5170670Z deleted: sha256:636533db6e096cfee9d15fccffa860f852e36a17de826d1faa6437a8b4c2f07c 2025-03-14T05:22:35.5171059Z deleted: sha256:f17858d33b62b794fe3b08f18497295725959fce7165892d91022e21f4a58d35 2025-03-14T05:22:35.5171571Z deleted: sha256:f55340aa88fce044fd887201e56e51a56ca87457b6a9f6f9a9a62f80747cb592 2025-03-14T05:22:35.5171978Z deleted: sha256:c613727faed9b4df57f35fd72a70cc58fd88381934d9d791a2df9f7eb487949c 2025-03-14T05:22:35.5172388Z deleted: sha256:5202841bb151e8fbce051a8b8b8f4f5b7e85ecb6c850b69b598b89a274183357 2025-03-14T05:22:35.5172776Z deleted: sha256:d7be908f71f3b9bf7e4a187792e5bac7003dcd822e6cb7b37e8433357a424385 2025-03-14T05:22:35.5173167Z deleted: sha256:449c13d02298fc8bc6feed4fb489f32abb05d2b75276f53b3420f21ef4e5491b 2025-03-14T05:22:35.5173556Z deleted: sha256:f31347f63f35b34e452b270d28b824e9a4e2d0253c13f1dca0ddf8a215f44f00 2025-03-14T05:22:35.5173942Z deleted: sha256:807f08b2b423031a7d17dbbcd56df41066b0120a860db8bbb66d27623edc912d 2025-03-14T05:22:35.5174328Z deleted: sha256:9d014db3c35f5c903d5ec3aeedc2eb3f569b530ff55db80068e67279f389df4a 2025-03-14T05:22:35.5179209Z deleted: sha256:8ec9904b6ea8685f42923ea8255de513a06216a8d79d3e3ccda1a784f8bd87b3 2025-03-14T05:22:35.5179705Z deleted: sha256:d52c246bd07bfddac4b07ce20e1a71945bae916d4368fb5d428399401af72671 2025-03-14T05:22:35.5180131Z deleted: sha256:d3cc357f8bbe14bbbe61457d5b4f8965a24bb075da1e5587aac9ae3c795a8bcd 2025-03-14T05:22:35.5180611Z deleted: sha256:26b82bcc6a1cc00d5754a8546f1dcea0af13297161ad9c1ae9e69eb5ad77f45c 2025-03-14T05:22:35.5181004Z deleted: sha256:286d6fa3b60884a3f41e875ae31941ea7e573a833e6583fcc4322f6fe1f517a1 2025-03-14T05:22:35.5181389Z deleted: sha256:ce07ff180683bb03ff3bc34cd53532e4e226c1c315e6098a00fe6cef4a27778c 2025-03-14T05:22:35.5181779Z deleted: sha256:53f0f725132031f901b12e35d8c9cf4acaa8e2a2fd0ef6d5cde2300b948c8d6c 2025-03-14T05:22:35.5182307Z deleted: sha256:c5bf6f7b5a9c3ea1474f8c18b9576ee713beedd36681d88737b27cf67b65b8ca 2025-03-14T05:22:35.5182698Z deleted: sha256:cea84c16acbc664f0623251d326133807364242d4aa71b4043453c1ed04e34ca 2025-03-14T05:22:35.5183081Z deleted: sha256:947031bb2881adeacf7b5f11cd5795a50586936496113c72e65c084e283c0a2e 2025-03-14T05:22:35.5183467Z deleted: sha256:22d6d8480d3a77305df9afb31c18b2dd268f4fbbf54fc12986f3845b8b1c7181 2025-03-14T05:22:35.5183854Z deleted: sha256:cd0e364d2e6c89b30a70b5d41f89e8a6c9f852c3a62a25a340d413054bfdd489 2025-03-14T05:22:35.5184302Z deleted: sha256:5bfe8c860d56369c402728193b8d376f8b0948c947641e07b0460f168551c79b 2025-03-14T05:22:35.5184688Z deleted: sha256:bc3fd16e729f1b8fba3e121a50a01a62da3545c16492a2e57b3643fe60fd3836 2025-03-14T05:22:35.5185075Z deleted: sha256:0f94ad47e1720472ec7bbb4402d3e432ae769355ffe2a2411547955af4dea876 2025-03-14T05:22:35.5185453Z deleted: sha256:70e1d9f64d002c2498c5c48a25a306eeb36b26f9ed6300be8e2ca7c79097b9b3 2025-03-14T05:22:35.5185848Z deleted: sha256:73809ebb8d79f0f0b155a8845fcea4dd4828ed8509691978b263210ee358a6a6 2025-03-14T05:22:35.5186231Z deleted: sha256:e5e7b86dfe19031f1ab2b7cb20da98206fba3b4ebdd974bfdd35d0b4b80d5377 2025-03-14T05:22:35.5186616Z deleted: sha256:c64c0c772aad31d1c419f82c9e7a5bfa822e4ca9676b669d4f1fe131ea63ec49 2025-03-14T05:22:35.5186991Z deleted: sha256:270a1170e7e398434ff1b31e17e233f7d7b71aa99a40473615860068e86720af 2025-03-14T05:22:35.5187212Z 2025-03-14T05:22:35.5187319Z Total reclaimed space: 41.73GB 2025-03-14T05:22:35.5249962Z Post job cleanup. 2025-03-14T05:22:35.5293471Z Post job cleanup. 2025-03-14T05:22:35.6066891Z [command]/usr/bin/git version 2025-03-14T05:22:35.6103586Z git version 2.47.1 2025-03-14T05:22:35.6131120Z Copying '/home/ec2-user/.gitconfig' to '/home/ec2-user/actions-runner/_work/_temp/d8699c9e-5d11-4a15-bf36-ffe1b50ecdb9/.gitconfig' 2025-03-14T05:22:35.6147382Z Temporarily overriding HOME='/home/ec2-user/actions-runner/_work/_temp/d8699c9e-5d11-4a15-bf36-ffe1b50ecdb9' before making global git config changes 2025-03-14T05:22:35.6148122Z Adding repository directory to the temporary git global config as a safe directory 2025-03-14T05:22:35.6154363Z [command]/usr/bin/git config --global --add safe.directory /home/ec2-user/actions-runner/_work/pytorch/pytorch 2025-03-14T05:22:35.6195384Z [command]/usr/bin/git config --local --name-only --get-regexp core\.sshCommand 2025-03-14T05:22:35.6235659Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'core\.sshCommand' && git config --local --unset-all 'core.sshCommand' || :" 2025-03-14T05:22:35.6541243Z Entering 'android/libs/fbjni' 2025-03-14T05:22:35.6587781Z Entering 'third_party/FP16' 2025-03-14T05:22:35.6635484Z Entering 'third_party/FXdiv' 2025-03-14T05:22:35.6686148Z Entering 'third_party/NNPACK' 2025-03-14T05:22:35.6733966Z Entering 'third_party/NVTX' 2025-03-14T05:22:35.6787326Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T05:22:35.6835212Z Entering 'third_party/XNNPACK' 2025-03-14T05:22:35.6895883Z Entering 'third_party/benchmark' 2025-03-14T05:22:35.6946098Z Entering 'third_party/composable_kernel' 2025-03-14T05:22:35.7001934Z Entering 'third_party/cpp-httplib' 2025-03-14T05:22:35.7048725Z Entering 'third_party/cpuinfo' 2025-03-14T05:22:35.7093703Z Entering 'third_party/cudnn_frontend' 2025-03-14T05:22:35.7142210Z Entering 'third_party/cutlass' 2025-03-14T05:22:35.7206525Z Entering 'third_party/eigen' 2025-03-14T05:22:35.7256604Z Entering 'third_party/fbgemm' 2025-03-14T05:22:35.7306329Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T05:22:35.7354039Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T05:22:35.7404196Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T05:22:35.7457215Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T05:22:35.7506099Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T05:22:35.7560019Z Entering 'third_party/flash-attention' 2025-03-14T05:22:35.7609838Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T05:22:35.7657294Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T05:22:35.7710911Z Entering 'third_party/flatbuffers' 2025-03-14T05:22:35.7755966Z Entering 'third_party/fmt' 2025-03-14T05:22:35.7809133Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T05:22:35.7856860Z Entering 'third_party/gloo' 2025-03-14T05:22:35.7906710Z Entering 'third_party/googletest' 2025-03-14T05:22:35.7953387Z Entering 'third_party/ideep' 2025-03-14T05:22:35.8004413Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T05:22:35.8055327Z Entering 'third_party/ittapi' 2025-03-14T05:22:35.8107944Z Entering 'third_party/kineto' 2025-03-14T05:22:35.8158641Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T05:22:35.8202538Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T05:22:35.8248423Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T05:22:35.8296359Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T05:22:35.8349729Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T05:22:35.8394406Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T05:22:35.8441665Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T05:22:35.8488587Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T05:22:35.8533911Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T05:22:35.8584142Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T05:22:35.8635642Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T05:22:35.8684382Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T05:22:35.8737799Z Entering 'third_party/kleidiai' 2025-03-14T05:22:35.8784070Z Entering 'third_party/mimalloc' 2025-03-14T05:22:35.8829391Z Entering 'third_party/nlohmann' 2025-03-14T05:22:35.8877121Z Entering 'third_party/onnx' 2025-03-14T05:22:35.8940029Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T05:22:35.8995797Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T05:22:35.9044042Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T05:22:35.9090266Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T05:22:35.9140179Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T05:22:35.9189161Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T05:22:35.9242236Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T05:22:35.9291494Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T05:22:35.9337337Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T05:22:35.9383067Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T05:22:35.9436140Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T05:22:35.9490637Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T05:22:35.9558776Z Entering 'third_party/pocketfft' 2025-03-14T05:22:35.9609905Z Entering 'third_party/protobuf' 2025-03-14T05:22:35.9658876Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T05:22:35.9705884Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T05:22:35.9756146Z Entering 'third_party/psimd' 2025-03-14T05:22:35.9808247Z Entering 'third_party/pthreadpool' 2025-03-14T05:22:35.9857654Z Entering 'third_party/pybind11' 2025-03-14T05:22:35.9909152Z Entering 'third_party/python-peachpy' 2025-03-14T05:22:35.9955294Z Entering 'third_party/sleef' 2025-03-14T05:22:36.0021219Z Entering 'third_party/tensorpipe' 2025-03-14T05:22:36.0062246Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T05:22:36.0147867Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T05:22:36.0194059Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T05:22:36.0239776Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T05:22:36.0287631Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T05:22:36.0369197Z [command]/usr/bin/git config --local --name-only --get-regexp http\.https\:\/\/github\.com\/\.extraheader 2025-03-14T05:22:36.0390760Z http.https://github.com/.extraheader 2025-03-14T05:22:36.0399646Z [command]/usr/bin/git config --local --unset-all http.https://github.com/.extraheader 2025-03-14T05:22:36.0427917Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'http\.https\:\/\/github\.com\/\.extraheader' && git config --local --unset-all 'http.https://github.com/.extraheader' || :" 2025-03-14T05:22:36.0710375Z Entering 'android/libs/fbjni' 2025-03-14T05:22:36.0742095Z http.https://github.com/.extraheader 2025-03-14T05:22:36.0771774Z Entering 'third_party/FP16' 2025-03-14T05:22:36.0802593Z http.https://github.com/.extraheader 2025-03-14T05:22:36.0831993Z Entering 'third_party/FXdiv' 2025-03-14T05:22:36.0885323Z http.https://github.com/.extraheader 2025-03-14T05:22:36.0926441Z Entering 'third_party/NNPACK' 2025-03-14T05:22:36.0956623Z http.https://github.com/.extraheader 2025-03-14T05:22:36.0988954Z Entering 'third_party/NVTX' 2025-03-14T05:22:36.1021182Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1052425Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T05:22:36.1084358Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1114715Z Entering 'third_party/XNNPACK' 2025-03-14T05:22:36.1148338Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1192855Z Entering 'third_party/benchmark' 2025-03-14T05:22:36.1222615Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1253099Z Entering 'third_party/composable_kernel' 2025-03-14T05:22:36.1287708Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1325002Z Entering 'third_party/cpp-httplib' 2025-03-14T05:22:36.1356161Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1389217Z Entering 'third_party/cpuinfo' 2025-03-14T05:22:36.1418864Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1450463Z Entering 'third_party/cudnn_frontend' 2025-03-14T05:22:36.1481958Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1512344Z Entering 'third_party/cutlass' 2025-03-14T05:22:36.1544724Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1583147Z Entering 'third_party/eigen' 2025-03-14T05:22:36.1613545Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1644879Z Entering 'third_party/fbgemm' 2025-03-14T05:22:36.1678772Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1712551Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T05:22:36.1743709Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1774508Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T05:22:36.1806474Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1841330Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T05:22:36.1870621Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1911077Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T05:22:36.1940341Z http.https://github.com/.extraheader 2025-03-14T05:22:36.1975383Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T05:22:36.2005468Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2042736Z Entering 'third_party/flash-attention' 2025-03-14T05:22:36.2072169Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2105851Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T05:22:36.2134208Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2178799Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T05:22:36.2208499Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2252539Z Entering 'third_party/flatbuffers' 2025-03-14T05:22:36.2284018Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2321047Z Entering 'third_party/fmt' 2025-03-14T05:22:36.2350893Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2388596Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T05:22:36.2414759Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2446453Z Entering 'third_party/gloo' 2025-03-14T05:22:36.2479313Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2513664Z Entering 'third_party/googletest' 2025-03-14T05:22:36.2542985Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2573595Z Entering 'third_party/ideep' 2025-03-14T05:22:36.2606429Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2635526Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T05:22:36.2668395Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2709646Z Entering 'third_party/ittapi' 2025-03-14T05:22:36.2744102Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2775658Z Entering 'third_party/kineto' 2025-03-14T05:22:36.2806980Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2841189Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T05:22:36.2872580Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2904511Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T05:22:36.2935359Z http.https://github.com/.extraheader 2025-03-14T05:22:36.2972146Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T05:22:36.3003652Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3040453Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T05:22:36.3069061Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3105768Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T05:22:36.3133567Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3171250Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T05:22:36.3202952Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3243010Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T05:22:36.3272347Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3308393Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T05:22:36.3346733Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3376110Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T05:22:36.3404415Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3440604Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T05:22:36.3469016Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3506375Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T05:22:36.3544174Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3573039Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T05:22:36.3603331Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3638742Z Entering 'third_party/kleidiai' 2025-03-14T05:22:36.3671532Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3706640Z Entering 'third_party/mimalloc' 2025-03-14T05:22:36.3738700Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3770876Z Entering 'third_party/nlohmann' 2025-03-14T05:22:36.3799312Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3832914Z Entering 'third_party/onnx' 2025-03-14T05:22:36.3865464Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3909672Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T05:22:36.3943250Z http.https://github.com/.extraheader 2025-03-14T05:22:36.3979766Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T05:22:36.4007688Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4046327Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T05:22:36.4073476Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4110592Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T05:22:36.4137206Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4174880Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T05:22:36.4203524Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4238154Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T05:22:36.4269864Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4306172Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T05:22:36.4332990Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4370180Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T05:22:36.4401869Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4437312Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T05:22:36.4469627Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4503260Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T05:22:36.4533321Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4571143Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T05:22:36.4599479Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4640088Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T05:22:36.4671587Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4725359Z Entering 'third_party/pocketfft' 2025-03-14T05:22:36.4754740Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4791583Z Entering 'third_party/protobuf' 2025-03-14T05:22:36.4820783Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4854504Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T05:22:36.4887388Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4924992Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T05:22:36.4959132Z http.https://github.com/.extraheader 2025-03-14T05:22:36.4998751Z Entering 'third_party/psimd' 2025-03-14T05:22:36.5029600Z http.https://github.com/.extraheader 2025-03-14T05:22:36.5067590Z Entering 'third_party/pthreadpool' 2025-03-14T05:22:36.5097004Z http.https://github.com/.extraheader 2025-03-14T05:22:36.5134552Z Entering 'third_party/pybind11' 2025-03-14T05:22:36.5165839Z http.https://github.com/.extraheader 2025-03-14T05:22:36.5198224Z Entering 'third_party/python-peachpy' 2025-03-14T05:22:36.5229899Z http.https://github.com/.extraheader 2025-03-14T05:22:36.5265938Z Entering 'third_party/sleef' 2025-03-14T05:22:36.5293351Z http.https://github.com/.extraheader 2025-03-14T05:22:36.5331178Z Entering 'third_party/tensorpipe' 2025-03-14T05:22:36.5366135Z http.https://github.com/.extraheader 2025-03-14T05:22:36.5396005Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T05:22:36.5424993Z http.https://github.com/.extraheader 2025-03-14T05:22:36.5458492Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T05:22:36.5490407Z http.https://github.com/.extraheader 2025-03-14T05:22:36.5524054Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T05:22:36.5556591Z http.https://github.com/.extraheader 2025-03-14T05:22:36.5589015Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T05:22:36.5621864Z http.https://github.com/.extraheader 2025-03-14T05:22:36.5654007Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T05:22:36.5687686Z http.https://github.com/.extraheader 2025-03-14T05:22:36.5838026Z A job completed hook has been configured by the self-hosted runner administrator 2025-03-14T05:22:36.5862947Z ##[group]Run '/home/ec2-user/runner-scripts/after_job.sh' 2025-03-14T05:22:36.5866207Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:22:36.5866487Z ##[endgroup] 2025-03-14T05:22:36.5938065Z [!ALERT!] Swap in detected! [!ALERT!] 2025-03-14T05:22:45.0274588Z [!ALERT!] Swap out detected [!ALERT!] 2025-03-14T05:22:58.4905839Z Cleaning up orphan processes